

Skyview Estates Leicester, MA

APPLICANT: MKEP 770 LLC 265 Sunrise Highway, Suite 1368 Rockville Center, NY 11570 **PREPARED BY**: Allen & Major Associates, Inc. 100 Commerce Way, Suite 5 Woburn, Massachusetts 01801

DRAINAGE REPORT Skyview Estates

DRAINAGE REPORT

Skyview Estates Leicester, Massachusetts

APPLICANT:

MKEP 770 LCC 265 Sunrise Highway, Suite 1368 Rockville Center, NY 11570

Allen & Major Associates, Inc. 100 Commerce Way, Suite 5 Woburn, Massachusetts 01801

REVISED:

12-02-22 02-07-2022 12-14-2021

ISSUED:

09-01-2022

A&M PROJECT NO.:

2889-01

TABLE OF CONTENTS

SECTIO	N 1.0 - DRAINAGE REPORT5
Intro	oduction6
Site	Categorization for Stormwater Regulations6
Site	Location and Access
Exist	ing Site Conditions
Exist	ing Soil Conditions
FEM	A Floodplain/Environmental Due Diligence8
Envi	ronmentally Sensitive Zones8
Drai	nage Analysis Methodology8
Prop	oosed Conditions – Peak Rate of Runoff8
MAS	SDEP Stormwater Performance Standards11
MAS	SDEP Stormwater Checklist16
SECTIO	N 2.0 - OPERATION & MAINTENANCE PLAN17
Intro	duction
Noti	fication Procedures for Change of Responsibility for O&M
Cont	tact Information
Dem	nolition & Construction Maintenance Plan19
Long	g-Term Pollution Prevention Plan20
Long	g-Term Maintenance Plan – Facilities Description25
Insp	ection and Maintenance Frequency and Corrective Measures
Supp	plemental Information
SECTIO	N 3.0 - EXHIBITS
USG	S Site Locus Map
	al Photo
FEM	A Flood Insurance Rate Map32
NHE	SP Map
MAS	SDEP Wetlands Map

DRAINAGE REPORT Skyview Estates

SECTION 4.0 - EXISTING DRAINAGE ANALYSIS	35
Existing HydroCAD	
Existing Watershed Plan	
SECTION 5.0 - PROPOSED DRAINAGE ANALYSIS	
Proposed HydroCAD	
Proposed Watershed Plan	
SECTION 6.0 - APPENDIX	41
Rainfall Data	
Manning's Number Tables	43
Soils Map	
Water Quality Flow Calculations	45
WQU Sizing	46
Stormwater Pipe Sizing Calculation	
MADEP TSS Calculations	
MADEP TSS Calculations	
MADEP Calculation	
MADEP TSS Calculations	
RIPRAP End Section Calculation	
Swale Calculations	
Inlet Grate Capacity Calculations	
Sump Inlet Grate Capacity Calculations	

SECTION 1.0 -DRAINAGE REPORT

Introduction

The purpose of this drainage report is to provide an overview of the proposed stormwater management system (SMS) for the Skyview Estates site plan located at 651 Main Street in Leicester. The report will show by means of narrative, calculations and exhibits that the proposed stormwater management system will meet or exceed the Massachusetts Department of Environmental Protection (MassDEP) stormwater standards, and the Town of Leicester Stormwater Management Regulations.

The proposed site improvements include the construction of a neighborhood style residential development. The development will consist of two family town homes situated along a curvilinear roadway network. The entire development will remain private under the control of an established home owner association.

The proposed SMS incorporates structural and non-structural Best Management Practices (BMPs) to provide stormwater peak flow mitigation, quality treatment, and conveyance. The SMS includes catch basins, drain manholes, proprietary separators, subsurface detention systems, and gabion wall systems.

Site Categorization for Stormwater Regulations

The proposed site improvements at 651 Main Street are considered a new development under the DEP Stormwater Management Standards due to the net increase in impervious area. A new development project is required to meet the all of Stormwater Management Standards listed within the MA DEP Stormwater Handbook.

Site Location and Access

The site is a single lot (21-B5.1) that is proposed to be subdivided into 5 lots. Each of the proposed lots which front Main Street contains the minimum 100 feet of frontage. The remaining lot will be further developed into a residential development. The parcel is located along Main Street (Route 9) approximately 0.2 miles south of Waite Pond.

The parcel is abutted by the Residential 1 zone to the southeast and Suburban-Agricultural zone to the southwest. St. Josephs Church and Leicester Early Learning Center abut the parcel to the west while residential homes abut the parcel to the east and south.

The site is accessed to the southeast by an existing curb cut for Colonial Drive as well as to the north by a proposed curb cut on Main Street. The proposed private roadway network will be connected by these curb cuts to provide adequate traffic flow and safe travel throughout the site.

Existing Site Conditions

The site currently includes unused land that is occupied by trees and various wetland pockets. There is an existing electrical tower and 250' easement that is located through the southwest portion of the site. Various stone walls, concrete walls, and a concrete

foundation were also found by an on the ground survey performed by A&M. The site topography ranges from elevation 815 in the southwest corner of the parcel to 948 in the southern-central portion of the site.

The surface drainage flows were analyzed at five Study Points. Study Point #1 summarizes off-site flows generated from the northeast portion of the parcel. This area flows to existing drainage infrastructure located within Main Street and discharges to the municipal drainage system. Study Point #2 summarizes off-site flows generated from southeast portion of the site. This area flows to an existing wetland/swale formed along an existing stone wall. Study Point #3 summarizes off-site flows generated from the southwest portion of the parcel. This area flows to an existing wetland that is enclosed by the parcel to the west and Henshaw Street to the east. Study Point #4 summarizes off-site flows generated from the northwest portion of the parcel. Study Point #5 summarizes off-site flows generated from the northwest portion of the parcel.

Existing Soil Conditions

The on-site soils were identified using the USDA Natural Resources Conservation Services (NRCS) Soil Survey for Worcester County. The site contains a range of soil types including: Ridgebury, Whitman, Paxton, Woodbridge, Charlton, Canton, and Udorthents. The majority of the site is made up of Paxton fine sandy loam. A copy of the NRCS Custom Soil Resource Report is included in the appendix of this report.

Based upon the NRCS soil report the project site is classified as multiple types of fine sandy loam. The NRCS soil survey classified the onsite soil as the following:

Symbol	Soil Taxonomic Name	Hydrologic Soil Group
70B	Ridgebury, 3-8% slopes	D
71B	Ridgebury (stony), 3-8% slopes	D
73A	Whitman, 0-3% slopes	D
305B	Paxton, 3-8% slopes	С
305C	Paxton, 8-15% slopes	С
305D	Paxton, 15-25% slopes	С
312B	Woodbridge, 0-8% slopes	C/D
407C	Charlton, 8-15% slopes	А
420B	Canton, 3-8% slopes	В
651	Udorthents, smoothed	А

Paxton fine sandy loam has a Hydrologic Soil Group "C" designation which has been used throughout the design. An Infiltration rate for the Paxton fine sandy loam was used for the design being 4.06 micrometers per second, converted to 0.575 inches per hour.

FEMA Floodplain/Environmental Due Diligence

There are no portions of the site located within the FEMA Zone "AE" Special Flood Hazard Area Subject to Inundation by the 1% Annual Chance Flood (100-year floodplain). The official Flood Insurance Rate Map (FIRM) effective date July 4, 2011, map #25027C0782E, panel 782 of 1075. See section 3 of this report for a copy of the FEMA FIRM.

Environmentally Sensitive Zones

The Commonwealth of Massachusetts asserts control over numerous protected and regulated areas including: Areas of Critical Environmental Concern (ACEC); Outstanding Resource Waters (ORWs); Priority and Protected Habitat for rare and endangered species, and areas protected under the Wetlands Protection Act. The subject property is not located within any of these regulated areas.

Drainage Analysis Methodology

A peak rate of runoff will be determined using techniques and data found in the following:

- 1. <u>Urban Hydrology for Small Watersheds</u> Technical Release 55 by the United States Department of Agriculture Soils Conservation Service, June 1986. Runoff curve numbers and 24-hour precipitation values were obtained from this reference.
- HydroCAD © Stormwater Modeling System by HydroCAD Software Solutions LLC, version 10.1-5a. The HydroCAD program was used to generate the runoff hydrographs for the watershed areas, to determine discharge/ stage/storage characteristics for the stormwater BMPs, to perform drainage routing and to combine the results of the runoff hydrographs. HydroCAD uses the TR-20 methodology of the SCS Unit Hydrograph procedure (SCS-UH).

Proposed Conditions – Peak Rate of Runoff

The stormwater runoff analysis of the existing and proposed conditions includes an estimate of the peak rate of runoff from various rainfall events. Peak runoff rates were developed using TR55 Urban Hydrology for Small Watersheds, developed by the U.S. Department of Commerce, Engineering Division and the HydroCAD computer program. Further, the analysis has been prepared in accordance with the MassDEP and the town requirements and standard engineering practices. The peak rate of runoff has been estimated for each watershed during the 2, 10, 25, and 100-year storm events.

The proposed stormwater management system for the site consists of deep sump catch basins, pipe detention systems, a detention basin, outlet control structures, and gabion walls (level spreaders). These systems have been designed in accordance with the MA DEP

Stormwater Management Policy to recharge groundwater and reduce rate of runoff from the parcel.

Detention system 1A and detention system 1B will overflow and discharges through an outlet control structure to an existing catch basin within Main Street (Study Point 1).

Detention system 2A overflows to gabion wall 2, which discharges into an existing wetland/swale at the eastern portion of the site that conveys stormwater to a proposed catch basin that is connected to the existing municipal system (SP-2) within Colonial Drive. Detention system 2B overflows through an outlet control structure that discharges to existing catch basin within the municipal system (SP-2).

Detention system 3 consisting of an extended dry detention basin overflows to gabion wall 2, which discharges to an existing wetland to the west of the site along Henshaw Street (SP-3). Stormwater runoff along the south-western border of the parcel will flow to the proposed Detention Basin which overflows to the existing wetland (SP- 3).

There are no proposed stormwater management systems used for on-site flows directed to Study Points 4 & 5. However, the rate of runoff to these points has been mitigated from the existing to proposed conditions.

The stormwater runoff model indicates that the proposed site development reduces the rate of runoff during all storm events at the identified points of analysis. The following tables provide a summary of the estimated peak rate, in Cubic Feet per Second (CFS) and total runoff volume, in cubic-feet (CF) at each of the five (5) Study Points for each of the design storm events. The HydroCAD worksheets are included in Section 4 and 5 of this report.

STUDY POINT #1 (Existing Catch Basin 1)				
	2-Year	10-Year	25-Year	100-Year
Existing Flow (CFS)	3.95	10.15	15.72	28.02
Proposed Flow (CFS)	3.91	9.80	15.47	26.70
Change (CFS)	-0.04	-0.35	-0.25	-1.32
Existing Volume (AF)	0.439	1.014	1.537	2.714
Proposed Volume (AF)	0.592	1.327	1.953	3.306
Change (AF)	0.153	0.313	0.416	0.592

STUDY POINT #2 (Existing Catch Basin 2)				
	2-Year	10-Year	25-Year	100-Year
Existing Flow (CFS)	2.81	8.34	13.67	25.99
Proposed Flow (CFS)	2.01	6.84	11.53	22.92
Change (CFS)	-0.80	-1.50	-2.14	-3.07
Existing Volume (AF)	0.738	1.682	2.534	4.447
Proposed Volume (AF)	0.948	2.089	3.048	5.102
Change (AF)	0.210	0.407	0.514	0.655

STUDY POINT #3 (Existing Wetland East)					
	2-Year	10-Year	25-Year	100-Year	
Existing Flow (CFS)	3.94	10.91	17.41	32.17	
Proposed Flow (CFS)	2.58	8.82	12.65	22.63	
Change (CFS)	-1.36	-2.09	-4.76	-9.54	
Existing Volume (AF)	0.644	1.482	2.243	3.954	
Proposed Volume (AF)	0.869	2.007	2.995	5.115	
Change (AF)	Change (AF) 0.225 0.525 0.752 1.161				

STUDY POINT #4 (Existing Wetland West)				
	2-Year	10-Year	25-Year	100-Year
Existing Flow (CFS)	1.57	3.91	5.98	10.55
Proposed Flow (CFS)	0.75	1.62	2.36	3.93
Change (CFS)	-0.82	-2.29	-3.62	-6.62
Existing Volume (AF)	0.144	0.329	0.495	0.869
Proposed Volume (AF)	0.056	0.117	0.171	0.287
Change (AF)	-0.088	-0.212	-0.324	-0.582

STUDY POINT #5 (Off-Site)				
	2-Year	10-Year	25-Year	100-Year
Existing Flow (CFS)	0.46	1.12	1.70	2.98
Proposed Flow (CFS)	0.17	0.39	0.58	0.98
Change (CFS)	-0.29	-0.73	-1.12	-2.00
Existing Volume (AF)	0.050	0.112	0.168	0.292
Proposed Volume (AF)	0.013	0.028	0.042	0.072
Change (AF)	-0.037	-0.084	-0.126	-0.220

TOTAL					
	2-Year	10-Year	25-Year	100-Year	
Existing Flow (CFS)	7.22	19.61	31.09	56.99	
Proposed Flow (CFS)	6.09	17.03	27.58	50.60	
Change (CFS)	-1.13	-2.58	-3.51	-6.39	
Existing Volume (AF)	1.227	2.808	4.239	7.453	
Proposed Volume (AF)	1.553	3.444	5.043	8.480	
Change (AF)	0.326	0.636	0.804	1.027	

MASSDEP Stormwater Performance Standards

The MA DEP Stormwater Management Policy was developed to improve water quality by implementing performance standards for stormwater management. The intent is to implement the stormwater management standards through the review of Notice of Intent filings by the issuing authority (Conservation Commission or DEP). The following section outlines how the proposed Stormwater Management System meets the standards set forth by the Policy.

BMP's implemented in the design include:

- Deep Sump Catch Basins
- Proprietary Separators (CDS units)
- Detention Systems (Precast Concrete Chambers & Basin)
- Level Spreaders (Gabion Wall)
- Outlet Control Structures

Stormwater Best Management Practices (BMP's) have been incorporated into the design of the project to mitigate the anticipated pollutant loading. An Operations and Maintenance Plan has been developed for the project, which addresses the long-term maintenance requirements of the proposed system.

Temporary erosion and sedimentation controls will be incorporated into the construction phase of the project. These temporary controls may include straw bale and/or silt fence barriers, inlet sediment traps, slope stabilization, and stabilized construction entrances.

The Massachusetts Department of Environmental Protection has established ten (10) Stormwater Management Standards. A project that meets or exceeds the standards is presumed to satisfy the regulatory requirements regarding stormwater management. The Standards are enumerated below as well as descriptions and supporting calculations as to how the Project will comply with the Standards: 1. No new stormwater conveyances (e.g. outfalls) may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth.

The proposed development will not introduce any new outfalls with direct discharge to a wetland area or waters of the Commonwealth of Massachusetts. The rate of discharges to existing wetlands will not be increased in comparison to the existing conditions (See Proposed Conditions Tables).

2. Stormwater management systems shall be designed so that post-development peak discharge rates do not exceed pre-development peak discharge rates. This Standard may be waived for discharges to land subject to coastal storm flowage as defined in 310 CMR 10.04.

The proposed development has been designed so that the post-development peak discharge rates do not exceed the predevelopment peak discharge rates. A summary of the existing and proposed discharge rates is included within this document (See Proposed Conditions Tables).

3. Loss of annual recharge to groundwater shall be eliminated or minimized through the use of infiltration measures including environmentally sensitive site design, low impact development techniques, stormwater best management practices, and good operation and maintenance. At a minimum, the annual recharge from the postdevelopment site shall approximate the annual recharge from pre-development conditions based on soil type. This Standard is met when the stormwater management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusetts Stormwater Handbook.

The existing annual recharge for the site has been approximated in the proposed condition. There are proposed dry wells that are designed to meet this requirement. The proposed Recharge Volume is based on the Static Method per the MA DEP Stormwater Management Standards, Volume 3, Chapter 1.

See the appendix located at section 6 of this report for stormwater recharge calculations.

- 4. Stormwater management systems shall be designed to remove 80% of the average annual post-construction load of Total Suspended Solids (TSS). This standard is met when:
 - Suitable practices for source control and pollution prevention are identified in a long-term pollution prevention plan, and thereafter are implemented and maintained;

- Structural stormwater best management practices are sized to capture the required water quality volume determined in accordance with the Massachusetts Stormwater Handbook; and
- Pretreatment is provided in accordance with the Massachusetts Stormwater Handbook.

Standard #4 is met when structural stormwater best management practices are sized to capture and treat the required water quality volume and pretreatment is provided in accordance with the Massachusetts Stormwater Handbook. Standard #4 also requires that suitable source control measures are identified in the Long-term Pollution Prevention Plan. The water quality volume for the proposed development is captured and treated using street sweeping, deep sump catch basins, and proprietary separators (CDS units).

The implemented BMPs have been designed to treat the contributing water quality volume. These water quality calculations can be seen within the appendix of this report.

The proposed stormwater management system has been designed to remove 80% of the average annual post-construction load for each treatment train. The TSS removal calculations can be seen within the appendix of this report.

5. For land uses with higher potential pollutant loads, source control and pollution prevention shall be implemented in accordance with the Massachusetts Stormwater Handbook to eliminate or reduce the discharge of stormwater runoff from such land uses to the maximum extent practicable. If through source control and/or pollution prevention all land uses with higher potential pollutant loads cannot be completely protected from exposure to rain, snow, snow melt, and stormwater runoff, the proponent shall use the specific structural stormwater BMPs determined by the Department to be suitable for such uses as provided in the Massachusetts Stormwater Handbook. Stormwater discharges from land uses with higher potential pollutant loads shall also comply with the requirements of the Massachusetts Clean Waters Act, M.G.L. c. 21, §§ 26-53 and the regulations promulgated thereunder at 314 CMR 3.00, 314 CMR 4.00 and 314 CMR 5.00.

The site is considered a source of higher potential pollutant loads because it has a proposed roadway, driveways, and vehicle travel daily. Pretreatment and Source reduction is provided to the maximum extent practicable. The drainage system will be designed to treat 1" water quality volume utilizing BMPs listed in Table LUHPPL, within the Massachusetts Stormwater Handbook, Volume 1: Overview of the

Massachusetts Stormwater Standards, Chapter 1, Page 14. This requirement only applies to stormwater discharges that come into contract with the actual area or activity on the site that may generate the higher potential pollutant load.

6. Stormwater discharges within the Zone II or Interim Wellhead Protection Area of a public water supply, and stormwater discharges near or to any other critical area, require the use of the specific source control and pollution prevention measures and the specific structural stormwater best management practices determined by the Department to be suitable for managing discharges to such areas, as provided in the Massachusetts Stormwater Handbook. A discharge is near a critical area if there is a strong likelihood of a significant impact occurring to said area, taking into account site-specific factors. Stormwater discharges to Outstanding Resource Waters and Special Resource Waters shall be removed and set back from the receiving water or wetland and receive the highest and best practical method of treatment. A "storm water discharge" as defined in 314 CMR 3.04(2)(a)1 or (b) to an Outstanding Resource Water or Special Resource Water shall comply with 314 CMR 3.00 and 314 CMR 4.00. Stormwater discharges to a Zone I or Zone A are prohibited unless essential to the operation of a public water supply.

The project site does not discharge stormwater within a Zone II or Interim Wellhead Protection Area or near a critical area. Critical Areas are Outstanding Resource Waters as designated in 314 CMR 4.00, Special Resource Waters as designated in 314 CMR 4.00, recharge areas for public water supplies as defined in 310 CMR 22.02, bathing beaches as defined in 105 CMR 445.000, cold-water fisheries as defined in 314 CMR 9.02 and 310 CMR 10.04, and shellfish growing areas as defined in 314 CMR 9.02 and 310 CMR 10.04.

7. A redevelopment project is required to meet the following Stormwater Management Standards only to the maximum extent practicable: Standard 2, Standard 3, and the pretreatment and structural best management practice requirements of Standards 4, 5, and 6. Existing stormwater discharges shall comply with Standard 1 only to the maximum extent practicable. A redevelopment project shall also comply with all other requirements of the Stormwater Management Standards and improve existing conditions.

The proposed project is not considered a re-development project under the Stormwater Management Handbook guidelines as there is an increase in the amount of impervious area.

8. A plan to control construction-related impacts including erosion, sedimentation and other pollutant sources during construction and land disturbance activities (construction period erosion, sedimentation, and pollution prevention plan) shall be developed and implemented.

A plan to control construction-related impacts, including erosion, sedimentation and other pollutant sources during construction has been developed. A detailed Erosion and Sedimentation Control Plan is included in the Permit Drawings. The proponent will prepare and submit a Stormwater Pollution Prevention Plan (SWPPP) prior to commencement of construction activities that will result in the disturbance of one acre of land or more.

9. A long-term operation and maintenance plan shall be developed and implemented to ensure that stormwater management systems function as designed.

A Long-Term Operation & Maintenance (O&M) Plan has been developed for the proposed stormwater management system and is included within this document. See Section 2.0 of this report.

10. All illicit discharges to the stormwater management system are prohibited.

There are no expected illicit discharges to the stormwater management system. The applicant will submit the Illicit Discharge Compliance Statement prior to the discharge of stormwater runoff to the post-construction stormwater best management practices and prior to the issuance of a Certificate of Compliance.

See the next page for the MassDEP Stormwater Checklist.

MASSDEP Stormwater Checklist

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

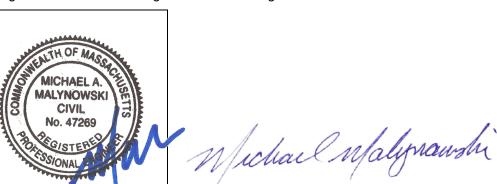
As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

B. Stormwater Checklist and Certification

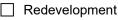

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.


Registered Professional Engineer Block and Signature

Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Mix of New Development and Redevelopment

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

\boxtimes	No disturbance to any Wetland Resource Areas
\square	Site Design Practices (e.g. clustered development, reduced frontage setbacks)
	Reduced Impervious Area (Redevelopment Only)
	Minimizing disturbance to existing trees and shrubs
	LID Site Design Credit Requested:
	Credit 1
	Credit 2
	Credit 3
	Use of "country drainage" versus curb and gutter conveyance and pipe
	Bioretention Cells (includes Rain Gardens)
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
	Treebox Filter
	Water Quality Swale
	Grass Channel
	Green Roof
	Other (describe):

Standard 1: No New Untreated Discharges

 \boxtimes No new untreated discharges

- \boxtimes Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

 \boxtimes

Soil Analysis provided.

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

Static	Simple Dynamic
--------	----------------

Dynamic Field¹

- Runoff from all impervious areas at the site discharging to the infiltration BMP.
- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.

\boxtimes	Recharge BMPs h	nave been sized to	infiltrate the	Required	Recharge '	Volume.
-------------	-----------------	--------------------	----------------	----------	------------	---------

- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - $\hfill\square$ Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- \boxtimes Calculations showing that the infiltration BMPs will drain in 72 hours are provided.

Property includes a M.G.L. c. 21E site or a solid	waste landfill and a mounding analysis is included.
---	---

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.

Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:

is within the Zone II or Interim Wellhead Protection Area

- is near or to other critical areas
- is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
- involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

	Checklist	(continued)
--	-----------	-------------

Standard 4: Water Quality (continued)

- The BMP is sized (and calculations provided) based on:
 - The 1/2" or 1" Water Quality Volume or
 - The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
- The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
- A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

- The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
- The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted **prior to** the discharge of stormwater to the post-construction stormwater BMPs.
- The NPDES Multi-Sector General Permit does *not* cover the land use.
- LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
- All exposure has been eliminated.
- All exposure has *not* been eliminated and all BMPs selected are on MassDEP LUHPPL list.
- The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

🗌 Lir	nited F	Project
-------	---------	---------

- Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
- Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
- Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
- Bike Path and/or Foot Path
- Redevelopment Project
- Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.

☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

SECTION 2.0 -OPERATION & MAINTENANCE PLAN

Introduction

In accordance with the standards set forth by the Stormwater Management Policy issued by the Massachusetts Department of Environmental Protection (MassDEP), Allen & Major Associates, Inc. has prepared the following Operations & Maintenance (O&M) Plan for the existing development at 651 Main Street, Leicester, MA.

The plan is broken down into three major sections. The first section describes construction-related erosion and sedimentation controls (Demolition & Construction Maintenance Plan). The second section describes the long-term pollution prevention measures (Long Term Pollution Prevention Plan). The third section is a post-construction operation and maintenance plan designed to address the long-term maintenance needs of the stormwater management system (Long-Term Maintenance Plan – Facilities Description).

Notification Procedures for Change of Responsibility for O&M

The Stormwater Management System (SMS) for this project is owned by MKEP 770 LLC (owner). The owner shall be legally responsible for the long-term operation and maintenance of this SMS as outlined in this Operation and Maintenance Plan.

The owner shall submit an annual summary report and the completed Operation & Maintenance Schedule & Checklist to the Conservation Commission (via email or print copy), highlighting inspection and maintenance activities including performances of BMPs. Should ownership of the SMS change, the owner will continue to be responsible until the succeeding owner shall notify the Commission that the succeeding owner has assumed such responsibility. Upon subsequent transfers, the responsibility shall continue to be that of transferring owner until the transferee owner notifies the Commission of its assumption of responsibility.

In the event the SMS will serve multiple lots/owners, such as the subdivision of the existing parcel or creation of lease areas, the owner(s) shall establish an association on other legally enforceable arrangements under which the association or a single party shall have legal responsibility for the operation and maintenance of the entire SMS. The legal instrument creating such responsibility shall be recorded with the Registry of Deeds and promptly following its recording, a copy thereof shall be furnished to the Commission.

Contact Information

Stormwater Management System Owner:	MKEP 770 LLC 265 Sunrise Highway, Suite 1368 Rockville Center, New York 11570 Phone: (646) 483-2517
Emergency Contact Information:	
MKEP 770 LLC	Phone: (646) 483-2517
(Owner/Operator)	
Allen & Major Associates, Inc.	Phone: (781) 935-6889
(Site Civil Engineer)	
Leicester Development & Inspectional	Phone: (508) 892-7007
Services	
Leicester Fire Department	Phone: (508) 892-7022
(non-emergency line)	
MassDEP Emergency Response	Phone: (888) 304-1133
Clean Harbors Inc (24-Hour Line)	Phone: (800) 645-8265

Demolition & Construction Maintenance Plan

- 1. Call Digsafe: 1-888-344-7233
- 2. Contact the Town of Leicester at least three (3) days prior to start of demolition and/or construction activities.
- 3. Install Erosion Control measures as shown on the Plans prepared by A&M. The Town shall review the installation of straw bales and silt fencing prior to the start of any site demolition work. Install Construction fencing if determined to be necessary at the commencement of construction.
- 4. Install construction entrances, straw bales, and silt fence at the locations shown on the Erosion Control Plan prepared by A&M.
- 5. Site access shall be achieved only from the designated construction entrances.
- 6. Cut and clear trees in construction areas only (within the limit of work; see plans).
- 7. Stockpiles of materials subject to erosion shall be stabilized with erosion control matting or temporary seeding whenever practicable, but in no case more than 14 days after the construction activity in that portion of the site has temporarily or permanently ceased.
- 8. Install silt sacks and straw bales around each drain inlet prior to any demolition and or construction activities.

- 9. All erosion control measures shall be inspected weekly and after every rainfall event. Records of these inspections shall be kept on-site for review.
- 10. All erosion control measures shall be maintained, repaired, or replaced as required or at the direction of the owner's engineer or the Town.
- 11. Sediment accumulation up-gradient of the straw bales, silt fence, and stone check dams greater than 6" in depth shall be removed and disposed of in accordance with all applicable regulations.
- 12. If it appears that sediment is exiting the site, silt sacks shall be installed in all catch basins adjacent to the site. Sediment accumulation on all adjacent catch basin inlets shall be removed and the silt sack replaced if torn or damaged.
- 13. Install stone check dams on-site during construction as needed. Refer to the erosion control details. Temporary sediment basins combined with stone check damns shall be installed on-site during construction to control and collect runoff from upland areas of this site during demolition and construction activities.
- 14. The contractor shall comply with the Sedimentation and Erosion Control Notes as shown on the Site Development Plans and Specifications.
- 15. The stabilized construction entrances shall be inspected weekly and records of inspections kept. The entrances shall be maintained by adding additional clean, angular, durable stone to remove the soil from the construction vehicle's tires when exiting the site. If soil is still leaving the site via the construction vehicle tires, adjacent roadways shall be kept clean by street sweeping.
- 16. Dust pollution shall be controlled using on-site water trucks and/or an approved soil stabilization product.
- 17. During demolition and construction activities, Status Reports on compliance with this O&M Document shall be submitted weekly. The report shall document any deficiencies and corrective actions taken by the applicant.

Long-Term Pollution Prevention Plan

Standard #4 from the MassDEP Stormwater Management Handbook requires that a Long-Term Pollution Prevention Plan (LTPPP) be prepared and incorporated as part of the Operation and Maintenance Plan of the Stormwater Management System. The purpose of the LTPPP is to identify potential sources of pollution that may affect the quality of stormwater discharges, and to describe the implementation of practices to reduce the pollutants in stormwater discharges. The following items describe the source control and proper procedures of the LTPPP.

Housekeeping

The existing development has been designed to maintain a high level of water quality treatment for all stormwater discharge to the wetland areas. An Operation and Maintenance (O&M) plan has been prepared and is included in this section of the report. The owner (or its designee) is responsible for adherence to the O&M plan in a strict and complete manner.

• <u>Storing of Materials & Water Products</u>

The trash and waste program for the site includes exterior dumpsters. There is a trash contractor used to pick up the waste material in the dumpsters. The stormwater drainage system has water quality inlets designed to capture trash and debris.

Vehicle Washing

Outdoor vehicle washing has the potential to result in high loads of nutrients, metals, and hydrocarbons during dry weather conditions, as the detergent-rich water used to wash the grime off the vehicle enters the stormwater drainage system. The existing development does not include any designated vehicle washing areas, nor is it expected that any vehicle washing will take place on-site.

• Spill Prevention & Response

Sources of potential spill hazards include vehicle fluids, liquid fuels, pesticides, paints, solvents, and liquid cleaning products. The majority of the spill hazards would likely occur within the buildings and would not enter the stormwater drainage system. However, there are spill hazards from vehicle fluids or liquid fuels located outside of the buildings. These exterior spill hazards have the potential to enter the stormwater drainage system and are to be addressed as follows:

- 1. Spill hazards of pesticides, paints, and solvents shall be remediated using the Manufacturers' recommended spill cleanup protocol.
- 2. Vehicle fluids and liquid fuel spill shall be remediated according to the local and state regulations governing fuel spills.
- 3. The owner shall have the following equipment and materials on hand to address a spill clean-up: brooms, dust pans, mops, rags, gloves, absorptive material, sand, sawdust, plastic and metal trash containers.
- 4. All spills shall be cleaned up immediately after discovery.
- 5. Spills of toxic or hazardous material shall be reported, regardless of size, to the Massachusetts Department of Environmental Protection at (888) 304-1333.

6. Should a spill occur, the pollution prevention plan will be adjusted to include measures to prevent another spill of a similar nature. A description of the spill, along with the causes and cleanup measures will be included in the updated pollution prevention plan.

• Maintenance of Lawns, Gardens, and Other Landscaped Areas

It should be recognized that this is a general guideline towards achieving high quality and well-groomed landscaped areas. The grounds staff/landscape contractor must recognize the shortcomings of a general maintenance plan such as this, and modify and/or augment it based on weekly, monthly, and yearly observations. In order to assure the highest quality conditions, the staff must also recognize and appreciate the need to be aware of the constantly changing conditions of the landscaping and be able to respond to them on a proactive basis. No trees shall be planted over the drain lines or recharge area, and that only shallow rooted plants and shrubs will be allowed.

o <u>Fertilizer</u>

Maintenance practices should be aimed at reducing environmental, mechanical and pest stresses to promote healthy and vigorous growth. When necessary, pest outbreaks should be treated with the most sensitive control measure available. Synthetic chemical controls should be used only as a last resort to organic and biological control methods. Fertilizer, synthetic chemical controls and pest management applications (when necessary) shall be performed only by licensed applicators in accordance with the manufacturer's label instructions when environmental conditions are conducive to controlled product application.

Only slow-release organic fertilizers should be used in the planting and mulch areas to limit the amount of nutrients that could enter downstream resource areas. Fertilization of the planting and mulch areas will be performed within manufacturers labeling instructions and shall not exceed an NPK ration of 1:1:1 (i.e. Triple 10 fertilizer mix), considered a low nitrogen mixture. Fertilizers approved for the use under this O&M Plan are as follows:

Type:	LESCO® 28-0-12 (Lawn Fertilizer)
	MERIT [®] 0.2 Plus Turf Fertilizer
	MOMENTUM™ Force Weed & Feed

o Suggested Aeration Program

In-season aeration of lawn areas is good cultural practice, and is recommended whenever feasible. It should be accomplished with a solid thin tine aeration method to reduce disruption to the use of the area. The depth of solid tine aeration is similar to core type, but should be performed when the soil is somewhat drier for a greater overall effect.

Depending on the intensity of use, it can be expected that all landscaped lawn areas will need aeration to reduce compaction at least once per year. The first operation should occur in late May following the spring season. Methods of reducing compaction will vary based on the nature of the compaction. Compaction on newly established landscaped areas is generally limited to the top 2-3" and can be alleviated using hollow core or thin tine aeration methods.

The spring aeration should consist of two passes at opposite directions with 1/4" hollow core tines penetrating 3-5" into the soil profile. Aeration should occur when the soil is moist but not saturated. The soil cores should be shattered in place and dragged or swept back into the turf to control thatch. If desired the cores may also be removed and the area top-dressed with sand or sandy loam. If the area drains on average too slowly, the topdressing should contain a higher percentage of sand. If it is draining on average too quickly, the top dressing should contain a higher percentage of sand. If it is draining on average too guickly, the top dressing should contain a higher percentage of soil and organic matter.

- o Landscape Maintenance Program Practices:
 - <u>Lawn</u>
 - Mow a minimum of once a week in spring, to a height of 2" to 2 1/2" high. Mowing should be frequent enough so that no more than 1/3 of grass blade is removed at each mowing. The top growth supports the roots; the shorter the grass is cute, the less the roots will grow. Short cutting also dries out the soil and encourages weeds to germinate.
 - 2. Mow approximately once every two weeks from July 1st to August 15th depending on lawn growth.
 - 3. Mow on a ten-day cycle in fall, when growth is stimulated by cooler nights and increased moisture.
 - 4. Do not remove grass clippings after mowing.
 - 5. Keep mower blades sharp to prevent ragged cuts on grass leaves, which cause a brownish appearance and increase the chance for disease to enter a leaf.
 - Shrubs
 - 1. Mulch not more than 3" depth with shredded pine or fir bark.

- 2. Hand prune annually, immediately after blooming, to remove 1/3 of the above-ground biomass (older stems). Stem removals are to occur within 6" of the ground to open up shrub and maintain two-year wood (the blooming wood).
- 3. Hand-prune evergreen shrubs only as needed to remove dead and damaged wood and to maintain the naturalistic form of the shrub. Never mechanically shear evergreen shrubs.
- Trees
 - 1. Provide aftercare of new tree plantings for the first three years.
 - 2. Do not fertilize trees, it artificially stimulates them (unless tree health warrants).
 - 3. Water once a week for the first year; twice a month for the second; once a month for the third year.
 - 4. Prune trees on a four-year cycle.
- Invasive Species
 - 1. Inform the Conservation Commission Agent prior to the removal of invasive species proposed either through hand work or through chemical removal.
- <u>Storage and Use of Herbicides and Pesticides</u>
 - Integrated Pest Management is the combination of all methods (of pest control) which may prevent, reduce, suppress, eliminate, or repel an insect population. The main requirements necessary to support any pest population are food, shelter and water, and any upset of the balance of these will assist in controlling a pest population. Scientific pest management is the knowledgeable use of all pest control methods (sanitation, mechanical, chemical) to benefit mankind's health, welfare, comfort, property and food. A Pest Management Professional (PMP) should be retained who is licensed with the Commonwealth of Massachusetts Executive Office of Energy and Environmental Affairs, Department of Agricultural Resources.

The site manager will be provided with approved bulletin before entering into or renewing an agreement to apply pesticides for the control of indoor household or structural pests, refer to 333 CMR 13.08.

Before beginning each application, the applicator must post a Department approved notice on all of the entrances to the treated room or area. The applicator must leave such notices posted after the application. The notice will be posted at conspicuous point(s) of access to the area treated. The location and number of signs will be determined by the configuration of the area to be treated based on the applicator's best judgment. It is intended to give sufficient notice so that no one comes into an area being treated unaware that the applicator is working and pesticides are being applied. However, if the contracting entity does not want the signs posted, he/she may sign a Department approved waiver indicating this.

The applicator or employer will provide to any person upon their request the following information on previously conducted applications:

- 1. Name and phone number of pest control company;
- 2. Date and time of the application;
- 3. Name and license number of the applicator;
- 4. Target pests; and
- 5. Name and EPA Registration Number of pesticide products applied.
- <u>Pet Waste Management</u>

The owner's landscape crew (or designee) shall remove any obvious pet waste that has been left behind by pet owners within the development. The pet waste shall be disposed of in accordance with local and state regulations.


- <u>Operations and Management of Septic Systems</u> There are no proposed septic systems within the limits of the project.
- Management of Deicing Chemicals and Snow

Snow will be stockpiled on site until the accumulated snow becomes a hazard to the daily operations of the site. It will be the responsibility of the snow removal contractor to properly dispose of transported snow according to MassDEP, Bureau of Resource Protection – Snow Disposal Guideline #BRPG01-01, governing the proper disposal of snow. It will be the responsibility of the snow removal contractor to follow these guidelines and all applicable laws and regulations

The owner's maintenance staff (or its designee) will be responsible for the clearing of the sidewalk and building entrances. The owner may be required to use a deicing agent such as potassium chloride to maintain a safe walking surface. If used, the de-icing agent for the walkways and building entrances will be kept within the storage rooms located within the building. If used, de-icing agents will not be stored outside. The owner's maintenance staff will limit the application of sand.

Long-Term Maintenance Plan – Facilities Description

A maintenance log will be kept (i.e. report) summarizing inspections, maintenance, and any corrective actions taken. The log will include the date on which each inspection or maintenance task was performed, a description of the inspection findings or maintenance completed, and the name of the inspector or maintenance personnel performing the task. If a maintenance task requires the clean-out of any sediments or debris, the location

where the sediment and debris was disposed after removal will be indicated. The log will be made accessible to department staff and a copy provided to the department upon request.

The following is a description of the Stormwater Management System for the project site.

Stormwater Collection System – On-Site:

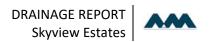
The stormwater collection system is a series of inlets located at low points within the limits of the paved area. All of the proposed on-site catch basins incorporate a deep sump and hooded outlet. The catch basins are connected by a closed gravity pipe network that pass through proprietary separators prior to entering the pipe detention systems or gabion walls.

<u>Structural Pretreatment BMPs</u>: Regular maintenance of these BMPs is especially critical because they typically receive the highest concentration of suspended solids during the first flush of a storm event.

• Deep Sump Catch Basin:

Deep sump catch basins, also known as oil and grease or hooded catch basins, are underground retention systems designed to remove trash, debris, and coarse sediment from stormwater runoff, and serve as temporary spill containment devices for floatables such as oils and greases.

Treatment BMPs:


• Proprietary Separator:

A proprietary separator is a flow-through structure with a settling or separation unit to remove sediments and other pollutants. They typically use the power of swirling or flowing water to separate floatables and coarser sediments, are typically designed and manufactured by private businesses, and come in different sizes to accommodate different design storms and flow conditions.

Infiltration BMPs:

• Dry Well:

Dry wells are small excavated pits, backfilled with aggregate, and used to infiltrate uncontaminated runoff from non-metal roofs or metal roofs located outside the Zone II or Interim Wellhead Protection Area of a public water supply and outside an industrial site. Do not use dry wells to infiltrate any runoff that could be significantly contaminated with sediment and other pollutants. Never use dry wells to infiltrate runoff from land uses with higher potential pollutant loads, including parking lot runoff.

Other BMPs:

• Dry Detention Basin

A dry detention basin is an impoundment or excavated basin for the short-term detention of stormwater runoff from a completed development that allows controlled release from the structure at downstream, pre-development flow rates. Conventional dry detention basins typically control peak runoff for 2-year and 10-year 24-hour storms. They are not specifically designed to provide extended dewatering times, wet pools, or groundwater recharge. Sometimes flows can be controlled using an outlet pipe of the appropriate size but this approach typically cannot control multiple design storms.

BMP Accessories:

• Level Spreader (Gabion Wall):

A level spreader receives concentrated flow from channels, outlet structures, or other conveyance structures, and converts it to sheet flow where it can disperse uniformly across a stable slope. A level spreader is not a pollutant reduction device. It improves the efficiency of other BMPs, such as vegetated swales, filter strips, or infiltration systems that depend on sheet flow to operate properly.

Other Maintenance Activity:

• Street Sweeping - Clear accumulations of winter sand in parking lots and along roadways at least once a year, preferably in the spring. Accumulations on pavement may be removed by pavement sweeping. Accumulations of sand along road shoulders may be removed by grading excess sand to the pavement edge and removing it manually or by a front-end loader.

Inspection and Maintenance Frequency and Corrective Measures

In accordance with MA DEP Stormwater Handbook: Volume 2, Chapter 2; the previously described BMPs will be inspected and the identified deficiencies will be corrected. Cleanout must include the removal and legal disposal of any accumulated sediments, trash, and debris. In any and all cases, operations, inspections, and maintenance activities shall utilize best practical measures to avoid and minimize impacts to wetland resource areas outside the footprint of the SMS.

Supplemental Information

- Long-Term Operation & Maintenance (O&M) Plan
- MASSDEP Snow Disposal Regulations
- CDS Maintenance Procedures
- Retain-It Owners Maintenance Manual

Project: 2889-01 Project Address: Skyview Estates, Main Street, Leicester, MA

Responsible for O&M Plan: MKEP 770 LLC Address: 265 Sunrise Highway, Suite 1368, Rockville Center, NY 11570 Phone: (646) 483-2517

All information within table is derived from Massachussetts Stormwater Handbook: Volume 2, Chapter 2

BMP	BMP OR MAINTENANCE	SCHEDULE/	NOTES	INSPECTION	PERFORMED
CATEGORY	ΑCTIVITY	FREQUENCY	NOTES	DATE:	BY:
REATMENT BMPs	DEEP SUMP CATCH BASIN	Four times per year (quarterly).	Inspect and clean catch basin units whenever the depth of deposits is greater than or equal to one half the depth from the bottom of the invert of the lowest pipe in the basin.		
STRUCTURAL PRETREATMENT BMPs	PROPRIETARY SEPARATORS	requirements, but no less than twice a year	Remove sediment and other trapped pollutants at frequency or level specified by manufacturer.		
INFILTRATION BMPs	DRY WELL	storm in the first few months following construction. Thereafter,	Inspect dry wells. Measure the water depth in the observation well at 24- and 48-hour intervals after a storm. Calculate clearance rates by dividing the drop in water level (inches) by the time elapsed (hr.).		

Project: 2889-01 Project Address: Skyview Estates, Main Street, Leicester, MA

Responsible for O&M Plan: MKEP 770 LLC Address: 265 Sunrise Highway, Suite 1368, Rockville Center, NY 11570 Phone: (646) 483-2517

All information within table is derived from Massachussetts Stormwater Handbook: Volume 2, Chapter 2

BMP	BMP OR MAINTENANCE	SCHEDULE/	NOTES	INSPECTION	PERFORMED
CATEGORY	ΑCTIVITY	FREQUENCY	NOTES	DATE:	BY:
OTHER BMPs	DRY DETENTION	at least once a year and after large storms to determine if the basin is	Inspect detention pipes to ensure they are operating as designed. Check the outlet structures for accumulated sediment, trash, and debris and remove it. Remove sediment from the basin as needed.		
BMP ACCESSORIES	LEVEL SPREADERS	especially after large	Inspect level spreaders regularly, especially after large rainfall events. Note and repair any erosion or low spots in the spreader.		
	OUTLET STRUCTURES	Periodic cleaning of Outlet Control Structures as needed.	Clear trash and debris as necessary.		

Project: 2889-01 Project Address: Skyview Estates, Main Street, Leicester, MA

Responsible for O&M Plan: MKEP 770 LLC Address: 265 Sunrise Highway, Suite 1368, Rockville Center, NY 11570 Phone: (646) 483-2517

All information within table is derived from Massachussetts Stormwater Handbook: Volume 2, Chapter 2

BMP	BMP OR MAINTENANCE	SCHEDULE/	NOTES	INSPECTION PERFORMED	
CATEGORY	ΑCTIVITY	FREQUENCY	NOTES	DATE:	BY:
OTHER MAINTENANCE ACTIVITIES	SNOW STORAGE	to approved storage locations as necessary to ensure systems are working properly and are protected from	Carefully select snow disposal sites before winter. Avoid dumping removed snow over catch basins, or in detention ponds, sediment forebays, rivers, wetlands, and flood plains. It is also prohibited to dump snow in the bioretention basins or gravel swales.		
	STREET SWEEPING	winter sand in parking lots and along roadways at least once a year	Sweep, power broom or vacuum paved areas. Submit information that confirms that all street sweepings have been completed in accordance with state and local requirements		

Department of Environmental Protection

One Winter Street Boston, MA 02108 • 617-292-5500

Charles D. Baker Governor

Karyn E. Polito

Lieutenant Governor

Kathleen A. Theoharides Secretary

> Martin Suuberg Commissioner

Massachusetts Department of Environmental Protection Bureau of Water Resources Snow Disposal Guidance

Effective Date: December 11, 2020

Applicability: Applies to all federal, state, regional and local agencies, as well as to private businesses.

Supersedes: Bureau of Resource Protection (BRP) Snow Disposal Guideline No. BRPG97-1 issued December 12, 1997 and BRPG01-01 issued March 8, 2001; Bureau of Water Resources (BWR) snow disposal guidance issued December 21, 2015 and December 12, 2018.

Approved by: Kathleen Baskin, Assistant Commissioner, Bureau of Water Resources

PURPOSE: To provide guidelines to all government agencies and private businesses regarding snow disposal site selection, site preparation and maintenance, and emergency snow disposal options that are protective of wetlands, drinking water, and water bodies, and are acceptable to the Massachusetts Department of Environmental Protection (MassDEP), Bureau of Water Resources.

APPLICABILITY: These Guidelines are issued by MassDEP's Bureau of Water Resources on behalf of all Bureau Programs (including Drinking Water Supply, Wetlands and Waterways, Wastewater Management, and Watershed Planning and Permitting). They apply to all federal agencies, state agencies, state authorities, municipal agencies and private businesses disposing of snow in the Commonwealth of Massachusetts.

INTRODUCTION

Finding a place to dispose of collected snow poses a challenge to municipalities and businesses as they clear roads, parking lots, bridges, and sidewalks. While MassDEP is aware of the threats to public safety caused by snow, collected snow that is contaminated with road salt, sand, litter, and automotive pollutants such as oil also threatens public health and the environment.

As snow melts, road salt, sand, litter, and other pollutants are transported into surface water or through the soil where they may eventually reach the groundwater. Road salt and other pollutants can contaminate water supplies and are toxic to aquatic life at certain levels. Sand washed into

This information is available in alternate format. Contact Michelle Waters-Ekanem, Director of Diversity/Civil Rights at 617-292-5751. TTY# MassRelay Service 1-800-439-2370 MassDEP Website: www.mass.gov/dep

Printed on Recycled Paper

waterbodies can create sand bars or fill in wetlands and ponds, impacting aquatic life, causing flooding, and affecting our use of these resources.

There are several steps that communities can take to minimize the impacts of snow disposal on public health and the environment. These steps will help communities avoid the costs of a contaminated water supply, degraded waterbodies, and flooding. Everything that occurs on the land has the potential to impact the Commonwealth's water resources. Given the authority of local government over the use of the land, municipal officials and staff have a critically important role to play in protecting our water resources.

The purpose of these guidelines is to help federal agencies, state agencies, state authorities, municipalities and businesses select, prepare, and maintain appropriate snow disposal sites before the snow begins to accumulate through the winter. Following these guidelines and obtaining the necessary approvals may also help municipalities in cases when seeking reimbursement for snow disposal costs from the Federal Emergency Management Agency is possible.

RECOMMENDED GUIDELINES

These snow disposal guidelines address: (1) site selection; (2) site preparation and maintenance; and (3) emergency snow disposal.

1. SITE SELECTION

The key to selecting effective snow disposal sites is to locate them adjacent to or on pervious surfaces in upland areas or upland locations on impervious surfaces away from water resources and drinking water wells. At these locations, the snow meltwater can filter into the soil, leaving behind sand and debris which can be removed in the spring. The following conditions should be followed:

- Within water supply Zone A and Zone II, avoid storage or disposal of snow and ice containing deicing chemicals that has been collected from streets located outside these zones. Municipalities may have a water supply protection land use control that prohibits the disposal of snow and ice containing deicing chemicals from outside the Zone A and Zone II, subject to the Massachusetts Drinking Water Regulations at 310 CMR 22.20C and 310 CMR 22.21(2).
- Avoid storage or disposal of snow or ice in Interim Wellhead Protection Areas (IWPA) of public water supply wells, and within 75 feet of a private well, where road salt may contaminate water supplies.
- Avoid dumping snow into any waterbody, including rivers, the ocean, reservoirs, ponds, or wetlands. In addition to water quality impacts and flooding, snow disposed of in open water can cause navigational hazards when it freezes into ice blocks.
- Avoid dumping snow on MassDEP-designated high and medium-yield aquifers where it may contaminate groundwater.
- Avoid dumping snow in sanitary landfills and gravel pits. Snow meltwater will create more contaminated leachate in landfills posing a greater risk to groundwater, and in gravel pits, there is little opportunity for pollutants to be filtered out of the meltwater because groundwater is close to the land surface.

• Avoid disposing of snow on top of storm drain catch basins or in stormwater drainage systems including detention basins, swales or ditches. Snow combined with sand and debris may block a stormwater drainage system, causing localized flooding. A high volume of sand, sediment, and litter released from melting snow also may be quickly transported through the system into surface water.

Recommended Site Selection Procedures

It is important that the municipal Department of Public Works or Highway Department, Conservation Commission, and Board of Health work together to select appropriate snow disposal sites. The following steps should be taken:

- Estimate how much snow disposal capacity may be needed for the season so that an adequate number of disposal sites can be selected and prepared.
- Identify sites that could potentially be used for snow disposal, such as municipal open space (e.g., parking lots or parks).
- Select sites located in upland locations that are not likely to impact sensitive environmental resources first.
- If more storage space is still needed, prioritize the sites with the least environmental impact (using the site selection criteria, and local or MassGIS maps as a guide).

Snow Disposal Mapping Assistance

MassDEP has an online mapping tool to assist in identifying possible locations to potentially dispose of snow. MassDEP encourages municipalities to use this tool to identify possible snow disposal options. The tool identifies wetland resource areas, public drinking water supplies and other sensitive locations where snow should not be disposed. The tool may be accessed through the Internet at the following web address:

https://maps.env.state.ma.us/dep/arcgis/js/templates/PSF/.

2. SITE PREPARATION AND MAINTENANCE

In addition to carefully selecting disposal sites before the winter begins, it is important to prepare and maintain these sites to maximize their effectiveness. The following maintenance measures should be undertaken for all snow disposal sites:

- A silt fence or equivalent barrier should be placed securely on the downgradient side of the snow disposal site.
- Wherever possible maintain a 50-foot vegetated buffer between the disposal site and adjacent waterbodies to filter pollutants from the meltwater.
- Clear debris from the site prior to using the site for snow disposal.
- Clear debris from the site and properly dispose of it at the end of the snow season, and no later than May 15.

3. SNOW DISPOSAL APPROVALS

Proper snow disposal may be undertaken through one of the following approval procedures:

- Routine snow disposal Minimal, if any, administrative review is required in these cases when upland and pervious snow disposal locations or upland locations on impervious surfaces that have functioning and maintained stormwater management systems have been identified, mapped, and used for snow disposal following ordinary snowfalls. Use of upland and pervious snow disposal sites avoids wetland resource areas and allows snow meltwater to recharge groundwater and will help filter pollutants, sand, and other debris. This process will address the majority of snow removal efforts until an entity exhausts all available upland snow disposal sites. The location and mapping of snow disposal sites will help facilitate each entity's routine snow management efforts.
- Emergency Certifications If an entity demonstrates that there is no remaining capacity at upland snow disposal locations, local conservation commissions may issue an Emergency Certification under the Massachusetts Wetlands Protection regulations to authorize snow disposal in buffer zones to wetlands, certain open water areas, and certain wetland resource areas (i.e. within flood plains). Emergency Certifications can only be issued at the request of a public agency or by order of a public agency for the protection of the health or safety of citizens, and are limited to those activities necessary to abate the emergency. See 310 CMR 10.06(1)-(4). Use the following guidelines in these emergency situations:
 - Dispose of snow in open water with adequate flow and mixing to prevent ice dams from forming.
 - Do not dispose of snow in salt marshes, vegetated wetlands, certified vernal pools, shellfish beds, mudflats, drinking water reservoirs and their tributaries, Zone IIs or IWPAs of public water supply wells, Outstanding Resource Waters, or Areas of Critical Environmental Concern.
 - Do not dispose of snow where trucks may cause shoreline damage or erosion.
 - Consult with the municipal Conservation Commission to ensure that snow disposal in open water complies with local ordinances and bylaws.
- Severe Weather Emergency Declarations In the event of a large-scale severe weather event, MassDEP may issue a broader Emergency Declaration under the Wetlands Protection Act which allows federal agencies, state agencies, state authorities, municipalities, and businesses greater flexibility in snow disposal practices. Emergency Declarations typically authorize greater snow disposal options while protecting especially sensitive resources such as public drinking water supplies, vernal pools, land containing shellfish, FEMA designated floodways, coastal dunes, and salt marsh. In the event of severe winter storm emergencies, the snow disposal site maps created by municipalities will enable MassDEP and the Massachusetts Emergency Management Agency (MEMA) in helping communities identify appropriate snow disposal locations.

If upland disposal sites have been exhausted, the Emergency Declaration issued by MassDEP allows for snow disposal near water bodies. In these situations, a buffer of at

least 50 feet, preferably vegetated, should still be maintained between the site and the waterbody. Furthermore, it is essential that the other guidelines for preparing and maintaining snow disposal sites be followed to minimize the threat to adjacent waterbodies.

Under extraordinary conditions, when all land-based snow disposal options are exhausted, the Emergency Declaration issued by MassDEP may allow disposal of snow in certain waterbodies under certain conditions. *A federal agency, state agency, state authority, municipality or business seeking to dispose of snow in a waterbody should take the following steps*:

- Call the emergency contact phone number [(888) 304-1133)] and notify the MEMA of the municipality's intent.
- MEMA will ask for some information about where the requested disposal will take place.
- MEMA will confirm that the disposal is consistent with MassDEP's Severe Weather Emergency Declaration and these guidelines and is therefore approved.

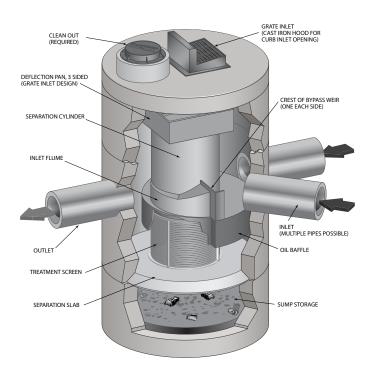
During declared statewide snow emergency events, MassDEP's website will also highlight the emergency contact phone number [(888) 304-1133)] for authorizations and inquiries. For further non-emergency information about this Guidance you may contact your MassDEP Regional Office Service Center:

Northeast Regional Office, Wilmington, 978-694-3246 Southeast Regional Office, Lakeville, 508-946-2714 Central Regional Office, Worcester, 508-792-7650 Western Regional Office, Springfield, 413-755-2114

CDS Guide Operation, Design, Performance and Maintenance

CDS®

Using patented continuous deflective separation technology, the CDS system screens, separates and traps debris, sediment, and oil and grease from stormwater runoff. The indirect screening capability of the system allows for 100% removal of floatables and neutrally buoyant material without blinding. Flow and screening controls physically separate captured solids, and minimize the re-suspension and release of previously trapped pollutants. Inline units can treat up to 6 cfs, and internally bypass flows in excess of 50 cfs (1416 L/s). Available precast or cast-in-place, offline units can treat flows from 1 to 300 cfs (28.3 to 8495 L/s). The pollutant removal capacity of the CDS system has been proven in lab and field testing.


Operation Overview

Stormwater enters the diversion chamber where the diversion weir guides the flow into the unit's separation chamber and pollutants are removed from the flow. All flows up to the system's treatment design capacity enter the separation chamber and are treated.

Swirl concentration and screen deflection force floatables and solids to the center of the separation chamber where 100% of floatables and neutrally buoyant debris larger than the screen apertures are trapped.

Stormwater then moves through the separation screen, under the oil baffle and exits the system. The separation screen remains clog free due to continuous deflection.

During the flow events exceeding the treatment design capacity, the diversion weir bypasses excessive flows around the separation chamber, so captured pollutants are retained in the separation cylinder.

Design Basics

There are three primary methods of sizing a CDS system. The Water Quality Flow Rate Method determines which model size provides the desired removal efficiency at a given flow rate for a defined particle size. The Rational Rainfall Method[™] or the and Probabilistic Method is used when a specific removal efficiency of the net annual sediment load is required.

Typically in the Unites States, CDS systems are designed to achieve an 80% annual solids load reduction based on lab generated performance curves for a gradation with an average particle size (d50) of 125 microns (μ m). For some regulatory environments, CDS systems can also be designed to achieve an 80% annual solids load reduction based on an average particle size (d50) of 75 microns (μ m) or 50 microns (μ m).

Water Quality Flow Rate Method

In some cases, regulations require that a specific treatment rate, often referred to as the water quality design flow (WQQ), be treated. This WQQ represents the peak flow rate from either an event with a specific recurrence interval, e.g. the six-month storm, or a water quality depth, e.g. 1/2-inch (13 mm) of rainfall.

The CDS is designed to treat all flows up to the WQQ. At influent rates higher than the WQQ, the diversion weir will direct most flow exceeding the WQQ around the separation chamber. This allows removal efficiency to remain relatively constant in the separation chamber and eliminates the risk of washout during bypass flows regardless of influent flow rates.

Treatment flow rates are defined as the rate at which the CDS will remove a specific gradation of sediment at a specific removal efficiency. Therefore the treatment flow rate is variable, based on the gradation and removal efficiency specified by the design engineer.

Rational Rainfall Method™

Differences in local climate, topography and scale make every site hydraulically unique. It is important to take these factors into consideration when estimating the long-term performance of any stormwater treatment system. The Rational Rainfall Method combines site-specific information with laboratory generated performance data, and local historical precipitation records to estimate removal efficiencies as accurately as possible.

Short duration rain gauge records from across the United States and Canada were analyzed to determine the percent of the total annual rainfall that fell at a range of intensities. US stations' depths were totaled every 15 minutes, or hourly, and recorded in 0.01-inch increments. Depths were recorded hourly with 1-mm resolution at Canadian stations. One trend was consistent at all sites; the vast majority of precipitation fell at low intensities and high intensity storms contributed relatively little to the total annual depth.

These intensities, along with the total drainage area and runoff coefficient for each specific site, are translated into flow rates using the Rational Rainfall Method. Since most sites are relatively small and highly impervious, the Rational Rainfall Method is appropriate. Based on the runoff flow rates calculated for each intensity, operating rates within a proposed CDS system are determined. Performance efficiency curve determined from full scale laboratory tests on defined sediment PSDs is applied to calculate solids removal efficiency. The relative removal efficiency at each operating rate is added to produce a net annual pollutant removal efficiency estimate.

Probabilistic Rational Method

The Probabilistic Rational Method is a sizing program Contech developed to estimate a net annual sediment load reduction for a particular CDS model based on site size, site runoff coefficient, regional rainfall intensity distribution, and anticipated pollutant characteristics.

The Probabilistic Method is an extension of the Rational Method used to estimate peak discharge rates generated by storm events of varying statistical return frequencies (e.g. 2-year storm event). Under the Rational Method, an adjustment factor is used to adjust the runoff coefficient estimated for the 10-year event, correlating a known hydrologic parameter with the target storm event. The rainfall intensities vary depending on the return frequency of the storm event under consideration. In general, these two frequency dependent parameters (rainfall intensity and runoff coefficient) increase as the return frequency increases while the drainage area remains constant.

These intensities, along with the total drainage area and runoff coefficient for each specific site, are translated into flow rates using the Rational Method. Since most sites are relatively small and highly impervious, the Rational Method is appropriate. Based on the runoff flow rates calculated for each intensity, operating rates within a proposed CDS are determined. Performance efficiency curve on defined sediment PSDs is applied to calculate solids removal efficiency. The relative removal efficiency at each operating rate is added to produce a net annual pollutant removal efficiency estimate.

Treatment Flow Rate

The inlet throat area is sized to ensure that the WQQ passes through the separation chamber at a water surface elevation equal to the crest of the diversion weir. The diversion weir bypasses excessive flows around the separation chamber, thus preventing re-suspension or re-entrainment of previously captured particles.

Hydraulic Capacity

The hydraulic capacity of a CDS system is determined by the length and height of the diversion weir and by the maximum allowable head in the system. Typical configurations allow hydraulic capacities of up to ten times the treatment flow rate. The crest of the diversion weir may be lowered and the inlet throat may be widened to increase the capacity of the system at a given water surface elevation. The unit is designed to meet project specific hydraulic requirements.

Performance

Full-Scale Laboratory Test Results

A full-scale CDS system (Model CDS2020-5B) was tested at the facility of University of Florida, Gainesville, FL. This CDS unit was evaluated under controlled laboratory conditions of influent flow rate and addition of sediment.

Two different gradations of silica sand material (UF Sediment & OK-110) were used in the CDS performance evaluation. The particle size distributions (PSDs) of the test materials were analyzed using standard method "Gradation ASTM D-422 "Standard Test Method for Particle-Size Analysis of Soils" by a certified laboratory.

UF Sediment is a mixture of three different products produced by the U.S. Silica Company: "Sil-Co-Sil 106", "#1 DRY" and "20/40 Oil Frac". Particle size distribution analysis shows that the UF Sediment has a very fine gradation (d50 = 20 to 30 μ m) covering a wide size range (Coefficient of Uniformity, C averaged at 10.6). In comparison with the hypothetical TSS gradation specified in the NJDEP (New Jersey Department of Environmental Protection) and NJCAT (New Jersey Corporation for Advanced Technology) protocol for lab testing, the UF Sediment covers a similar range of particle size but with a finer d50 (d50 for NJDEP is approximately 50 μ m) (NJDEP, 2003).

The OK-110 silica sand is a commercial product of U.S. Silica Sand. The particle size distribution analysis of this material, also included in Figure 1, shows that 99.9% of the OK-110 sand is finer than 250 microns, with a mean particle size (d50) of 106 microns. The PSDs for the test material are shown in Figure 1.

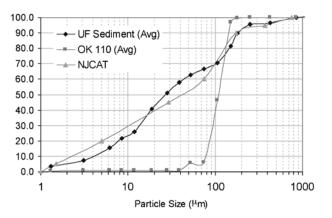


Figure 1. Particle size distributions

Tests were conducted to quantify the performance of a specific CDS unit (1.1 cfs (31.3-L/s) design capacity) at various flow rates, ranging from 1% up to 125% of the treatment design capacity of the unit, using the 2400 micron screen. All tests were conducted with controlled influent concentrations of approximately 200 mg/L. Effluent samples were taken at equal time intervals across the entire duration of each test run. These samples were then processed with a Dekaport Cone sample splitter to obtain representative sub-samples for Suspended Sediment Concentration (SSC) testing using ASTM D3977-97 "Standard Test Methods for Determining Sediment Concentration in Water Samples", and particle size distribution analysis.

Results and Modeling

Based on the data from the University of Florida, a performance model was developed for the CDS system. A regression analysis was used to develop a fitting curve representative of the scattered data points at various design flow rates. This model, which demonstrated good agreement with the laboratory data, can then be used to predict CDS system performance with respect to SSC removal for any particle size gradation, assuming the particles are inorganic sandy-silt. Figure 2 shows CDS predictive performance for two typical particle size gradations (NJCAT gradation and OK-110 sand) as a function of operating rate.

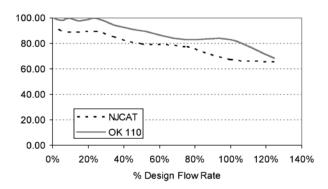


Figure 2. CDS stormwater treatment predictive performance for various particle gradations as a function of operating rate.

Many regulatory jurisdictions set a performance standard for hydrodynamic devices by stating that the devices shall be capable of achieving an 80% removal efficiency for particles having a mean particle size (d50) of 125 microns (e.g. Washington State Department of Ecology — WASDOE - 2008). The model can be used to calculate the expected performance of such a PSD (shown in Figure 3). The model indicates (Figure 4) that the CDS system with 2400 micron screen achieves approximately 80% removal at the design (100%) flow rate, for this particle size distribution (d50 = 125 μ m).

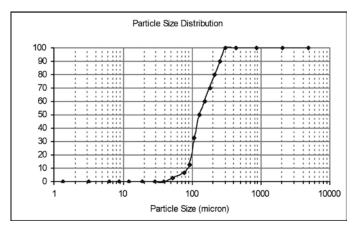
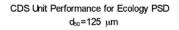



Figure 3. WASDOE PSD

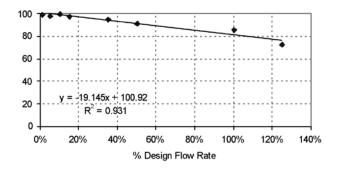


Figure 4. Modeled performance for WASDOE PSD.

Maintenance

The CDS system should be inspected at regular intervals and maintained when necessary to ensure optimum performance. The rate at which the system collects pollutants will depend more heavily on site activities than the size of the unit. For example, unstable soils or heavy winter sanding will cause the grit chamber to fill more quickly but regular sweeping of paved surfaces will slow accumulation.

Inspection

Inspection is the key to effective maintenance and is easily performed. Pollutant transport and deposition may vary from year to year and regular inspections will help ensure that the system is cleaned out at the appropriate time. At a minimum, inspections should be performed twice per year (e.g. spring and fall) however more frequent inspections may be necessary in climates where winter sanding operations may lead to rapid accumulations, or in equipment washdown areas. Installations should also be inspected more frequently where excessive amounts of trash are expected.

The visual inspection should ascertain that the system components are in working order and that there are no blockages or obstructions in the inlet and separation screen. The inspection should also quantify the accumulation of hydrocarbons, trash, and sediment in the system. Measuring pollutant accumulation can be done with a calibrated dipstick, tape measure or other measuring instrument. If absorbent material is used for enhanced removal of hydrocarbons, the level of discoloration of the sorbent material should also be identified

during inspection. It is useful and often required as part of an operating permit to keep a record of each inspection. A simple form for doing so is provided.

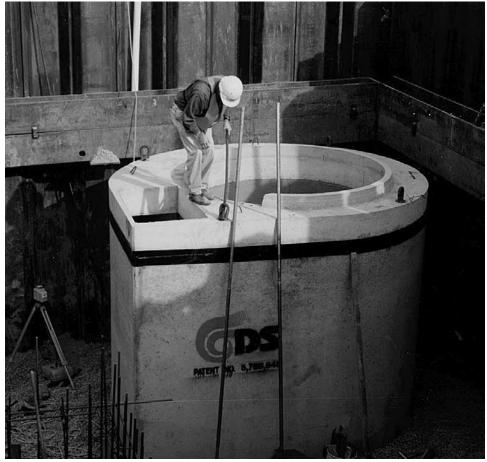
Access to the CDS unit is typically achieved through two manhole access covers. One opening allows for inspection and cleanout of the separation chamber (cylinder and screen) and isolated sump. The other allows for inspection and cleanout of sediment captured and retained outside the screen. For deep units, a single manhole access point would allows both sump cleanout and access outside the screen.

The CDS system should be cleaned when the level of sediment has reached 75% of capacity in the isolated sump or when an appreciable level of hydrocarbons and trash has accumulated. If absorbent material is used, it should be replaced when significant discoloration has occurred. Performance will not be impacted until 100% of the sump capacity is exceeded however it is recommended that the system be cleaned prior to that for easier removal of sediment. The level of sediment is easily determined by measuring from finished grade down to the top of the sediment pile. To avoid underestimating the level of sediment in the chamber, the measuring device must be lowered to the top of the sediment pile carefully. Particles at the top of the pile typically offer less resistance to the end of the rod than consolidated particles toward the bottom of the pile. Once this measurement is recorded, it should be compared to the as-built drawing for the unit to determine weather the height of the sediment pile off the bottom of the sump floor exceeds 75% of the total height of isolated sump.

Cleaning

Cleaning of a CDS systems should be done during dry weather conditions when no flow is entering the system. The use of a vacuum truck is generally the most effective and convenient method of removing pollutants from the system. Simply remove the manhole covers and insert the vacuum hose into the sump. The system should be completely drained down and the sump fully evacuated of sediment. The area outside the screen should also be cleaned out if pollutant build-up exists in this area.

In installations where the risk of petroleum spills is small, liquid contaminants may not accumulate as quickly as sediment. However, the system should be cleaned out immediately in the event of an oil or gasoline spill. Motor oil and other hydrocarbons that accumulate on a more routine basis should be removed when an appreciable layer has been captured. To remove these pollutants, it may be preferable to use absorbent pads since they are usually less expensive to dispose than the oil/water emulsion that may be created by vacuuming the oily layer. Trash and debris can be netted out to separate it from the other pollutants. The screen should be cleaned to ensure it is free of trash and debris.


Manhole covers should be securely seated following cleaning activities to prevent leakage of runoff into the system from above and also to ensure that proper safety precautions have been followed. Confined space entry procedures need to be followed if physical access is required. Disposal of all material removed from the CDS system should be done in accordance with local regulations. In many jurisdictions, disposal of the sediments may be handled in the same manner as the disposal of sediments removed from catch basins or deep sump manholes. Check your local regulations for specific requirements on disposal.

CDS Model	Diameter		Distance from Water Surface to Top of Sediment Pile		Sediment Storage Capacity	
	ft	m	ft	m	У³	m³
CDS1515	3	0.9	3.0	0.9	0.5	0.4
CDS2015	4	1.2	3.0	0.9	0.9	0.7
CDS2015	5	1.5	3.0	0.9	1.3	1.0
CDS2020	5	1.5	3.5	1.1	1.3	1.0
CDS2025	5	1.5	4.0	1.2	1.3	1.0
CDS3020	6	1.8	4.0	1.2	2.1	1.6
CDS3025	6	1.8	4.0	1.2	2.1	1.6
CDS3030	6	1.8	4.6	1.4	2.1	1.6
CDS3035	6	1.8	5.0	1.5	2.1	1.6
CDS4030	8	2.4	4.6	1.4	5.6	4.3
CDS4040	8	2.4	5.7	1.7	5.6	4.3
CDS4045	8	2.4	6.2	1.9	5.6	4.3
CDS5640	10	3.0	6.3	1.9	8.7	6.7
CDS5653	10	3.0	7.7	2.3	8.7	6.7
CDS5668	10	3.0	9.3	2.8	8.7	6.7
CDS5678	10	3.0	10.3	3.1	8.7	6.7

Table 1: CDS Maintenance Indicators and Sediment Storage Capacities

Note: To avoid underestimating the volume of sediment in the chamber, carefully lower the measuring device to the top of the sediment pile. Finer silty particles at the top of the pile may be more difficult to feel with a measuring stick. These finer particles typically offer less resistance to the end of the rod than larger particles toward the bottom of the pile.

CDS Inspection & Maintenance Log

CDS Model: Location:					
Date	Water depth to sediment ¹	Floatable Layer Thickness ²	Describe Maintenance Performed	Maintenance Personnel	Comments

1. The water depth to sediment is determined by taking two measurements with a stadia rod: one measurement from the manhole opening to the top of the sediment pile and the other from the manhole opening to the water surface. If the difference between these measurements is less than the values listed in table 1 the system should be cleaned out. Note: to avoid underestimating the volume of sediment in the chamber, the measuring device must be carefully lowered to the top of the sediment pile.

2. For optimum performance, the system should be cleaned out when the floating hydrocarbon layer accumulates to an appreciable thickness. In the event of an oil spill, the system should be cleaned immediately.

SUPPORT

- Drawings and specifications are available at www.ContechES.com.
- Site-specific design support is available from our engineers.

©2017 Contech Engineered Solutions LLC, a QUIKRETE Company

Contech Engineered Solutions provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, sanitary sewer, earth stabilization and stormwater treatment products. For information on other Contech division offerings, visit www.ContechES.com or call 800.338.1122

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

The product(s) described may be protected by one or more of the following US patents: 5,322,629; 5,624,576; 5,707,527; 5,759,415; 5,788,848; 5,985,157; 6,027,639; 6,350,374; 6,406,218; 6,641,720; 6,511,595; 6,649,048; 6,991,114; 6,998,038; 7,186,058; 7,296,692; 7,297,266; related foreign patents or other patents pending.

OWNERS MAINTENANCE MANUAL

retain-it, LLC 560 Salmon Brook Street Granby, CT 06035 (860) 413-3050

retain-it ®

Owners Maintenance Manual

Table of Contents

Description

Engineering Design Specifications

Daily Operation and Long Term Maintenance System Operation Periodic Inspection Visual Inspection Guide Internal Flow Evaluation Low, Medium and High Flow Pollution Storage Capacities Oil and Grease Sediments Trash and Debris Standard Maintenance Emergency Spill Conditions

Sample Maintenance Log

Description

retain-it [®] is a subsurface Storm Water Management system constructed of precast concrete structures. They are installed in a side by side configuration creating a continuous internal flow channel integrated throughout the system. Systems are constructed with designated inlet and outlet modules, some with multiple inlets and outlets depending on the site storm water system layout. Infiltration systems typically have an inlet and sidewalls/ base constructed on a stone infiltration blanket with geofabric installed at the native soil interface. Other systems incorporate outlet flow control devices. Detention systems are typically lined with a watertight membrane and have inlet and outlet control devices.

The retain-it \circledast system can consist of multiple varying layouts, with no two the same. Given this, it should be noted that the operation and maintenance requirements are very similar regardless of the intended layout. It is important that the end user know the specific elements of each system so as to understand how best to optimize it's operation.

Installation per Design: Operation is simple to follow where the installation was performed in accordance with the design specifications, drawings and calculations. Specifics shall be identified in the design drawings. As-built drawings will benefit the locating of specific design modules where the system has been buried below a parking lot area. Optional access manholes or removable grates may be installed above every inlet/outlet pipe and at critical design elements designated by the design.

Daily Operation and Long Term Maintenance: In general, daily usage of the system is self sufficient and will operate without requiring any outside assistance, except for periodic inspection to verify optimal performance and maintenance for removal of collected pollutants. A longer term maintenance program should incorporate a more thorough inspection of the all elements of the system to verify proper operating condition. This is more important with the infiltration type of systems where the soil infiltration surface may become restricted due to fine particle build up. Long term maintenance should include provisions for cleaning and removal of collected solids, oils and debris from the system.

System Operation: The system operational function is initiated according to rainfall runoff flows entering the structure. Internally, the runoff flows in a set pattern or sequence throughout the module layout in accordance with the hydraulic design conditions. The flows primarily operate on system head derived from the changes in

elevation from the internal water surface and the outlet invert elevation. Some designs incorporate internal flow controls to satisfy hydraulic conditions that enhance water quality treatment or other intended purposes. Modified systems may incorporate a pump, but in general there are no mechanical apparatus required.

End user operations primarily consist of inspection and maintenance of the system over time.

Periodic Inspection: Important note - All storm water management systems react differently depending on the conditions that are characteristic to the contributing water shed. Variables such as storm intensity, runoff flow rates, site geology, surface stabilization and pollution load will affect the system operation. As does the inspection and maintenance frequency to ensure optimum effectiveness.

Inspections should be done periodically, with a greater number scheduled during the system start up and less frequently as the operator becomes familiar with the system performance characteristics. It is recommended that the end user keep records of the performance using the inspection log record sheet found in the back of this manual. These records shall identify the cycle of maintenance "system calibration" required for the specific applications based on the contributing water shed variables operating under "normal" conditions.

Please note that immediate maintenance may be required during "non-normal" events such as during adverse weather conditions or emergency fuel spills. See information on emergency spills in this manual.

Visual inspection of all assessable components shall be performed throughout the lifetime of the system. Access has been supplied at critical points to monitor hydraulic performance and removed pollutants buildup.

Standard Maintenance:

After construction has been completed and all disturbed surfaces have been stabilized by means of vegetation, asphalt or concrete surfaces, and all drainage system components have been constructed and are free of construction debris and sediments; then the storm water management system can be considered in an operational status.

Periodic visual inspections will help to identify issues of concern. The usual indicators are signs of slow flows, backed up water, visible oil, trash and debris or an excessive amount of sediment in the storage area.

Normal operational flows can be observed to flow freely at the predicted design elevations, from the inlet to the outlet module, following a serpintine path thru the storage and attenuation modules. Note that some modules are designed to permanently

retain water where others may hold water and slowly release it over a typical 24 hour period. During a storm water event, the flows and water surface elevations will fluctuate from a low flow to a high flow/ storage status. The storage modules should fill during the event and drain down within a 24 hour period after the event has stopped. All pipes, orifices, weirs and standpipes should pass flows freely and at optimum capacity.

Standard maintenance is performed using a vacuum truck to suction the accumulated sediments, oils and greases and trash and debris from the system. Whereas an on-site maintenance staff can remove these items by hand, it is preferred that the vacuum truck be used as dictated by specific system conditions. When a specialized module designed to have a permanent water level is used, the vacuum truck should pump the liquid level down to inspect the below water elevation structures and sump storage areas.

Oils and greases can be handled by on-site staff by utilizing absorbent products that soak up the oils (and not) converting the oils from a liquid into a manageable solid form. These oil soaked absorbent materials should be disposed of in an approved manner.

Sediments, trash and debris shall be removed and disposed of in an approved manner.

Any indications of hazardous material, determined by visual inspection, testing, smell or abnormality, should be reported and handled per appropriate regulations.

Flow Conditions

System operators should familiarize themselves with proper hydraulic flow condition indicators, acceptable depths of sedimentation, debris and trash build up, and concentrations of oils and greases.

Hydraulic flow conditions are those that are established by the design as either a flow/storage or as a water quality treatment function. Both have performance characteristics that can be visually identified so as to determine the effective and efficient operation of the system.

The engineering design drawings should note the various expected water surface level elevations that are achieved during different design storms within the various modules. Since it is difficult for a visual inspection to coincide with the exact time given water elevations are predicted, the following guidelines are given for evaluation.

Visual Inspection Guide:

Internal Flow Evaluation

Low flow: water should flow freely from the inlet to the outlet, travelling the intended attenuation path thru the system with the water surface elevation below the structure

beam height (12" deep), the system should drain completely 24 hours after a storm event,

Medium flow: the system should hold and maintain a water level during the 24 hour storm event and yet continually fill as the storm increases or drain downward as the event recedes. Flow within the system should occur freely from inlet to outlet only being restricted when a flow control structure has been integrally designed in place. Flow control devices may result in a water level backing up either temporarily or permanently; noting devices such as water quality modules may require a permanent water level to operate properly (see water quality treatment). Other system applications should drain completely 24 hours after a storm event.

High flow: the system should fill to the maximum design storm water level elevation (hydraulic grade line) per design. In most cases, that is the highest storage elevation available in the system, at the underside of the module top slab, or the invert of the overflow pipe. As the storm event recedes, the water level should begin to drain down via flow thru the system and discharge. The system should drain completely within 24 hours after a storm event.

Pollutant Storage Capacities

Oil and Grease

Oil and Grease Collection (with optional Oil water separator module specified) - Oil and grease accumulation is generally a function related to vehicle parking lot and drive areas, oil generating land uses or emergency spill conditions. It is important to maintain the system from accumulating excessive volumes of oils in that they may wash over into other sections of the system potentially clogging and reducing the infiltration capacity, blocking control devices and contaminating the overall system. The following standards apply.

Oil should not accumulate more than a visible sheen on the water surface in the oil water separation module only. A sheen is described as a fine, thin oil layer on the water surface identified by the glossy rainbow colors. A dipstick (dry wooden stick) can be used as a probe to determine the thickness of oil on the surface.

Accumulated oils could be associated with insufficient maintenance or a potential large volume oil resource. Any accumulation of oil should be promptly maintained by an experienced waste handler. Emergency spills such as those generated by an accidental spill shall be contained and removed immediately before the next storm event. Spills shall be handled in accordance with local environmental regulations. See spill and accumulated oil maintenance procedures.

Sediments

Sediments (with optional primary grit module or sedimentation modules specified) -Sediments shall be periodically removed from the system as they accumulate within the designated storage modules. The inlet modules are generally equipped with a sediment storage sump located in the base of the inlet structure. Inspection should be performed after major storm events or a minimum of annually, unless a different inspection cycle has been determined to be sufficient. Inspection shall consist of using a probe to determine the presence of and depth of the accumulated solids. Access is via the 24" manhole.

Note that excessive volumes of sediments will reduce the performance and efficiency of the system. Regional accumulations of solids such as those associated with ice and snow, may result in large springtime volumes of sand and gravels used for traction and ice control.

Trash and Debris

Trash and Debris (with optional trash and debris module specified) - Trash and debris accumulates in the inlet module in three forms; floating debris, neutrally buoyant, and heavy material. The floating debris is visible from the access manhole floating on the water surface in the form of but not limited to wood, paper, plastic, foam, bottles and cans. The neutrally buoyant material resides below the surface and combines with the natural flow regime of the system. It is hard to detect and can only be recognized when at a high concentration appears as a thickening of the water viscosity. Heavier material will simply settle to the sump base and combine with the sediments.

Note that trash and debris typically cause the most problems when they become lodged in a flow control device such as an outlet elbow, riser pipe, and orifice or weir structure. This can be detected visibly when the system is pumped down during maintenance. It can also be evaluated as a condition when flow is impeded and the water level backs up higher than the design elevations.

Emergency Spill Conditions (with optional emergency spill control module specified):

Emergency spill conditions are defined as an excessive accumulation of hydrocarbons such as oil, gasoline, diesel fuel, transmission oil or antifreeze usually resulting from an accidental discharge. Excessive accumulation is described as any amount larger than a thin "sheen" visible on the water surface. Care should be given in handling these types of fluids. The incident should be reported to the appropriate authorities and should be mitigated by a hazardous waste consultant approved for such matters.

retain-it ®

Maintenance Log			
Storm Water Mana	agement System		
Location:		ID #:	
Date	Inspection Notes		Inspector

Note the following conditions:

Inlet Module

Outlet Module

Water Quality Module

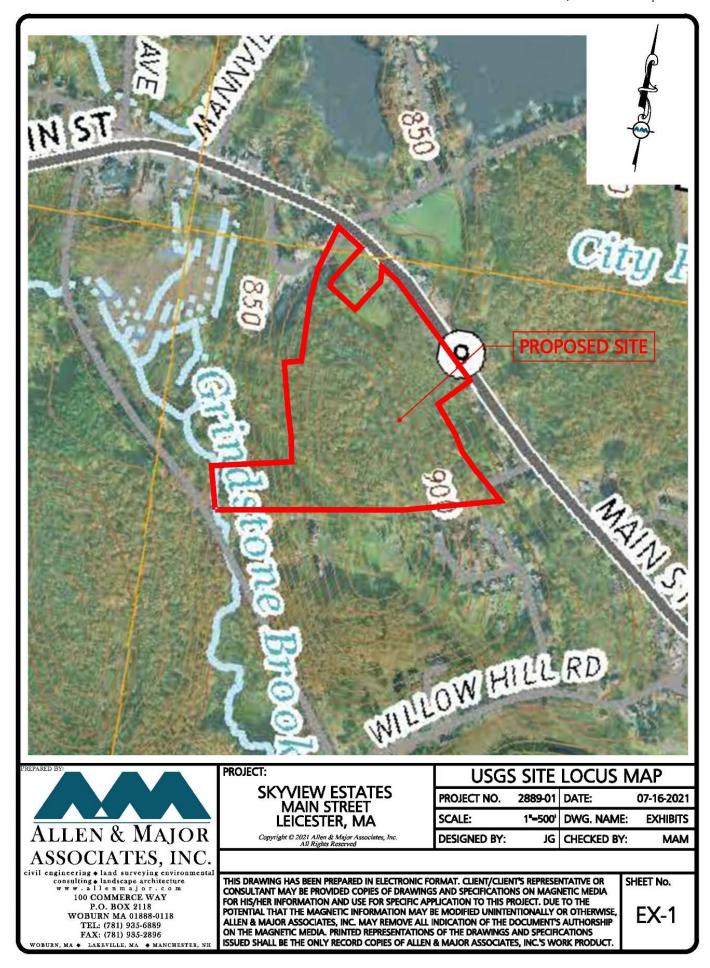
Oil Elbow

Oil Accumulation

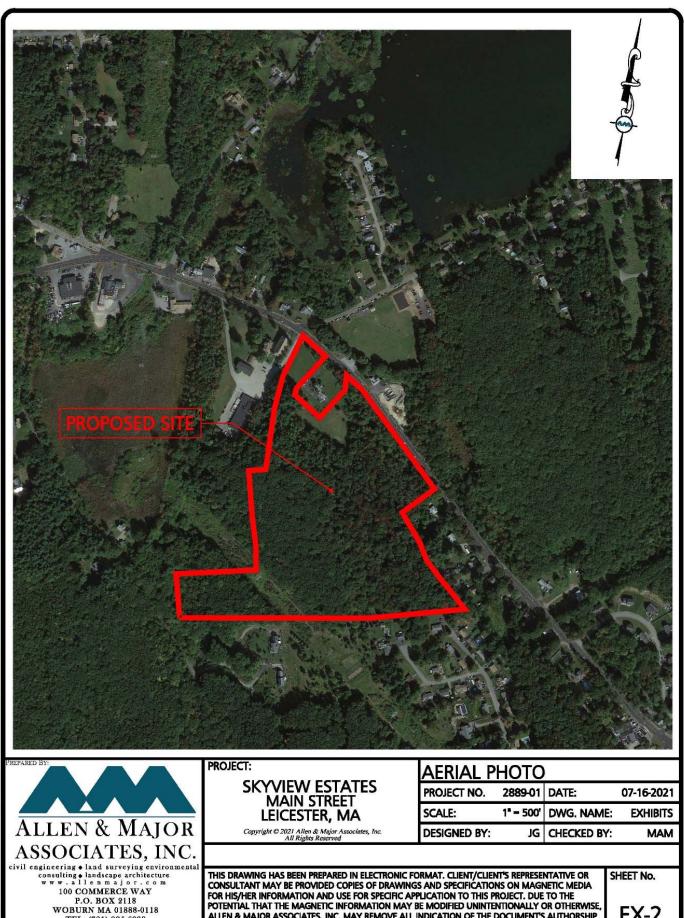
Sedimentation Accumulation

Trash and Debris Quantity

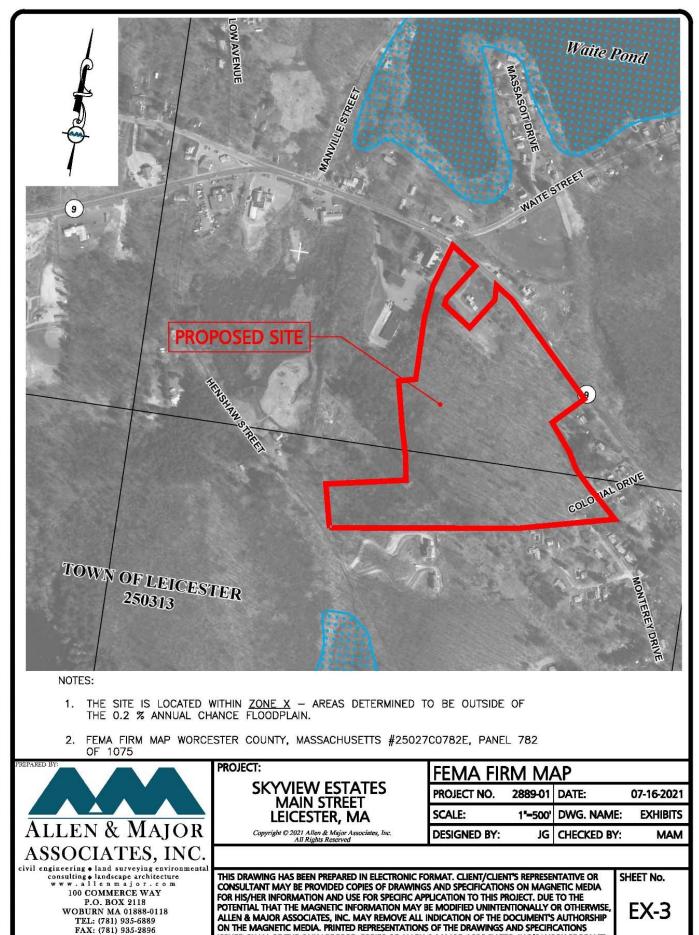
Flow Conditions


Flow Control Outlet Structure

Overflow Pipe

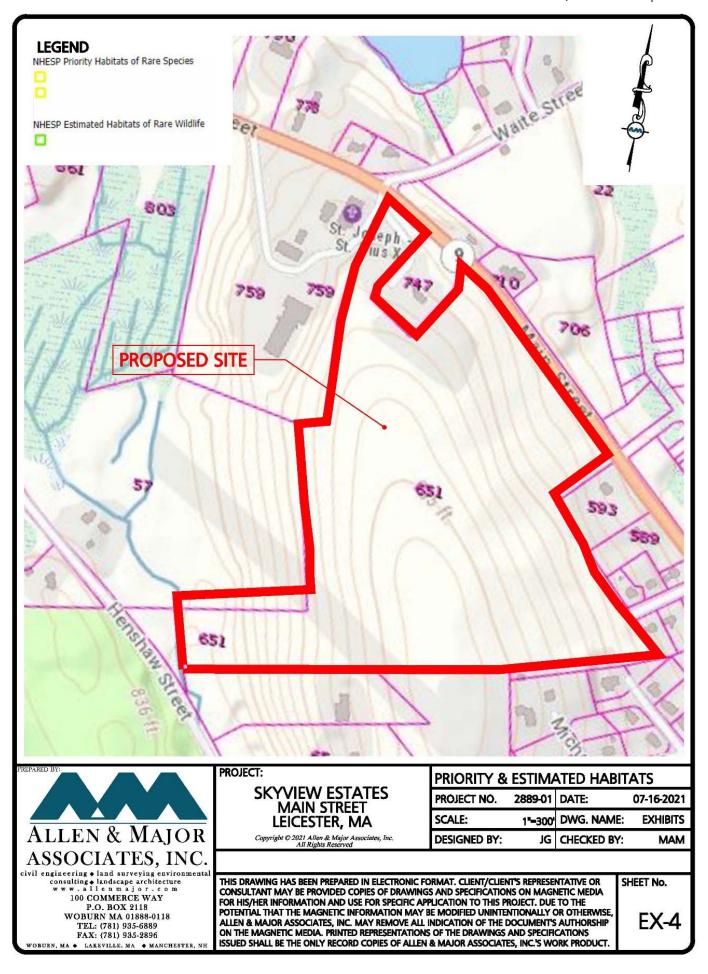

SECTION 3.0 -EXHIBITS

DRAINAGE REPORT Skyview Estates


EX-2

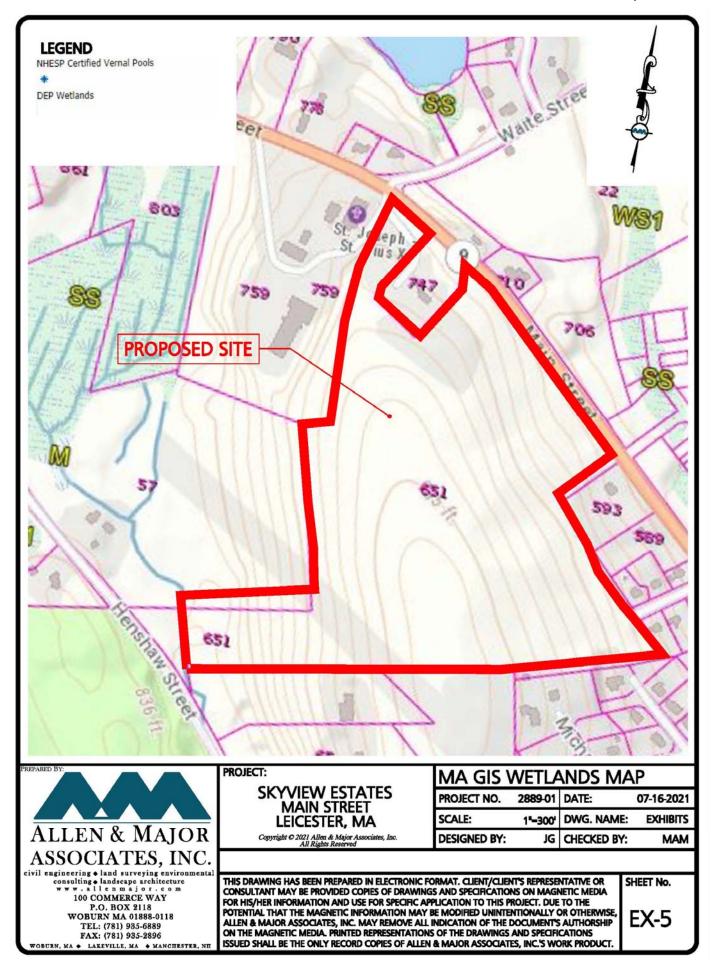
THIS DRAWING HAS BEEN PREPARED IN ELECTRONIC FORMAT. CLIENT/CLIENT'S REPRESENTATIVE OR CONSULTANT MAY BE PROVIDED COPIES OF DRAWINGS AND SPECIFICATIONS ON MAGNETIC MEDIA FOR HIS/HER INFORMATION AND USE FOR SPECIFIC APPLICATION TO THIS PROJECT. DUE TO THE POTENTIAL THAT THE MAGNETIC INFORMATION MAY BE MODIFIED UNINTENTIONALLY OR OTHERWISE, ALLEN & MAJOR ASSOCIATES, INC. MAY REMOVE ALL INDICATION OF THE DOCUMENT'S AUTHORSHIP ON THE MAGNETIC MEDIA. PRINTED REPRESENTATIONS OF THE DRAWINGS AND SPECIFICATIONS ISSUED SHALL BE THE ONLY RECORD COPIES OF ALLEN & MAJOR ASSOCIATES, INC.'S WORK PRODUCT.

TEL: (781) 935-6889 FAX: (781) 935-2896 WOBURN, MA . LAKEVILLE, MA . MANCHESTER, NH

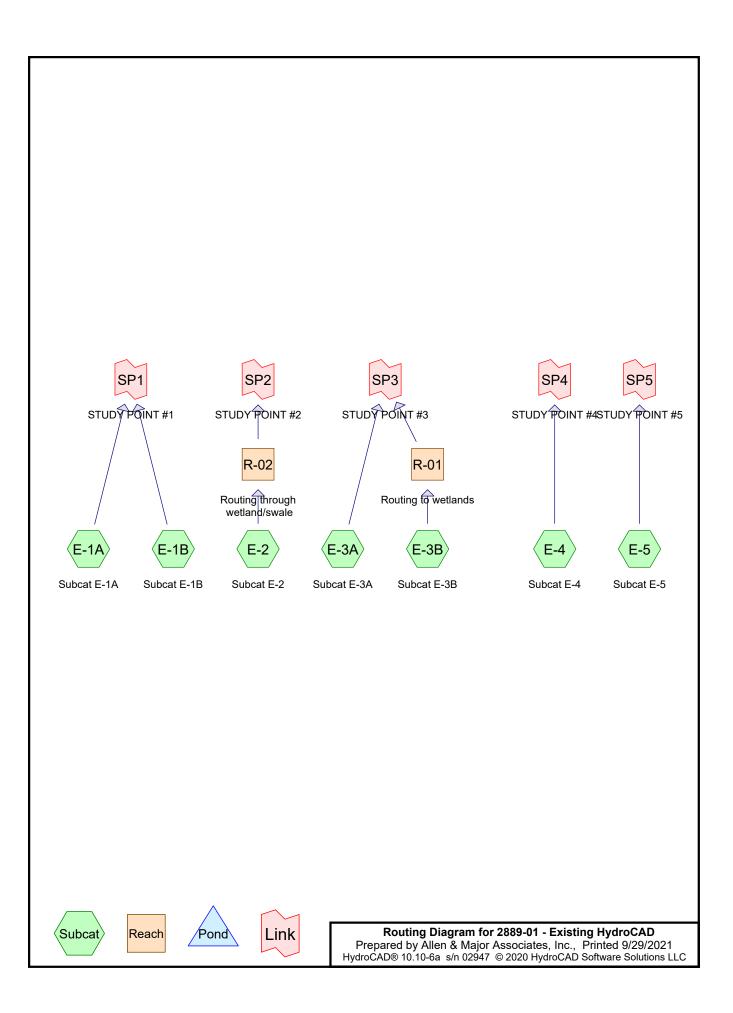


ISSUED SHALL BE THE ONLY RECORD COPIES OF ALLEN & MAJOR ASSOCIATES, INC.'S WORK PRODUCT.

OBURN, MA 🔶 LAKEVILLE, MA 🔶 MANCHESTER, NE


DRAINAGE REPORT Skyview Estates


DRAINAGE REPORT Skyview Estates



SECTION 4.0 -EXISTING DRAINAGE ANALYSIS

Existing HydroCAD

2889-01 - Existing HydroCAD

Prepared by Allen & Major Associates, Inc.	
HydroCAD® 10.10-6a s/n 02947 © 2020 HydroCAD Software Solutions LLC	

Ev	ent#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
	1	2-year	Type III 24-hr		Default	24.00	1	3.23	2
	2	10-year	Type III 24-hr		Default	24.00	1	4.85	2
	3	25-year	Type III 24-hr		Default	24.00	1	6.12	2
	4	50-year	Type III 24-hr		Default	24.00	1	7.30	2
	5	100-year	Type III 24-hr		Default	24.00	1	8.72	2

Rainfall Events Listing

2889-01 - Existing HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.10-6a s/n 02947 © 2020 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	a CN	Description
(acres)	(subcatchment-numbers)
0.21	0 61	>75% Grass cover, Good, HSG B (E-1B, E-4)
1.47	4 74	>75% Grass cover, Good, HSG C (E-1A, E-1B, E-2, E-4, E-5)
2.16	4 65	Brush, Good, HSG C (E-2, E-3A, E-3B)
0.06	7 98	Paved parking, HSG B (E-1B, E-4)
0.00	2 98	Paved parking, HSG C (E-1B)
0.74	9 55	Woods, Good, HSG B (E-1A, E-1B)
24.51	9 70	Woods, Good, HSG C (E-1A, E-1B, E-2, E-3A, E-3B, E-4, E-5)
29.18	5 69	TOTAL AREA

2889-01 - Existing HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.10-6a s/n 02947 © 2020 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
1.026	HSG B	E-1A, E-1B, E-4
28.159	HSG C	E-1A, E-1B, E-2, E-3A, E-3B, E-4, E-5
0.000	HSG D	
0.000	Other	
29.185		TOTAL AREA

2889-01 - Existing HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.10-6a s/n 02947 © 2020 HydroCAD Software Solutions LLC

Printed 9/29/2021 Page 5

							<u>.</u>
HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
 (acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
0.000	0.210	1.474	0.000	0.000	1.684	>75% Grass cover, Good	E-1A,
							E-1B,
							E-2, E-4,
							E-5
0.000	0.000	2.164	0.000	0.000	2.164	Brush, Good	E-2,
							E-3A,
							E-3B
0.000	0.067	0.002	0.000	0.000	0.069	Paved parking	E-1B, E-4
0.000	0.749	24.519	0.000	0.000	25.268	Woods, Good	E-1A,
							E-1B,
							E-2,
							E-3A,
							E-3B,
							E-4, E-5
0.000	1.026	28.159	0.000	0.000	29.185	TOTAL AREA	

Ground Covers (all nodes)

Summary for Subcatchment E-1A: Subcat E-1A

Runoff = 3.62 cfs @ 12.25 hrs, Volume= Routed to Link SP1 : STUDY POINT #1 0.399 af, Depth= 0.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.23"

A	rea (sf)	CN D	escription		
	32,115	55 V	loods, Go	od, HSG B	
	33,840	74 >	75% Gras	s cover, Go	ood, HSG C
1	96,179	70 V	Voods, Go	od, HSG C	
2	62,134	69 V	Veighted A	verage	
2	62,134	1	00.00% Pe	ervious Are	а
Тс	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
7.5	50	0.0680	0.11		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.28"
6.0	431	0.0570	1.19		Shallow Concentrated Flow, B-C
					Woodland Kv= 5.0 fps
0.8	126	0.1350	2.57		Shallow Concentrated Flow, C-D
					Short Grass Pasture Kv= 7.0 fps
1.4	192	0.2000	2.24		Shallow Concentrated Flow, D-E
					Woodland Kv= 5.0 fps
15.7	799	Total			

Summary for Subcatchment E-1B: Subcat E-1B

Runoff = 0.47 cfs @ 12.13 hrs, Volume= 0.040 af, Depth= 0.95" Routed to Link SP1 : STUDY POINT #1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.23"

Area (sf)	CN	Description
90	98	Paved parking, HSG C
2,609	98	Paved parking, HSG B
7,321	61	>75% Grass cover, Good, HSG B
506	55	Woods, Good, HSG B
0	70	Woods, Good, HSG C
11,330	74	>75% Grass cover, Good, HSG C
21,857	72	Weighted Average
19,157		87.65% Pervious Area
2,699		12.35% Impervious Area

Prepared by Allen & Major Associates, Inc.

Type III 24-hr 2-year Rainfall=3.23" Printed 9/29/2021 HydroCAD® 10.10-6a s/n 02947 © 2020 HydroCAD Software Solutions LLC Page 7

_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	6.6	50	0.0960	0.13		Sheet Flow, A-B	_
						Grass: Bermuda n= 0.410 P2= 3.28"	
	1.4	183	0.0960	2.17		Shallow Concentrated Flow, B-C	
						Short Grass Pasture Kv= 7.0 fps	
	0.2	82	0.0840	5.88		Shallow Concentrated Flow, C-D	
_						Paved Kv= 20.3 fps	_
	8.2	315	Total				

Summary for Subcatchment E-2: Subcat E-2

Runoff = 5.58 cfs @ 12.42 hrs, Volume= 0.739 af, Depth= 0.85" Routed to Reach R-02 : Routing through wetland/swale

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.23"

_	A	rea (sf)	CN I	Description					
		18,004	65 I	Brush, Goo	d, HSG C				
		1,039	74 >	>75% Gras	s cover, Go	ood, HSG C			
	4	37,960	70 \	Woods, Good, HSG C					
	4	57,003	70 \	Neighted A	verage				
	4	57,003		100.00% Pe	ervious Are	а			
	Тс	Length	Slope		Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	21.2	50	0.0050	0.04		Sheet Flow, A-B			
						Woods: Light underbrush n= 0.400 P2= 3.28"			
	5.1	562	0.1370	1.85		Shallow Concentrated Flow, B-C			
						Woodland Kv= 5.0 fps			
_	26.3	612	Total						

Summary for Subcatchment E-3A: Subcat E-3A

0.357 af, Depth= 0.80" 3.00 cfs @ 12.31 hrs, Volume= Runoff = Routed to Link SP3 : STUDY POINT #3

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.23"

 Area (ac)	CN	Description
3.800	70	Woods, Good, HSG C
 1.578	65	Brush, Good, HSG C
 5.378	69	Weighted Average
5.378		100.00% Pervious Area

Prepared by Allen & Major Associates, Inc.

Type III 24-hr 2-year Rainfall=3.23" Printed 9/29/2021 HydroCAD® 10.10-6a s/n 02947 © 2020 HydroCAD Software Solutions LLC Page 8

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
12.7	50	0.0180	0.07		Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.28"
1.0	91	0.0850	1.46		Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps
1.1	204	0.1800	2.97		Shallow Concentrated Flow, C-D
4.4	545	0.1700	2.06		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, D-E Woodland Kv= 5.0 fps

19.2 890 Total

Summary for Subcatchment E-3B: Subcat E-3B

Runoff	=	2.70 cfs @	12.23 hrs,	Volume=	0.287 af,	Depth=	0.85"
Routed	I to Rea	ch R-01 : Rou	ting to wetla	ands			

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.23"

	Area	(ac) C	N Desc	cription		
	0.	172 6	5 Brus	h, Good, H	ISG C	
_	3.	<u>902 7</u>	<u>′0 Woo</u>	ds, Good,	HSG C	
4.074 70 Weighted Average						
	4.	074	100.	00% Pervi	ous Area	
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.4	50	0.0380	0.09		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.28"
	5.4	517	0.1000	1.58		Shallow Concentrated Flow, B-C
						Woodland Kv= 5.0 fps
	14.8	567	Total			

Summary for Subcatchment E-4: Subcat E-4

1.57 cfs @ 12.16 hrs, Volume= Runoff 0.144 af, Depth= 0.85" = Routed to Link SP4 : STUDY POINT #4

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.23"

 Area (ac)	CN	Description
0.042	61	>75% Grass cover, Good, HSG B
0.007	98	Paved parking, HSG B
0.255	74	>75% Grass cover, Good, HSG C
 1.744	70	Woods, Good, HSG C
2.049	70	Weighted Average
2.042		99.65% Pervious Area
0.007		0.35% Impervious Area

Prepared by Allen & Major Associates, Inc. HydroCAD® 10.10-6a s/n 02947 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr	2-year Rair	nfall=3.23"
	Printed	9/29/2021
lutions LLC		Page 9

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	7.5	50	0.0670	0.11		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.28"
	2.5	208	0.0770	1.39		Shallow Concentrated Flow, B-C
_						Woodland Kv= 5.0 fps
	10.0	258	Total			

Summary for Subcatchment E-5: Subcat E-5

Runoff = 0.46 cfs @ 12.26 hrs, Volume= 0.050 af, Depth= 0.90" Routed to Link SP5 : STUDY POINT #5

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.23"

A	rea (sf)	CN E	Description						
	6,877		74 >75% Grass cover, Good, HSG C						
	22,427	<u>70 V</u>	<u>Voods, Go</u>	od, HSG C					
	29,304	71 V	Veighted A	verage					
	29,304	1	00.00% Pe	ervious Are	а				
Tc	Length	Slope	Velocity	Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
9.2	50	0.0400	0.09		Sheet Flow, A-B				
					Woods: Light underbrush n= 0.400 P2= 3.28"				
6.8	456	0.0500	1.12		Shallow Concentrated Flow, B-C				
					Woodland Kv= 5.0 fps				
0.5	62	0.0760	1.93		Shallow Concentrated Flow, C-D				
					Short Grass Pasture Kv= 7.0 fps				
16.5	568	Total							

Summary for Reach R-01: Routing to wetlands

A subcatchment performs runoff calculations, including the associated Tc anc CN determinations. It does not have any facility for routing an inflow hydrograph from another source. However, a reach may be used to perform this type of specialized routing.

This reach demonstrates a procedure for performing a shallow concetrated flow routing through woods. In this case, the "reach" is defined as a channel with very low side slopes. The Manning's value of 0.40 is selected from the table of sheet flow roughness coefficients, which is comparable to the Manning's value for "woods with light underbrush".

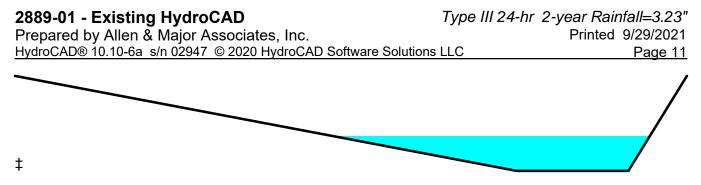
Inflow Area =	4.074 ac,	0.00% Impervious, Inflow Depth = 0.85" for 2-year event
Inflow =	2.70 cfs @	12.23 hrs, Volume= 0.287 af
Outflow =	1.32 cfs @	12.59 hrs, Volume= 0.287 af, Atten= 51%, Lag= 21.7 min
Routed to Link	SP3 : STUD	POINT #3

2889-01 - Existing HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.10-6a s/n 02947 © 2020 HydroCAD Software Solutions LLC

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 0.33 fps, Min. Travel Time= 36.6 min Avg. Velocity = 0.14 fps, Avg. Travel Time= 89.0 min

Peak Storage= 2,890 cf @ 12.59 hrs Average Depth at Peak Storage= 0.24' , Surface Width= 28.73' Bank-Full Depth= 1.00' Flow Area= 55.0 sf, Capacity= 43.77 cfs

5.00' x 1.00' deep channel, n= 0.400 Sheet flow: Woods+light brush Side Slope Z-value= 50.0 '/' Top Width= 105.00' Length= 722.0' Slope= 0.1087 '/' Inlet Invert= 889.50', Outlet Invert= 811.00'


‡

Summary for Reach R-02: Routing through wetland/swale

A subcatchment performs runoff calculations, including the associated Tc anc CN determinations. It does not have any facility for routing an inflow hydrograph from another source. However, a reach may be used to perform this type of specialized routing.

This reach demonstrates a procedure for performing a shallow concetrated flow routing through the wooded wetland/swale adjacent to the stone wall. In this case, the "reach" is defined as a channel with low side slopes. The Manning's value of 0.40 is selected from the table of sheet flow roughness coefficients, which is comparable to the Manning's value for "woods with light underbrush".

Inflow Area = 10.491 ac. 0.00% Impervious. Inflow Depth = 0.85"for 2-year event 5.58 cfs @ 12.42 hrs, Volume= Inflow 0.739 af Outflow = 2.81 cfs @ 12.84 hrs, Volume= 0.738 af, Atten= 50%, Lag= 25.5 min Routed to Link SP2 : STUDY POINT #2 Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 0.26 fps, Min. Travel Time= 46.3 min Avg. Velocity = 0.11 fps, Avg. Travel Time= 114.6 min Peak Storage= 7,825 cf @ 12.84 hrs Average Depth at Peak Storage= 0.55', Surface Width= 28.52' Bank-Full Depth= 1.50' Flow Area= 52.7 sf. Capacity= 24.55 cfs 10.00' x 1.50' deep channel, n= 0.400 Sheet flow: Woods+light brush Side Slope Z-value= 30.0 3.5 '/' Top Width= 60.25' Length= 735.0' Slope= 0.0189 '/' Inlet Invert= 877.70', Outlet Invert= 863.80'

Summary for Link SP1: STUDY POINT #1

Inflow Area =	6.520 ac,	0.95% Impervious, Inflow D	epth = 0.81" for	r 2-year event
Inflow =	3.95 cfs @	12.24 hrs, Volume=	0.439 af	•
Primary =	3.95 cfs @	12.24 hrs, Volume=	0.439 af, Atten=	0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP2: STUDY POINT #2

Inflow Area =	10.491 ac,	0.00% Impervious, In	flow Depth > 0.84	for 2-year event
Inflow =	2.81 cfs @	12.84 hrs, Volume=	0.738 af	-
Primary =	2.81 cfs @	12.84 hrs, Volume=	0.738 af, A	tten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP3: STUDY POINT #3

Inflow Area	a =	9.452 ac,	0.00% Impervious,	Inflow Depth > 0	.82" for 2-year event
Inflow	=	3.94 cfs @	12.35 hrs, Volume	= 0.644 af	-
Primary	=	3.94 cfs @	12.35 hrs, Volume	= 0.644 af	, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP4: STUDY POINT #4

Inflow Area =	2.049 ac,	0.35% Impervious, Ir	flow Depth = 0.85"	for 2-year event
Inflow =	1.57 cfs @	12.16 hrs, Volume=	0.144 af	-
Primary =	1.57 cfs @	12.16 hrs, Volume=	0.144 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP5: STUDY POINT #5

Inflow Area	a =	0.673 ac,	0.00% Impervious,	Inflow Depth = 0.9	00" for 2-year event
Inflow	=	0.46 cfs @	12.26 hrs, Volume	= 0.050 af	-
Primary	=	0.46 cfs @	12.26 hrs, Volume	= 0.050 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Subcatchment E-1A: Subcat E-1A

Runoff = 9.32 cfs @ 12.23 hrs, Volume= Routed to Link SP1 : STUDY POINT #1 0.927 af, Depth= 1.85"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.85"

A	rea (sf)	CN D	escription		
32,115 55 Woods, Good, HSG B					
	33,840			,	ood, HSG C
1	96,179	70 V	loods, Goo	od, HSG C	
2	62,134	69 V	Veighted A	verage	
2	62,134	1	00.00% Pe	ervious Are	а
_					
Тс	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
7.5	50	0.0680	0.11		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.28"
6.0	431	0.0570	1.19		Shallow Concentrated Flow, B-C
					Woodland Kv= 5.0 fps
0.8	126	0.1350	2.57		Shallow Concentrated Flow, C-D
					Short Grass Pasture Kv= 7.0 fps
1.4	192	0.2000	2.24		Shallow Concentrated Flow, D-E
					Woodland Kv= 5.0 fps
15.7	799	Total			

Summary for Subcatchment E-1B: Subcat E-1B

Runoff = 1.10 cfs @ 12.12 hrs, Volume= 0.087 af, Depth= 2.08" Routed to Link SP1 : STUDY POINT #1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.85"

Area (sf)	CN	Description
90	98	Paved parking, HSG C
2,609	98	Paved parking, HSG B
7,321	61	>75% Grass cover, Good, HSG B
506	55	Woods, Good, HSG B
0	70	Woods, Good, HSG C
11,330	74	>75% Grass cover, Good, HSG C
21,857	72	Weighted Average
19,157		87.65% Pervious Area
2,699		12.35% Impervious Area

Prepared by Allen & Major Associates, Inc.

Type III 24-hr 10-year Rainfall=4.85" Printed 9/29/2021 HydroCAD® 10.10-6a s/n 02947 © 2020 HydroCAD Software Solutions LLC Page 13

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
_	6.6	50	0.0960	0.13		Sheet Flow, A-B	_
						Grass: Bermuda n= 0.410 P2= 3.28"	
	1.4	183	0.0960	2.17		Shallow Concentrated Flow, B-C	
						Short Grass Pasture Kv= 7.0 fps	
	0.2	82	0.0840	5.88		Shallow Concentrated Flow, C-D	
						Paved Kv= 20.3 fps	
	8.2	315	Total				_

Summary for Subcatchment E-2: Subcat E-2

Runoff = 13.83 cfs @ 12.39 hrs, Volume= 1.684 af, Depth= 1.93" Routed to Reach R-02 : Routing through wetland/swale

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.85"

_	A	rea (sf)	CN I	Description		
		18,004	65 H	Brush, Goo	d, HSG C	
		1,039	74 >	>75% Gras	s cover, Go	ood, HSG C
	4	37,960	70 \	Noods, Go	od, HSG C	
	4	57,003	70 \	Neighted A	verage	
	4	57,003		100.00% Pe	ervious Are	а
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	21.2	50	0.0050	0.04		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.28"
	5.1	562	0.1370	1.85		Shallow Concentrated Flow, B-C
						Woodland Kv= 5.0 fps
_	26.3	612	Total			

Summary for Subcatchment E-3A: Subcat E-3A

7.71 cfs @ 12.28 hrs, Volume= 0.829 af, Depth= 1.85" Runoff = Routed to Link SP3 : STUDY POINT #3

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.85"

 Area (ac)	CN	Description
3.800	70	Woods, Good, HSG C
 1.578	65	Brush, Good, HSG C
5.378	69	Weighted Average
5.378		100.00% Pervious Area

Prepared by Allen & Major Associates, Inc.

Type III 24-hr 10-year Rainfall=4.85" Printed 9/29/2021 HydroCAD® 10.10-6a s/n 02947 © 2020 HydroCAD Software Solutions LLC Page 14

1.93"

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
12.7	50	0.0180	0.07		Sheet Flow, A-B
1.0	91	0.0850	1.46		Woods: Light underbrush n= 0.400 P2= 3.28" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps
1.1	204	0.1800	2.97		Shallow Concentrated Flow, C-D
4.4	545	0.1700	2.06		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, D-E Woodland Kv= 5.0 fps

19.2 890 Total

Summary for Subcatchment E-3B: Subcat E-3B

Runoff	=	6.79 cfs @	12.22 hrs,	Volume=	0.654 af,	Depth= ⁻
Routed	to Read	h R-01 : Rou	ting to wetla	ands		-

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.85"

Area	(ac) C	N Dese	cription				
-	0.172 65 Brush, Good, HSG C						
3	.902	70 Woo	ds, Good,	HSG C			
4	.074	70 Weig	ghted Aver	age			
4	.074	100.	00% Pervi	ous Area			
Тс	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·		
9.4	50	0.0380	0.09		Sheet Flow, A-B		
					Woods: Light underbrush n= 0.400 P2= 3.28"		
5.4	517	0.1000	1.58		Shallow Concentrated Flow, B-C		
					Woodland Kv= 5.0 fps		
14.8	567	Total			· · · ·		

Summary for Subcatchment E-4: Subcat E-4

3.91 cfs @ 12.15 hrs, Volume= Runoff 0.329 af, Depth= 1.93" = Routed to Link SP4 : STUDY POINT #4

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.85"

 Area (ac)	CN	Description
0.042	61	>75% Grass cover, Good, HSG B
0.007	98	Paved parking, HSG B
0.255	74	>75% Grass cover, Good, HSG C
 1.744	70	Woods, Good, HSG C
2.049	70	Weighted Average
2.042		99.65% Pervious Area
0.007		0.35% Impervious Area

ricpare								
HydroCA	HydroCAD® 10.10-6a s/n 02947 © 2020 HydroCAD Software Solutions LLC							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
7.5	50	0.0670	0.11		Sheet Flow, A-B			
2.5	208	0.0770	1.39		Woods: Light underbrush n= 0.400 P2= 3 Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps	3.28"		
10.0	258	Total						
Summary for Subcatchment E-5: Subcat E-5								
Runoff Route	= ed to Link		s @ 12.24 TUDY POII	4 hrs, Volu NT #5	me= 0.112 af, Depth= 2.00"			

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.85"

A	rea (sf)	CN E	escription					
	6,877 74 >75% Grass cover, Good, HSG C							
	22,427	70 V	vooas, Go	od, HSG C				
	29,304	71 V	Veighted A	verage				
	29,304	1	00.00% Pe	ervious Are	а			
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
9.2	50	0.0400	0.09		Sheet Flow, A-B			
					Woods: Light underbrush n= 0.400 P2= 3.28"			
6.8	456	0.0500	1.12		Shallow Concentrated Flow, B-C			
					Woodland Kv= 5.0 fps			
0.5	62	0.0760	1.93		Shallow Concentrated Flow, C-D			
0.0	•=				Short Grass Pasture Kv= 7.0 fps			
16.5	568	Total			· · · ·			

Summary for Reach R-01: Routing to wetlands

A subcatchment performs runoff calculations, including the associated Tc anc CN determinations. It does not have any facility for routing an inflow hydrograph from another source. However, a reach may be used to perform this type of specialized routing.

This reach demonstrates a procedure for performing a shallow concetrated flow routing through woods. In this case, the "reach" is defined as a channel with very low side slopes. The Manning's value of 0.40 is selected from the table of sheet flow roughness coefficients, which is comparable to the Manning's value for "woods with light underbrush".

Inflow Area =	4.074 ac,	0.00% Impervious, Inflow Depth = 1.93" for 10-year event
Inflow =	6.79 cfs @	12.22 hrs, Volume= 0.654 af
Outflow =	3.84 cfs @	12.49 hrs, Volume= 0.654 af, Atten= 43%, Lag= 16.6 min
Routed to Link	SP3 : STUD	POINT #3

2889-01 - Existing HydroCAD

Prepared by Allen & Major Associates Inc.

Type III 24-hr 10-year Rainfall=4.85" Printed 9/29/2021 5

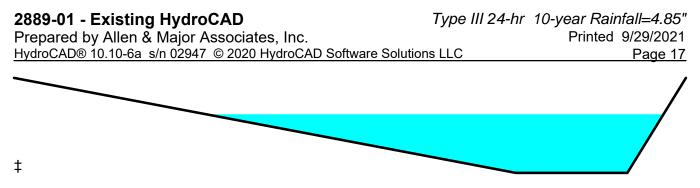
2889-01 - Existing HydroCAD *Type* Prepared by Allen & Major Associates, Inc. HydroCAD® 10.10-6a s/n 02947 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 10-year Rainfall=4.85" Printed 9/29/2021 S LLC Page 16

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 0.43 fps, Min. Travel Time= 27.9 min Avg. Velocity = 0.16 fps, Avg. Travel Time= 76.2 min

Peak Storage= 6,423 cf @ 12.49 hrs Average Depth at Peak Storage= 0.37' , Surface Width= 42.47' Bank-Full Depth= 1.00' Flow Area= 55.0 sf, Capacity= 43.77 cfs

5.00' x 1.00' deep channel, n= 0.400 Sheet flow: Woods+light brush Side Slope Z-value= 50.0 '/' Top Width= 105.00' Length= 722.0' Slope= 0.1087 '/' Inlet Invert= 889.50', Outlet Invert= 811.00'


‡

Summary for Reach R-02: Routing through wetland/swale

A subcatchment performs runoff calculations, including the associated Tc anc CN determinations. It does not have any facility for routing an inflow hydrograph from another source. However, a reach may be used to perform this type of specialized routing.

This reach demonstrates a procedure for performing a shallow concetrated flow routing through the wooded wetland/swale adjacent to the stone wall. In this case, the "reach" is defined as a channel with low side slopes. The Manning's value of 0.40 is selected from the table of sheet flow roughness coefficients, which is comparable to the Manning's value for "woods with light underbrush".

Inflow Area = 0.00% Impervious, Inflow Depth = 1.93" for 10-year event 10.491 ac. 13.83 cfs @ 12.39 hrs, Volume= Inflow = 1.684 af Outflow = 8.34 cfs @ 12.72 hrs, Volume= 1.682 af, Atten= 40%, Lag= 19.8 min Routed to Link SP2 : STUDY POINT #2 Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 0.35 fps, Min. Travel Time= 34.7 min Avg. Velocity = 0.13 fps, Avg. Travel Time= 96.0 min Peak Storage= 17,368 cf @ 12.72 hrs Average Depth at Peak Storage= 0.93', Surface Width= 41.03' Bank-Full Depth= 1.50' Flow Area= 52.7 sf. Capacity= 24.55 cfs 10.00' x 1.50' deep channel, n= 0.400 Sheet flow: Woods+light brush Side Slope Z-value= 30.0 3.5 '/' Top Width= 60.25' Length= 735.0' Slope= 0.0189 '/' Inlet Invert= 877.70', Outlet Invert= 863.80'

Summary for Link SP1: STUDY POINT #1

Inflow Area	a =	6.520 ac,	0.95% Impervious, Ir	nflow Depth = 1.87"	for 10-year event
Inflow	=	10.15 cfs @	12.22 hrs, Volume=	1.014 af	-
Primary	=	10.15 cfs @	12.22 hrs, Volume=	1.014 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP2: STUDY POINT #2

Inflow Area =	10.491 ac,	0.00% Impervious, In	nflow Depth > 1.92"	for 10-year event
Inflow =	8.34 cfs @	12.72 hrs, Volume=	1.682 af	-
Primary =	8.34 cfs @	12.72 hrs, Volume=	1.682 af, Att	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP3: STUDY POINT #3

Inflow Area	a =	9.452 ac,	0.00% Impervious,	Inflow Depth = 1.88	8" for 10-year event
Inflow	=	10.91 cfs @	12.32 hrs, Volume	= 1.482 af	-
Primary	=	10.91 cfs @	12.32 hrs, Volume	= 1.482 af, <i>i</i>	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP4: STUDY POINT #4

Inflow Area	a =	2.049 ac,	0.35% Impervious,	Inflow Depth = 1.9	93" for 10-year event
Inflow	=	3.91 cfs @	12.15 hrs, Volume=	= 0.329 af	-
Primary	=	3.91 cfs @	12.15 hrs, Volume=	= 0.329 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP5: STUDY POINT #5

Inflow Area	=	0.673 ac,	0.00% Impervious,	Inflow Depth = 2.0	0" for 10-year event
Inflow	=	1.12 cfs @	12.24 hrs, Volume	= 0.112 af	-
Primary	=	1.12 cfs @	12.24 hrs, Volume	= 0.112 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Subcatchment E-1A: Subcat E-1A

Runoff = 14.52 cfs @ 12.22 hrs, Volume= Routed to Link SP1 : STUDY POINT #1 1.407 af, Depth= 2.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.12"

A	rea (sf)	CN D	escription				
	32,115	55 V	/oods, Goo	od, HSG B			
	33,840			,	ood, HSG C		
1	96,179	70 V	loods, Goo	od, HSG C			
2	62,134		Weighted Average				
2	62,134	1	00.00% Pe	ervious Are	а		
_				•	— • • •		
TC	Length	Slope	Velocity	Capacity	Description		
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)			
7.5	50	0.0680	0.11		Sheet Flow, A-B		
					Woods: Light underbrush n= 0.400 P2= 3.28"		
6.0	431	0.0570	1.19		Shallow Concentrated Flow, B-C		
					Woodland Kv= 5.0 fps		
0.8	126	0.1350	2.57		Shallow Concentrated Flow, C-D		
					Short Grass Pasture Kv= 7.0 fps		
1.4	192	0.2000	2.24		Shallow Concentrated Flow, D-E		
					Woodland Kv= 5.0 fps		
15.7	799	Total					

Summary for Subcatchment E-1B: Subcat E-1B

Runoff = 1.66 cfs @ 12.12 hrs, Volume= 0.129 af, Depth= 3.09" Routed to Link SP1 : STUDY POINT #1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.12"

Area (sf)	CN	Description
90	98	Paved parking, HSG C
2,609	98	Paved parking, HSG B
7,321	61	>75% Grass cover, Good, HSG B
506	55	Woods, Good, HSG B
0	70	Woods, Good, HSG C
11,330 74 >75% Grass cover, Good, HSG C		>75% Grass cover, Good, HSG C
21,857	72	Weighted Average
19,157		87.65% Pervious Area
2,699		12.35% Impervious Area

Prepared by Allen & Major Associates, Inc.

Type III 24-hr 25-year Rainfall=6.12" Printed 9/29/2021 HydroCAD® 10.10-6a s/n 02947 © 2020 HydroCAD Software Solutions LLC Page 19

_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	6.6	50	0.0960	0.13		Sheet Flow, A-B	_
						Grass: Bermuda	
	1.4	183	0.0960	2.17		Shallow Concentrated Flow, B-C	
						Short Grass Pasture Kv= 7.0 fps	
	0.2	82	0.0840	5.88		Shallow Concentrated Flow, C-D	
_						Paved Kv= 20.3 fps	
	8.2	315	Total				_

Summary for Subcatchment E-2: Subcat E-2

Runoff = 21.23 cfs @ 12.37 hrs, Volume= 2.536 af, Depth= 2.90" Routed to Reach R-02 : Routing through wetland/swale

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.12"

_	A	rea (sf)	CN I	Description		
		18,004	65 I	Brush, Goo	d, HSG C	
		1,039	74 >	>75% Gras	s cover, Go	ood, HSG C
	4	37,960	70 \	Noods, Go	od, HSG C	
	4	57,003	70 \	Neighted A	verage	
	4	57,003		100.00% Pe	ervious Are	а
	Тс	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	21.2	50	0.0050	0.04		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.28"
	5.1	562	0.1370	1.85		Shallow Concentrated Flow, B-C
						Woodland Kv= 5.0 fps
_	26.3	612	Total			

Summary for Subcatchment E-3A: Subcat E-3A

11.99 cfs @ 12.27 hrs, Volume= 1.258 af, Depth= 2.81" Runoff = Routed to Link SP3 : STUDY POINT #3

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.12"

 Area (ac)	CN	Description
3.800	70	Woods, Good, HSG C
 1.578	65	Brush, Good, HSG C
5.378	69	Weighted Average
5.378		100.00% Pervious Area

Prepared by Allen & Major Associates, Inc.

Type III 24-hr 25-year Rainfall=6.12" Printed 9/29/2021 HydroCAD® 10.10-6a s/n 02947 © 2020 HydroCAD Software Solutions LLC Page 20

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
12.7	50	0.0180	0.07		Sheet Flow, A-B
1.0	91	0.0850	1.46		Woods: Light underbrush n= 0.400 P2= 3.28" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps
1.1	204	0.1800	2.97		Shallow Concentrated Flow, C-D
4.4	545	0.1700	2.06		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, D-E Woodland Kv= 5.0 fps

19.2 890 Total

Summary for Subcatchment E-3B: Subcat E-3B

Runoff	=	10.42 cfs @	12.21 hrs,	Volume=		0.985 af,	Depth= 2	2.90"
Routed to Reach R-01 : Routing to wetlands								

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.12"

Area	(ac) C	N Dese	cription		
-			h, Good, H		
3.	.902 7	<u>70 Woo</u>	ds, Good,	HSG C	
4	.074 7	70 Weig	ghted Aver	age	
4	.074	100.	00% Pervi	ous Area	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	· · · · · · · · · · · · · · · · · · ·
9.4	50	0.0380	0.09		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.28"
5.4	517	0.1000	1.58		Shallow Concentrated Flow, B-C
					Woodland Kv= 5.0 fps
14.8	567	Total			· · · ·

Summary for Subcatchment E-4: Subcat E-4

Runoff 5.98 cfs @ 12.15 hrs, Volume= 0.495 af, Depth= 2.90" = Routed to Link SP4 : STUDY POINT #4

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.12"

Area	(ac)	CN	Description			
0	.042	61	>75% Grass cover, Good, HSG B			
0	.007	98	Paved parking, HSG B			
0	.255	74	>75% Grass cover, Good, HSG C			
1	.744	70	Woods, Good, HSG C			
2	.049	70	Weighted Average			
2	.042		99.65% Pervious Area			
0	.007		0.35% Impervious Area			

Prepared by Allen & Major Associates, Inc. HydroCAD® 10.10-6a s/n 02947 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr	25-year Rair	nfall=6.12"
	Printed	9/29/2021
tions LLC		Page 21

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	7.5	50	0.0670	0.11		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.28"
	2.5	208	0.0770	1.39		Shallow Concentrated Flow, B-C
_						Woodland Kv= 5.0 fps
	10.0	258	Total			

Summary for Subcatchment E-5: Subcat E-5

Runoff = 1.70 cfs @ 12.23 hrs, Volume= 0.168 af, Depth= 3.00" Routed to Link SP5 : STUDY POINT #5

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.12"

A	rea (sf)	CN E	Description		
	6,877				ood, HSG C
	22,427	70 V	Voods, Go	od, HSG C	
	29,304	71 V	Veighted A	verage	
	29,304	1	00.00% Pe	ervious Are	а
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
9.2	50	0.0400	0.09		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.28"
6.8	456	0.0500	1.12		Shallow Concentrated Flow, B-C
					Woodland Kv= 5.0 fps
0.5	62	0.0760	1.93		Shallow Concentrated Flow, C-D
					Short Grass Pasture Kv= 7.0 fps
16.5	568	Total			

Summary for Reach R-01: Routing to wetlands

A subcatchment performs runoff calculations, including the associated Tc anc CN determinations. It does not have any facility for routing an inflow hydrograph from another source. However, a reach may be used to perform this type of specialized routing.

This reach demonstrates a procedure for performing a shallow concetrated flow routing through woods. In this case, the "reach" is defined as a channel with very low side slopes. The Manning's value of 0.40 is selected from the table of sheet flow roughness coefficients, which is comparable to the Manning's value for "woods with light underbrush".

Inflow Area	a =	4.074 ac,	0.00% Impervious, Inflow D)epth = 2.90" for 25-year event
Inflow	=	10.42 cfs @	12.21 hrs, Volume=	0.985 af
Outflow	=	6.28 cfs @	12.45 hrs, Volume=	0.985 af, Atten= 40%, Lag= 14.4 min
Routed	to Link	(SP3 : STUD	Y POINT #3	-

2889-01 - Existing HydroCAD *Type* Prepared by Allen & Major Associates, Inc. HydroCAD® 10.10-6a s/n 02947 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 25-year Rainfall=6.12" Printed 9/29/2021 s LLC Page 22

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 0.49 fps, Min. Travel Time= 24.6 min Avg. Velocity = 0.17 fps, Avg. Travel Time= 70.1 min

Peak Storage= 9,269 cf @ 12.45 hrs Average Depth at Peak Storage= 0.46' , Surface Width= 50.92' Bank-Full Depth= 1.00' Flow Area= 55.0 sf, Capacity= 43.77 cfs

5.00' x 1.00' deep channel, n= 0.400 Sheet flow: Woods+light brush Side Slope Z-value= 50.0 '/' Top Width= 105.00' Length= 722.0' Slope= 0.1087 '/' Inlet Invert= 889.50', Outlet Invert= 811.00'

‡

Summary for Reach R-02: Routing through wetland/swale

A subcatchment performs runoff calculations, including the associated Tc anc CN determinations. It does not have any facility for routing an inflow hydrograph from another source. However, a reach may be used to perform this type of specialized routing.

This reach demonstrates a procedure for performing a shallow concetrated flow routing through the wooded wetland/swale adjacent to the stone wall. In this case, the "reach" is defined as a channel with low side slopes. The Manning's value of 0.40 is selected from the table of sheet flow roughness coefficients, which is comparable to the Manning's value for "woods with light underbrush".

```
Inflow Area =
                             0.00% Impervious, Inflow Depth = 2.90"
                                                                       for 25-year event
                 10.491 ac.
                 21.23 cfs @ 12.37 hrs, Volume=
Inflow
                                                         2.536 af
Outflow
          =
                 13.67 cfs @ 12.67 hrs, Volume=
                                                         2.534 af, Atten= 36%, Lag= 17.8 min
   Routed to Link SP2 : STUDY POINT #2
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs
Max. Velocity= 0.40 fps, Min. Travel Time= 30.6 min
Avg. Velocity = 0.14 fps, Avg. Travel Time= 87.5 min
Peak Storage= 25,053 cf @ 12.67 hrs
Average Depth at Peak Storage= 1.16', Surface Width= 48.82'
Bank-Full Depth= 1.50' Flow Area= 52.7 sf. Capacity= 24.55 cfs
10.00' x 1.50' deep channel, n= 0.400 Sheet flow: Woods+light brush
Side Slope Z-value= 30.0 3.5 '/' Top Width= 60.25'
Length= 735.0' Slope= 0.0189 '/'
Inlet Invert= 877.70', Outlet Invert= 863.80'
```

2889-01 - Existing HydroCAD Type III 24-hr 25-year Rainfall=6.12" Prepared by Allen & Major Associates, Inc. Printed 9/29/2021 HydroCAD® 10.10-6a s/n 02947 © 2020 HydroCAD Software Solutions LLC Page 23 ‡

Summary for Link SP1: STUDY POINT #1

Inflow Area =	6.520 ac,	0.95% Impervious, I	Inflow Depth = 2.83"	for 25-year event
Inflow =	15.72 cfs @	12.22 hrs, Volume=	1.537 af	-
Primary =	15.72 cfs @	12.22 hrs, Volume=	= 1.537 af, Att	ten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP2: STUDY POINT #2

Inflow Area =	10.491 ac,	0.00% Impervious, I	nflow Depth > 2.90)" for 25-year event
Inflow =	13.67 cfs @	12.67 hrs, Volume=	2.534 af	-
Primary =	13.67 cfs @	12.67 hrs, Volume=	: 2.534 af, <i>i</i>	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP3: STUDY POINT #3

Inflow Area	a =	9.452 ac,	0.00% Impervious,	Inflow Depth = 2.8	35" for 25-year event
Inflow	=	17.41 cfs @	12.31 hrs, Volume	= 2.243 af	-
Primary	=	17.41 cfs @	12.31 hrs, Volume	= 2.243 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP4: STUDY POINT #4

Inflow Area	a =	2.049 ac,	0.35% Impervious,	Inflow Depth = 2	2.90" for 25-year event
Inflow	=	5.98 cfs @	12.15 hrs, Volume	= 0.495 a	f
Primary	=	5.98 cfs @	12.15 hrs, Volume	= 0.495 a	f, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP5: STUDY POINT #5

Inflow Area	=	0.673 ac,	0.00% Impervious,	Inflow Depth = 3.0	00" for 25-year event
Inflow =	=	1.70 cfs @	12.23 hrs, Volume	= 0.168 af	-
Primary =	=	1.70 cfs @	12.23 hrs, Volume	= 0.168 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Subcatchment E-1A: Subcat E-1A

Runoff = 19.62 cfs @ 12.22 hrs, Volume= Routed to Link SP1 : STUDY POINT #1 1.886 af, Depth= 3.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-year Rainfall=7.30"

A	rea (sf)	CN D	escription		
	32,115	55 V	loods, Go	od, HSG B	
	33,840	74 >	75% Gras	s cover, Go	ood, HSG C
1	96,179	70 V	Voods, Go	od, HSG C	
2	62,134	69 V	Veighted A	verage	
2	62,134	1	00.00% Pe	ervious Are	а
Тс	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
7.5	50	0.0680	0.11		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.28"
6.0	431	0.0570	1.19		Shallow Concentrated Flow, B-C
					Woodland Kv= 5.0 fps
0.8	126	0.1350	2.57		Shallow Concentrated Flow, C-D
					Short Grass Pasture Kv= 7.0 fps
1.4	192	0.2000	2.24		Shallow Concentrated Flow, D-E
					Woodland Kv= 5.0 fps
15.7	799	Total			

Summary for Subcatchment E-1B: Subcat E-1B

Runoff = 2.20 cfs @ 12.12 hrs, Volume= 0.171 af, Depth= 4.09" Routed to Link SP1 : STUDY POINT #1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-year Rainfall=7.30"

Area (sf)	CN	Description
90	98	Paved parking, HSG C
2,609	98	Paved parking, HSG B
7,321	61	>75% Grass cover, Good, HSG B
506	55	Woods, Good, HSG B
0	70	Woods, Good, HSG C
11,330	74	>75% Grass cover, Good, HSG C
21,857	72	Weighted Average
19,157		87.65% Pervious Area
2,699		12.35% Impervious Area

Prepared by Allen & Major Associates, Inc.

Type III 24-hr 50-year Rainfall=7.30" Printed 9/29/2021 HydroCAD® 10.10-6a s/n 02947 © 2020 HydroCAD Software Solutions LLC Page 25

_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	6.6	50	0.0960	0.13		Sheet Flow, A-B	_
						Grass: Bermuda	
	1.4	183	0.0960	2.17		Shallow Concentrated Flow, B-C	
						Short Grass Pasture Kv= 7.0 fps	
	0.2	82	0.0840	5.88		Shallow Concentrated Flow, C-D	
_						Paved Kv= 20.3 fps	
	8.2	315	Total				_

Summary for Subcatchment E-2: Subcat E-2

Runoff = 28.49 cfs @ 12.37 hrs, Volume= 3.383 af, Depth= 3.87" Routed to Reach R-02 : Routing through wetland/swale

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-year Rainfall=7.30"

_	A	rea (sf)	CN I	Description		
		18,004	65 I	Brush, Goo	d, HSG C	
		1,039	74 >	>75% Gras	s cover, Go	ood, HSG C
	4	37,960	70 \	Noods, Go	od, HSG C	
	4	57,003	70 \	Neighted A	verage	
	4	57,003		100.00% Pe	ervious Are	а
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	21.2	50	0.0050	0.04		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.28"
	5.1	562	0.1370	1.85		Shallow Concentrated Flow, B-C
						Woodland Kv= 5.0 fps
_	26.3	612	Total			

Summary for Subcatchment E-3A: Subcat E-3A

16.19 cfs @ 12.27 hrs, Volume= 1.686 af, Depth= 3.76" Runoff = Routed to Link SP3 : STUDY POINT #3

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-year Rainfall=7.30"

 Area (ac)	CN	Description
3.800	70	Woods, Good, HSG C
 1.578	65	Brush, Good, HSG C
5.378	69	Weighted Average
5.378		100.00% Pervious Area

Prepared by Allen & Major Associates, Inc.

Type III 24-hr 50-year Rainfall=7.30" Printed 9/29/2021 HydroCAD® 10.10-6a s/n 02947 © 2020 HydroCAD Software Solutions LLC Page 26

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	12.7	50	0.0180	0.07		Sheet Flow, A-B
	1.0	91	0.0850	1.46		Woods: Light underbrush n= 0.400 P2= 3.28" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps
	1.1	204	0.1800	2.97		Shallow Concentrated Flow, C-D
_	4.4	545	0.1700	2.06		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, D-E Woodland Kv= 5.0 fps

19.2 890 Total

Summary for Subcatchment E-3B: Subcat E-3B

Runoff	=	13.99 cfs @	12.21 hrs, Volume=	= 1.314 af, Depth= 3.87"
Routed	d to R	leach R-01 : Rou		

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-year Rainfall=7.30"

_	Area	(ac) C	N Desc	cription			
	0.	172 6	65 Brus	h, Good, H	ISG C		
_	3.	902 7	70 Woo	ds, Good,	HSG C		
4.074 70 Weighted Average							
	4.	074	100.	00% Pervi	ous Area		
	Тс	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	9.4	50	0.0380	0.09		Sheet Flow, A-B	
						Woods: Light underbrush n= 0.400 P2= 3.28"	
	5.4	517	0.1000	1.58		Shallow Concentrated Flow, B-C	
						Woodland Kv= 5.0 fps	
_	14.8	567	Total				

Summary for Subcatchment E-4: Subcat E-4

Runoff 8.02 cfs @ 12.15 hrs, Volume= 0.661 af, Depth= 3.87" = Routed to Link SP4 : STUDY POINT #4

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-year Rainfall=7.30"

 Area (ac)	CN	Description
0.042	61	>75% Grass cover, Good, HSG B
0.007	98	Paved parking, HSG B
0.255	74	>75% Grass cover, Good, HSG C
 1.744	70	Woods, Good, HSG C
2.049	70	Weighted Average
2.042		99.65% Pervious Area
0.007		0.35% Impervious Area

Prepared by Allen & Major As HydroCAD® 10.10-6a s/n 02947

ssociates, Inc.	Printed 9/29/2021
© 2020 HydroCAD Software Solutions LLC	Page 27
	-

Type III 24-hr 50-year Rainfall=7.30"

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	7.5	50	0.0670	0.11		Sheet Flow, A-B
	2.5	208	0.0770	1.39		Woods: Light underbrush n= 0.400 P2= 3.28" Shallow Concentrated Flow, B-C
	2.0	200	0.0770	1.55		Woodland Kv= 5.0 fps
_	10.0	258	Total			

Summary for Subcatchment E-5: Subcat E-5

Runoff 2.27 cfs @ 12.23 hrs, Volume= 0.223 af, Depth= 3.98" = Routed to Link SP5 : STUDY POINT #5

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-year Rainfall=7.30"

A	rea (sf)	CN E	Description			
6,877 74 >75% Grass cover, Good, HSG C						
	22,427	<u>70</u> V	Voods, Go	od, HSG C		
	29,304	71 V	Veighted A	verage		
	29,304	1	00.00% Pe	ervious Are	а	
Tc	Length	Slope	Velocity	Capacity	Description	
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)		
9.2	50	0.0400	0.09		Sheet Flow, A-B	
					Woods: Light underbrush n= 0.400 P2= 3.28"	
6.8	456	0.0500	1.12		Shallow Concentrated Flow, B-C	
					Woodland Kv= 5.0 fps	
0.5	62	0.0760	1.93		Shallow Concentrated Flow, C-D	
					Short Grass Pasture Kv= 7.0 fps	
16.5	568	Total				

Summary for Reach R-01: Routing to wetlands

A subcatchment performs runoff calculations, including the associated Tc anc CN determinations. It does not have any facility for routing an inflow hydrograph from another source. However, a reach may be used to perform this type of specialized routing.

This reach demonstrates a procedure for performing a shallow concetrated flow routing through woods. In this case, the "reach" is defined as a channel with very low side slopes. The Manning's value of 0.40 is selected from the table of sheet flow roughness coefficients, which is comparable to the Manning's value for "woods with light underbrush".

Inflow Area =		4.074 ac,	0.00% Impervious, Inflow Depth = 3.87" for 50-year event	t		
Inflow	=	13.99 cfs @	12.21 hrs, Volume= 1.314 af			
Outflow	=	8.76 cfs @	12.42 hrs, Volume= 1.314 af, Atten= 37%, Lag= 13	.0 min		
Routed to Link SP3 : STUDY POINT #3						

2889-01 - Existing HydroCAD *Type* Prepared by Allen & Major Associates, Inc. HydroCAD® 10.10-6a s/n 02947 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 50-year Rainfall=7.30" Printed 9/29/2021 s LLC Page 28

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 0.53 fps, Min. Travel Time= 22.7 min Avg. Velocity = 0.18 fps, Avg. Travel Time= 66.0 min

Peak Storage= 11,895 cf @ 12.42 hrs Average Depth at Peak Storage= 0.53' , Surface Width= 57.62' Bank-Full Depth= 1.00' Flow Area= 55.0 sf, Capacity= 43.77 cfs

5.00' x 1.00' deep channel, n= 0.400 Sheet flow: Woods+light brush Side Slope Z-value= 50.0 '/' Top Width= 105.00' Length= 722.0' Slope= 0.1087 '/' Inlet Invert= 889.50', Outlet Invert= 811.00'

‡

Summary for Reach R-02: Routing through wetland/swale

A subcatchment performs runoff calculations, including the associated Tc anc CN determinations. It does not have any facility for routing an inflow hydrograph from another source. However, a reach may be used to perform this type of specialized routing.

This reach demonstrates a procedure for performing a shallow concetrated flow routing through the wooded wetland/swale adjacent to the stone wall. In this case, the "reach" is defined as a channel with low side slopes. The Manning's value of 0.40 is selected from the table of sheet flow roughness coefficients, which is comparable to the Manning's value for "woods with light underbrush".

[55] Hint: Peak inflow is 116% of Manning's capacity Inflow Area = 10.491 ac, 0.00% Impervious, Inflow Depth = 3.87" for 50-year event Inflow 28.49 cfs @ 12.37 hrs, Volume= 3.383 af = 19.08 cfs @ 12.65 hrs, Volume= Outflow = 3.381 af, Atten= 33%, Lag= 16.6 min Routed to Link SP2 : STUDY POINT #2 Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 0.44 fps, Min. Travel Time= 28.0 min Avg. Velocity = 0.15 fps, Avg. Travel Time= 82.0 min Peak Storage= 32,102 cf @ 12.65 hrs Average Depth at Peak Storage= 1.34', Surface Width= 55.01' Bank-Full Depth= 1.50' Flow Area= 52.7 sf, Capacity= 24.55 cfs 10.00' x 1.50' deep channel, n= 0.400 Sheet flow: Woods+light brush Side Slope Z-value= 30.0 3.5 '/' Top Width= 60.25' Length= 735.0' Slope= 0.0189 '/' Inlet Invert= 877.70', Outlet Invert= 863.80'

2889-01 - Existing HydroCAD Type III 24-hr 50-year Rainfall=7.30" Prepared by Allen & Major Associates, Inc. Printed 9/29/2021 HydroCAD® 10.10-6a s/n 02947 © 2020 HydroCAD Software Solutions LLC Page 29

Summary for Link SP1: STUDY POINT #1

Inflow Area =	6.520 ac,	0.95% Impervious, In	flow Depth = 3.79"	for 50-year event
Inflow =	21.20 cfs @	12.21 hrs, Volume=	2.057 af	-
Primary =	21.20 cfs @	12.21 hrs, Volume=	2.057 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

‡

Summary for Link SP2: STUDY POINT #2

Inflow Area =	10.491 ac,	0.00% Impervious, In	nflow Depth > 3.87	7" for 50-year event
Inflow =	19.08 cfs @	12.65 hrs, Volume=	3.381 af	-
Primary =	19.08 cfs @	12.65 hrs, Volume=	3.381 af, <i>i</i>	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP3: STUDY POINT #3

Inflow Area	a =	9.452 ac,	0.00% Impervious,	Inflow Depth = 3.8	31" for 50-year event
Inflow	=	23.93 cfs @	12.30 hrs, Volume	= 2.999 af	
Primary	=	23.93 cfs @	12.30 hrs, Volume	= 2.999 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP4: STUDY POINT #4

Inflow Area	=	2.049 ac,	0.35% Impervious,	Inflow Depth =	3.87" for 50-year event	
Inflow	=	8.02 cfs @	12.15 hrs, Volume	= 0.661 a	af	
Primary	=	8.02 cfs @	12.15 hrs, Volume	= 0.661 a	af, Atten= 0%, Lag= 0.0 min	l

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP5: STUDY POINT #5

Inflow Area	a =	0.673 ac,	0.00% Impervious,	Inflow Depth = 3.9	8" for 50-year event
Inflow	=	2.27 cfs @	12.23 hrs, Volume=	= 0.223 af	-
Primary	=	2.27 cfs @	12.23 hrs, Volume=	= 0.223 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Subcatchment E-1A: Subcat E-1A

Runoff = 25.97 cfs @ 12.22 hrs, Volume= Routed to Link SP1 : STUDY POINT #1 2.491 af, Depth= 4.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=8.72"

A	rea (sf)	CN D	escription		
	32,115	55 V	loods, Go	od, HSG B	
	33,840	74 >	75% Gras	s cover, Go	ood, HSG C
1	96,179	70 V	Voods, Go	od, HSG C	
2	62,134	69 V	Veighted A	verage	
2	62,134	1	00.00% Pe	ervious Are	а
Тс	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
7.5	50	0.0680	0.11		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.28"
6.0	431	0.0570	1.19		Shallow Concentrated Flow, B-C
					Woodland Kv= 5.0 fps
0.8	126	0.1350	2.57		Shallow Concentrated Flow, C-D
					Short Grass Pasture Kv= 7.0 fps
1.4	192	0.2000	2.24		Shallow Concentrated Flow, D-E
					Woodland Kv= 5.0 fps
15.7	799	Total			

Summary for Subcatchment E-1B: Subcat E-1B

Runoff = 2.86 cfs @ 12.12 hrs, Volume= 0.223 af, Depth= 5.33" Routed to Link SP1 : STUDY POINT #1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=8.72"

Area (sf)	CN	Description
90	98	Paved parking, HSG C
2,609	Paved parking, HSG B	
7,321	>75% Grass cover, Good, HSG B	
506	55	Woods, Good, HSG B
0 70 Woods, Good, HSG C		Woods, Good, HSG C
11,330	74	>75% Grass cover, Good, HSG C
21,857	72	Weighted Average
19,157		87.65% Pervious Area
2,699		12.35% Impervious Area

Prepared by Allen & Major Associates, Inc.

Type III 24-hr 100-year Rainfall=8.72" Printed 9/29/2021 HydroCAD® 10.10-6a s/n 02947 © 2020 HydroCAD Software Solutions LLC Page 31

_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	6.6	50	0.0960	0.13		Sheet Flow, A-B	
						Grass: Bermuda n= 0.410 P2= 3.28"	
	1.4	183	0.0960	2.17		Shallow Concentrated Flow, B-C	
						Short Grass Pasture Kv= 7.0 fps	
	0.2	82	0.0840	5.88		Shallow Concentrated Flow, C-D	
_						Paved Kv= 20.3 fps	
	8.2	315	Total				

Summary for Subcatchment E-2: Subcat E-2

Runoff = 37.51 cfs @ 12.36 hrs, Volume= 4.449 af, Depth= 5.09" Routed to Reach R-02 : Routing through wetland/swale

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=8.72"

_	A	rea (sf)	CN I	Description		
		18,004	65 I	Brush, Goo	d, HSG C	
		1,039	74 >	>75% Gras	s cover, Go	ood, HSG C
	4	37,960	70 \	Noods, Go	od, HSG C	
	4	57,003	70 \	Neighted A	verage	
	4	57,003		100.00% Pe	ervious Are	а
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	21.2	50	0.0050	0.04		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.28"
	5.1	562	0.1370	1.85		Shallow Concentrated Flow, B-C
						Woodland Kv= 5.0 fps
_	26.3	612	Total			

Summary for Subcatchment E-3A: Subcat E-3A

21.44 cfs @ 12.27 hrs, Volume= 2.226 af, Depth= 4.97" Runoff = Routed to Link SP3 : STUDY POINT #3

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=8.72"

 Area (ac)	CN	Description
3.800	70	Woods, Good, HSG C
 1.578	65	Brush, Good, HSG C
5.378	69	Weighted Average
5.378		100.00% Pervious Area

Prepared by Allen & Major Associates, Inc.

Type III 24-hr 100-year Rainfall=8.72" Printed 9/29/2021 HydroCAD® 10.10-6a s/n 02947 © 2020 HydroCAD Software Solutions LLC Page 32

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
12.7	50	0.0180	0.07		Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.28"
1.0	91	0.0850	1.46		Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps
1.1	204	0.1800	2.97		Shallow Concentrated Flow, C-D Short Grass Pasture Kv= 7.0 fps
4.4	545	0.1700	2.06		Shallow Concentrated Flow, D-E Woodland Kv= 5.0 fps

19.2 890 Total

Summary for Subcatchment E-3B: Subcat E-3B

Runoff	=	18.41 cfs @	12.21 hrs,	Volume=	1.728 af,	Depth= 5	5.09"
Routed	l to Rea	ach R-01 : Rou	ting to wetla	ands		-	

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=8.72"

	Area	(ac) C	N Desc	cription		
	0.	172 6	5 Brus	h, Good, H	ISG C	
_	3.	<u>902 7</u>	<u>′0 Woo</u>	ds, Good,	HSG C	
	4.	074 7	0 Weig	ghted Aver	age	
	4.	074	100.	00% Pervi	ous Area	
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.4	50	0.0380	0.09		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.28"
	5.4	517	0.1000	1.58		Shallow Concentrated Flow, B-C
						Woodland Kv= 5.0 fps
	14.8	567	Total			

Summary for Subcatchment E-4: Subcat E-4

10.55 cfs @ 12.14 hrs, Volume= Runoff 0.869 af, Depth= 5.09" = Routed to Link SP4 : STUDY POINT #4

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=8.72"

 Area (ac)	CN	Description			
0.042	61	>75% Grass cover, Good, HSG B			
0.007	98	Paved parking, HSG B			
0.255	74	>75% Grass cover, Good, HSG C			
 1.744	70	Woods, Good, HSG C			
2.049	70	Weighted Average			
2.042		99.65% Pervious Area			
0.007		0.35% Impervious Area			

Prepared by Allen & Major Associates, Inc. HydroCAD® 10.10-6a s/n 02947 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr	100-year Rair	nfall=8.72"
	Printed	9/29/2021
ons LLC		Page 33

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.5	50	0.0670	0.11		Sheet Flow, A-B
2.5	208	0.0770	1.39		Woods: Light underbrush n= 0.400 P2= 3.28" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps
10.0	258	Total			

Summary for Subcatchment E-5: Subcat E-5

Runoff = 2.98 cfs @ 12.23 hrs, Volume= 0.292 af, Depth= 5.21" Routed to Link SP5 : STUDY POINT #5

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=8.72"

A	rea (sf)	CN E	Description						
	6,877	77 74 >75% Grass cover, Good, HSG C							
	22,427	<u>70 V</u>	<u>Voods, Go</u>	od, HSG C					
	29,304	71 V	Veighted A	verage					
	29,304	1	00.00% Pe	ervious Are	а				
Tc	Length	Slope	Velocity	Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
9.2	50	0.0400	0.09		Sheet Flow, A-B				
					Woods: Light underbrush n= 0.400 P2= 3.28"				
6.8	456	0.0500	1.12		Shallow Concentrated Flow, B-C				
					Woodland Kv= 5.0 fps				
0.5	62	0.0760	1.93		Shallow Concentrated Flow, C-D				
					Short Grass Pasture Kv= 7.0 fps				
16.5	568	Total							

Summary for Reach R-01: Routing to wetlands

A subcatchment performs runoff calculations, including the associated Tc anc CN determinations. It does not have any facility for routing an inflow hydrograph from another source. However, a reach may be used to perform this type of specialized routing.

This reach demonstrates a procedure for performing a shallow concetrated flow routing through woods. In this case, the "reach" is defined as a channel with very low side slopes. The Manning's value of 0.40 is selected from the table of sheet flow roughness coefficients, which is comparable to the Manning's value for "woods with light underbrush".

Inflow Are	a =	4.074 ac,	0.00% Impervious, Inflow D	epth = 5.09" for 100-year event
Inflow	=	18.41 cfs @	12.21 hrs, Volume=	1.728 af
Outflow	=	11.93 cfs @	12.41 hrs, Volume=	1.728 af, Atten= 35%, Lag= 12.0 min
Routed	l to Link	< SP3 : STUD	Y POINT #3	-

2889-01 - Existing HydroCAD Type I Prepared by Allen & Major Associates, Inc. HydroCAD® 10.10-6a s/n 02947 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 100-year Rainfall=8.72" Printed 9/29/2021 ns LLC Page 34

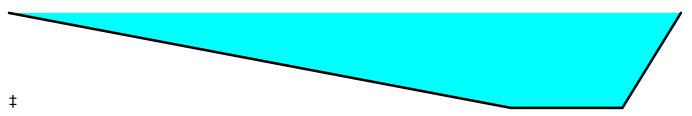
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 0.57 fps, Min. Travel Time= 20.9 min Avg. Velocity = 0.19 fps, Avg. Travel Time= 62.3 min

Peak Storage= 14,989 cf @ 12.41 hrs Average Depth at Peak Storage= 0.60', Surface Width= 64.63' Bank-Full Depth= 1.00' Flow Area= 55.0 sf, Capacity= 43.77 cfs

5.00' x 1.00' deep channel, n= 0.400 Sheet flow: Woods+light brush Side Slope Z-value= 50.0 '/' Top Width= 105.00' Length= 722.0' Slope= 0.1087 '/' Inlet Invert= 889.50', Outlet Invert= 811.00'

‡

Summary for Reach R-02: Routing through wetland/swale


A subcatchment performs runoff calculations, including the associated Tc anc CN determinations. It does not have any facility for routing an inflow hydrograph from another source. However, a reach may be used to perform this type of specialized routing.

This reach demonstrates a procedure for performing a shallow concetrated flow routing through the wooded wetland/swale adjacent to the stone wall. In this case, the "reach" is defined as a channel with low side slopes. The Manning's value of 0.40 is selected from the table of sheet flow roughness coefficients, which is comparable to the Manning's value for "woods with light underbrush".

[91] Warning: Storage range exceeded by 0.04' [55] Hint: Peak inflow is 153% of Manning's capacity 10.491 ac, 0.00% Impervious, Inflow Depth = 5.09" for 100-year event Inflow Area = Inflow 37.51 cfs @ 12.36 hrs, Volume= 4.449 af = Outflow = 25.99 cfs @ 12.62 hrs, Volume= 4.447 af, Atten= 31%, Lag= 15.4 min Routed to Link SP2 : STUDY POINT #2 Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 0.47 fps, Min. Travel Time= 25.9 min Avg. Velocity = 0.16 fps, Avg. Travel Time= 77.0 min Peak Storage= 40,416 cf @ 12.62 hrs Average Depth at Peak Storage= 1.54', Surface Width= 61.53' Bank-Full Depth= 1.50' Flow Area= 52.7 sf, Capacity= 24.55 cfs 10.00' x 1.50' deep channel, n= 0.400 Sheet flow: Woods+light brush Side Slope Z-value= 30.0 3.5 '/' Top Width= 60.25' Length= 735.0' Slope= 0.0189 '/' Inlet Invert= 877.70', Outlet Invert= 863.80'

Type III 24-hr 100-year Rainfall=8.72" Printed 9/29/2021 ns LLC Page 35

Summary for Link SP1: STUDY POINT #1

Inflow Area =	6.520 ac,	0.95% Impervious, Inflo	w Depth = 5.00"	for 100-year event
Inflow =	28.02 cfs @	12.21 hrs, Volume=	2.714 af	-
Primary =	28.02 cfs @	12.21 hrs, Volume=	2.714 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP2: STUDY POINT #2

Inflow Area	=	10.491 ac,	0.00% Impervious,	Inflow Depth > 5	.09" for 100-year event
Inflow =	=	25.99 cfs @	12.62 hrs, Volume	e 4.447 af	-
Primary =	=	25.99 cfs @	12.62 hrs, Volume	e= 4.447 af	, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP3: STUDY POINT #3

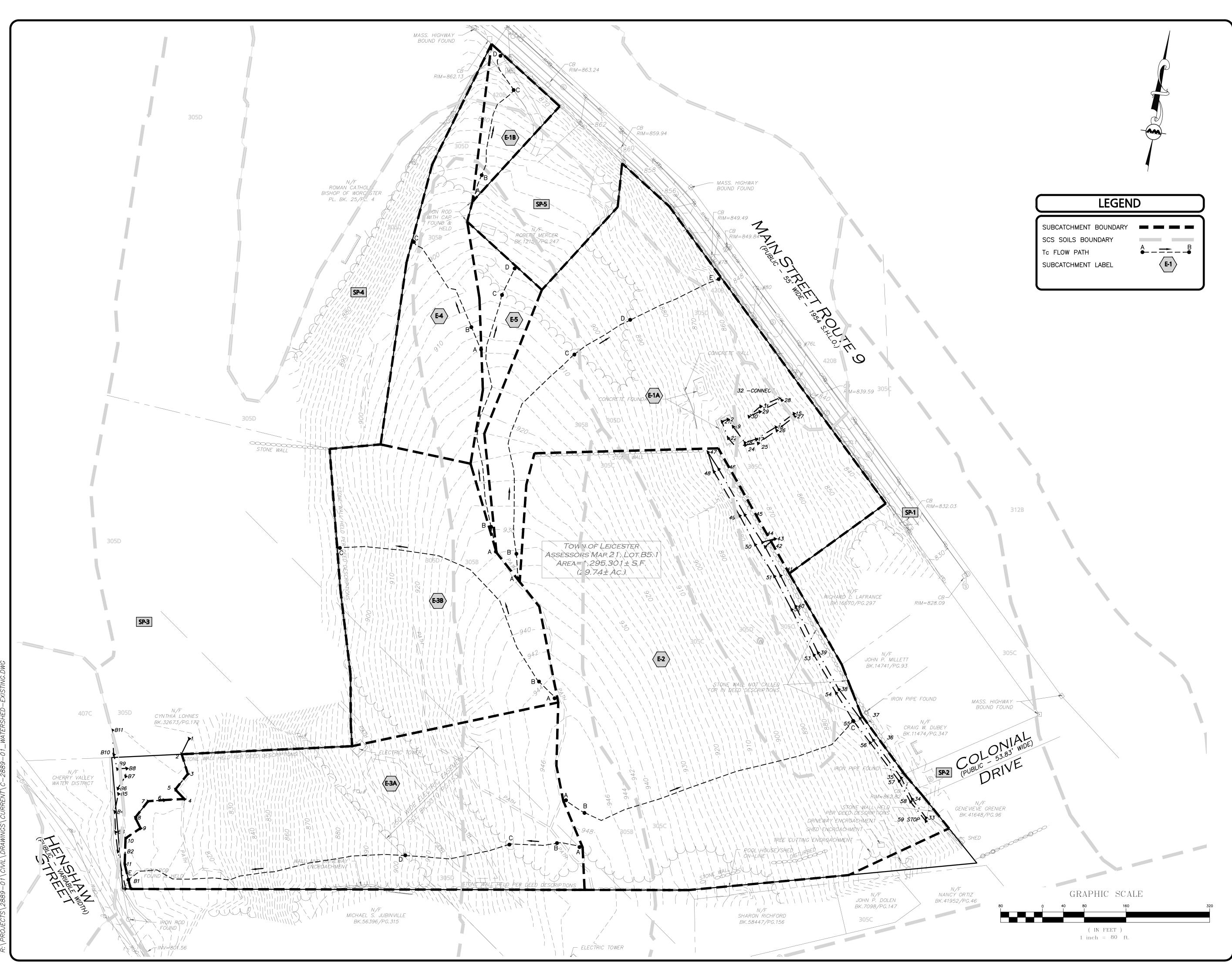
Inflow Area	a =	9.452 ac,	0.00% Impervious,	Inflow Depth = 5.0	2" for 100-year event
Inflow	=	32.17 cfs @	12.30 hrs, Volume	= 3.954 af	-
Primary	=	32.17 cfs @	12.30 hrs, Volume	= 3.954 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP4: STUDY POINT #4

Inflow Area	a =	2.049 ac,	0.35% Impervious,	Inflow Depth = 5.09	9" for 100-year event
Inflow	=	10.55 cfs @	12.14 hrs, Volume	= 0.869 af	-
Primary	=	10.55 cfs @	12.14 hrs, Volume	= 0.869 af, <i>i</i>	Atten= 0%, Lag= 0.0 min

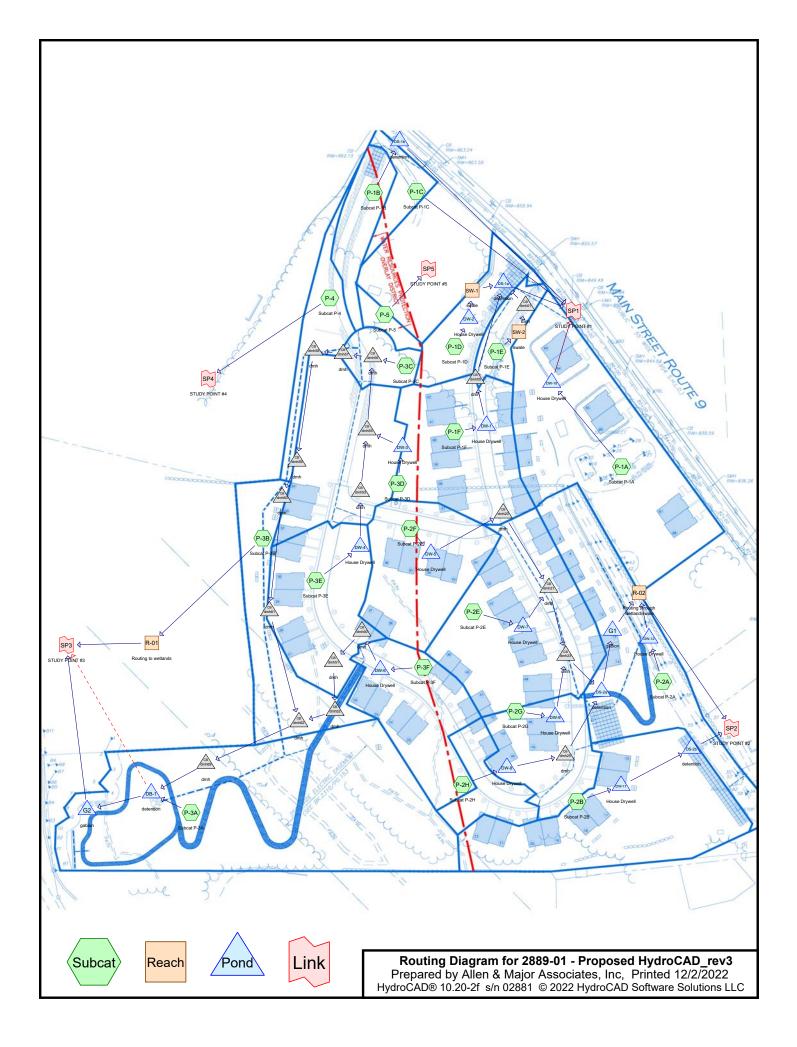
Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs


Summary for Link SP5: STUDY POINT #5

Inflow Area =	0.0	673 ac, 0	.00% Impe	ervious,	Inflow Dep	oth = 5.	21" for	100-year event
Inflow =	2.9	98 cfs @ 1	12.23 hrs,	Volume	= ().292 af		•
Primary =	2.9	98 cfs @ 1	12.23 hrs,	Volume	= ().292 af,	Atten=	0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Existing Watershed Plan


REV APPLICAN	DATE	DESCE	RIPTION				
MK 265	EP 770 I 5 SUNRIS	SE HIG	GHWAY, SU ER, NY 11				
PROJECT:	SKYV		ESTATE	-			
RESI	N	1AIN S	DEVELOF Street Er, MA	PMENT			
PROJECT	NO. 2	2889-01	DATE:	10-05-21			
SCALE: DESIGNEI		1 " = 80' SM	DWG. : C-2889- CHECKED BY:	01_Watershed-Existing MAM			
PREPARED I	3Y:						
			MAJ				
ci environn	ivil engin nental con	eering sulting		eying architecture			
www.allenmajог.com 100 COMMERCE WAY, SUITE 5 WOBURN MA 01801 TEL: (781) 935-6889 FAX: (781) 935-2896							
WOBURN, MA LAKEVILLE, MA MANCHESTER, NH THIS DRAWING HAS BEEN PREPARED IN DIGITAL FORMAT. CLIENT/CLIENT'S REPRESENTATIVE OR CONSULTANTS MAY BE PROVIDED COPIES OF DRAWINGS AND SPECIFICATIONS FOR HIS/HER INFORMATION AND/OR SPECIFIC USE ON THIS PROJECT. DUE TO THE POTENTIAL THAT THE PROVIDED INFORMATION MAY BE MODIFIED UNINTENTIONALLY OR OTHERWISE, ALLEN & MAJOR ASSOCIATES, INC. MAY REMOVE ALL INDICATION OF THE DOCUMENT'S AUTHORSHIP ON THE DIGITAL MEDIA. PRINTED REPRESENTATIONS OR PORTABLE DOCUMENT FORMAT OF THE DRAWINGS AND							
	AJOR ASSOCIA		E THE ONLY REC S WORK PRODUCT				
	NG WAT		ED PLAN	WS-1			

SECTION 5.0 -PROPOSED DRAINAGE ANALYSIS

Proposed HydroCAD

Area Listing (all nodes)

Area	CN	Description					
(acres)		(subcatchment-numbers)					
0.516	61	>75% Grass cover, Good, HSG B (P-1A, P-1B, P-1C, P-1D, P-1E, P-4)					
15.720	74	>75% Grass cover, Good, HSG C (P-1A, P-1B, P-1C, P-1D, P-1E, P-1F, P-2A, P-2B, P-2E, P-2F, P-2G, P-2H, P-3A,					
		P-3B, P-3C, P-3D, P-3E, P-3F, P-4, P-5)					
2.057	65	Brush, Good, HSG C (P-2B, P-3A, P-3B)					
0.283	98	Paved parking, HSG B (P-1A, P-1B, P-1C, P-1D, P-1E)					
3.302	98	Paved parking, HSG C (P-1A, P-1B, P-1C, P-1D, P-1E, P-1F, P-2A, P-2B, P-2E, P-2F, P-2G, P-2H, P-3C, P-3D, P-3E,					
		P-3F, P-4)					
0.059	98	Roofs, HSG B (P-1A)					
3.357	98	Roofs, HSG C (P-1A, P-1F, P-2A, P-2B, P-2E, P-2F, P-2G, P-2H, P-3B, P-3D, P-3E, P-3F)					
0.168	55	Woods, Good, HSG B (P-1A)					
3.724	70	Woods, Good, HSG C (P-1A, P-1B, P-2A, P-2B, P-3A, P-3B, P-4, P-5)					
29.185	78	TOTAL AREA					

Area Soil Subcatchment (acres) Group Numbers 0.000 HSG A HSG B P-1A, P-1B, P-1C, P-1D, P-1E, P-4 1.026 P-1A, P-1B, P-1C, P-1D, P-1E, P-1F, P-2A, P-2B, P-2E, P-2F, P-2G, P-2H, P-3A, P-3B, P-3C, P-3D, P-3E, P-3F, P-4, 28.159 HSG C P-5 0.000 HSG D 0.000 Other 29.185 TOTAL AREA

Soil Listing (all nodes)

2889-01 - Proposed HydroCAD_rev3

Prepared by Allen & Major A	Associates, Inc
HvdroCAD® 10.20-2f s/n 02881	© 2022 HvdroCAD Software Solutions LLC

Pipe Listing (all nodes)

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Width (inches)	Diam/Height (inches)	Inside-Fill (inches)
				. ,		0.040		()	
1	DB-1	811.00	810.30	32.0	0.0219	0.013	0.0	18.0	0.0
2	dmh01	849.34	849.22	12.0	0.0100	0.013	0.0	12.0	0.0
3	dmh05	868.52	865.12	97.0	0.0351	0.013	0.0	15.0	0.0
4	dmh20	902.74	900.30	205.0	0.0119	0.013	0.0	15.0	0.0
5	dmh21	899.55	897.65	190.0	0.0100	0.013	0.0	24.0	0.0
6	dmh23	897.55	897.20	27.0	0.0130	0.013	0.0	30.0	0.0
7	dmh25	922.60	915.84	97.0	0.0697	0.013	0.0	12.0	0.0
8	dmh50	927.65	919.50	102.0	0.0799	0.013	0.0	15.0	0.0
9	dmh51	919.40	909.50	127.0	0.0780	0.013	0.0	15.0	0.0
10	dmh52	892.52	887.55	62.0	0.0802	0.013	0.0	15.0	0.0
11	dmh53	916.83	915.39	31.0	0.0465	0.013	0.0	18.0	0.0
12	dmh55	902.61	899.92	72.0	0.0374	0.013	0.0	24.0	0.0
13	dmh56	896.80	896.60	20.0	0.0100	0.013	0.0	30.0	0.0
14	dmh57	896.50	895.68	103.0	0.0080	0.013	0.0	30.0	0.0
15	dmh58	895.58	893.35	278.0	0.0080	0.013	0.0	30.0	0.0
16	dmh59	893.25	892.50	82.0	0.0091	0.013	0.0	30.0	0.0
17	dmh60	892.40	889.43	258.0	0.0115	0.013	0.0	30.0	0.0
18	dmh61	889.33	886.55	278.0	0.0100	0.013	0.0	30.0	0.0
19	dmh62	886.45	884.91	62.0	0.0248	0.013	0.0	30.0	0.0
20	dmh69	812.48	811.50	29.0	0.0338	0.013	0.0	30.0	0.0
21	DS-1a	846.40	845.62	129.0	0.0060	0.013	0.0	15.0	0.0
22	DS-1b	859.20	858.10	100.0	0.0110	0.013	0.0	12.0	0.0
23	DS-2a	892.00	890.75	46.0	0.0272	0.013	0.0	24.0	0.0
24	DS-2b	860.45	858.44	45.0	0.0447	0.013	0.0	12.0	0.0
25	DW-1	2.50	2.40	10.0	0.0100	0.010	0.0	4.0	0.0
26	DW-10	3.00	3.00	10.0	0.0000	0.010	0.0	4.0	0.0
27	DW-11	2.50	2.40	10.0	0.0100	0.010	0.0	4.0	0.0
28	DW-12	2.50	2.40	10.0	0.0100	0.010	0.0	4.0	0.0
29	DW-2	2.50	2.40	10.0	0.0100	0.010	0.0	4.0	0.0
30	DW-3	2.50	2.40	10.0	0.0100	0.010	0.0	4.0	0.0
31	DW-4	2.50	2.40	10.0	0.0100	0.010	0.0	4.0	0.0
32	DW-5	2.50	2.40	10.0	0.0100	0.010	0.0	4.0	0.0
33	DW-6	2.50	2.40	10.0	0.0100	0.010	0.0	4.0	0.0
34	DW-7	2.50	2.40	10.0	0.0100	0.010	0.0	4.0	0.0
35	DW-8	2.50	2.40	10.0	0.0100	0.010	0.0	4.0	0.0
36	DW-9	2.50	2.40	10.0	0.0100	0.010	0.0	4.0	0.0

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentP-1A: Subcat P-1A	Runoff Area=3.168 ac 17.98% Impervious Runoff Depth=1.11" Flow Length=782' Tc=13.3 min CN=75 Runoff=3.10 cfs 0.294 af
SubcatchmentP-1B: Subcat P-1B	Runoff Area=24,871 sf 23.27% Impervious Runoff Depth=1.30" Flow Length=315' Tc=8.2 min CN=78 Runoff=0.78 cfs 0.062 af
SubcatchmentP-1C: Subcat P-1C	Runoff Area=0.337 ac 20.77% Impervious Runoff Depth=1.11" Tc=6.0 min CN=75 Runoff=0.42 cfs 0.031 af
SubcatchmentP-1D: Subcat P-1D	Runoff Area=0.715 ac 12.26% Impervious Runoff Depth=1.11" Tc=6.0 min CN=75 Runoff=0.88 cfs 0.066 af
SubcatchmentP-1E: Subcat P-1E	Runoff Area=0.382 ac 53.49% Impervious Runoff Depth=1.78" Tc=6.0 min CN=85 Runoff=0.78 cfs 0.057 af
SubcatchmentP-1F: Subcat P-1F	Runoff Area=1.697 ac 54.12% Impervious Runoff Depth=1.94" Tc=6.0 min CN=87 Runoff=3.78 cfs 0.275 af
SubcatchmentP-2A: Subcat P-2A	Runoff Area=2.217 ac 8.54% Impervious Runoff Depth=1.11" Tc=6.0 min CN=75 Runoff=2.73 cfs 0.206 af
SubcatchmentP-2B: Subcat P-2B	Runoff Area=2.577 ac 15.70% Impervious Runoff Depth=1.17" Tc=6.0 min CN=76 Runoff=3.37 cfs 0.252 af
SubcatchmentP-2E: Subcat P-2E	Runoff Area=2.368 ac 52.59% Impervious Runoff Depth=1.94" Tc=6.0 min CN=87 Runoff=5.27 cfs 0.383 af
SubcatchmentP-2F: Subcat P-2F	Runoff Area=1.509 ac 38.02% Impervious Runoff Depth=1.63" Tc=6.0 min CN=83 Runoff=2.83 cfs 0.205 af
SubcatchmentP-2G: Subcat P-2G	Runoff Area=1.045 ac 52.81% Impervious Runoff Depth=1.94" Tc=6.0 min CN=87 Runoff=2.33 cfs 0.169 af
SubcatchmentP-2H: Subcat P-2H	Runoff Area=0.555 ac 49.64% Impervious Runoff Depth=1.86" Tc=6.0 min CN=86 Runoff=1.19 cfs 0.086 af
SubcatchmentP-3A: Subcat P-3A	Runoff Area=5.016 ac 0.00% Impervious Runoff Depth=0.85" Flow Length=644' Tc=16.1 min CN=70 Runoff=3.24 cfs 0.353 af
SubcatchmentP-3B: Subcat P-3B	Runoff Area=1.323 ac 0.00% Impervious Runoff Depth=0.95" Tc=6.0 min CN=72 Runoff=1.34 cfs 0.105 af
SubcatchmentP-3C: Subcat P-3C	Runoff Area=0.370 ac 14.94% Impervious Runoff Depth=1.30" Tc=6.0 min CN=78 Runoff=0.54 cfs 0.040 af
SubcatchmentP-3D: Subcat P-3D	Runoff Area=1.714 ac 23.07% Impervious Runoff Depth=1.43" Tc=6.0 min CN=80 Runoff=2.78 cfs 0.204 af
SubcatchmentP-3E: Subcat P-3E	Runoff Area=1.519 ac 41.32% Impervious Runoff Depth=1.71" Tc=6.0 min CN=84 Runoff=2.98 cfs 0.216 af
SubcatchmentP-3F: Subcat P-3F	Runoff Area=1.339 ac 47.44% Impervious Runoff Depth=1.78" Tc=6.0 min CN=85 Runoff=2.74 cfs 0.199 af
SubcatchmentP-4: Subcat P-4	Runoff Area=26,375 sf 10.67% Impervious Runoff Depth=1.11" Tc=6.0 min CN=75 Runoff=0.75 cfs 0.056 af
SubcatchmentP-5: Subcat P-5	Runoff Area=6,874 sf 0.00% Impervious Runoff Depth=1.00" Tc=6.0 min CN=73 Runoff=0.17 cfs 0.013 af
Reach R-01: Routing to wetlands	Avg. Flow Depth=0.14' Max Vel=0.25 fps Inflow=1.34 cfs 0.105 af n=0.400 L=722.0' S=0.1087 '/' Capacity=43.77 cfs Outflow=0.43 cfs 0.104 af

TIYUIOCAD® 10.20-21 3/11 02001 @ 2022 TIYUIOCAD SUIIWale	Fage 0
Reach R-02: Routing through wetland/swale	Avg. Flow Depth=0.40' Max Vel=0.22 fps Inflow=3.38 cfs 0.765 af n=0.400 L=735.0' S=0.0189 '/' Capacity=24.55 cfs Outflow=1.45 cfs 0.762 af
Reach SW-1: swale	Avg. Flow Depth=0.13' Max Vel=2.63 fps Inflow=0.89 cfs 0.050 af n=0.041 L=252.0' S=0.1052 '/' Capacity=49.36 cfs Outflow=0.87 cfs 0.050 af
Reach SW-2: swale	Avg. Flow Depth=0.12' Max Vel=2.59 fps Inflow=0.78 cfs 0.057 af n=0.041 L=228.0' S=0.1110 '/' Capacity=50.70 cfs Outflow=0.77 cfs 0.057 af
Pond DB-1: detention	Peak Elev=811.76' Storage=12,311 cf Inflow=10.65 cfs 0.782 af Primary=2.19 cfs 0.765 af Secondary=0.00 cfs 0.000 af Outflow=2.19 cfs 0.765 af
Pond dmh01: dmh	Peak Elev=849.85' Inflow=0.77 cfs 0.057 af 12.0" Round Culvert n=0.013 L=12.0' S=0.0100 '/' Outflow=0.77 cfs 0.057 af
Pond dmh05: dmh	Peak Elev=869.52' Inflow=3.59 cfs 0.191 af 15.0" Round Culvert n=0.013 L=97.0' S=0.0351 '/' Outflow=3.59 cfs 0.191 af
Pond dmh20: dmh	Peak Elev=903.57' Inflow=2.70 cfs 0.140 af 15.0" Round Culvert n=0.013 L=205.0' S=0.0119 '/' Outflow=2.70 cfs 0.140 af
Pond dmh21: dmh	Peak Elev=900.79' Inflow=7.73 cfs 0.438 af 24.0" Round Culvert n=0.013 L=190.0' S=0.0100 '/' Outflow=7.73 cfs 0.438 af
Pond dmh23: dmh	Peak Elev=898.96' Inflow=9.94 cfs 0.556 af 30.0" Round Culvert n=0.013 L=27.0' S=0.0130 '/' Outflow=9.94 cfs 0.556 af
Pond dmh25: dmh	Peak Elev=923.15' Inflow=1.13 cfs 0.069 af 12.0" Round Culvert n=0.013 L=97.0' S=0.0697 '/' Outflow=1.13 cfs 0.069 af
Pond dmh50: dmh	Peak Elev=928.47' Inflow=2.61 cfs 0.133 af 15.0" Round Culvert n=0.013 L=102.0' S=0.0799 '/' Outflow=2.61 cfs 0.133 af
Pond dmh51: dmh	Peak Elev=920.22' Inflow=2.61 cfs 0.133 af 15.0" Round Culvert n=0.013 L=127.0' S=0.0780 '/' Outflow=2.61 cfs 0.133 af
Pond dmh52: dmh	Peak Elev=893.34' Inflow=2.61 cfs 0.133 af 15.0" Round Culvert n=0.013 L=62.0' S=0.0802 '/' Outflow=2.61 cfs 0.133 af
Pond dmh53: dmh	Peak Elev=917.59' Inflow=2.67 cfs 0.126 af 18.0" Round Culvert n=0.013 L=31.0' S=0.0465 '/' Outflow=2.67 cfs 0.126 af
Pond dmh55: dmh	Peak Elev=903.59' Inflow=5.18 cfs 0.256 af 24.0" Round Culvert n=0.013 L=72.0' S=0.0374 // Outflow=5.18 cfs 0.256 af
Pond dmh56: dmh	Peak Elev=897.88' Inflow=5.63 cfs 0.296 af 30.0" Round Culvert n=0.013 L=20.0' S=0.0100 '/' Outflow=5.63 cfs 0.296 af
Pond dmh57: dmh	Peak Elev=897.48' Inflow=5.63 cfs 0.296 af 30.0" Round Culvert n=0.013 L=103.0' S=0.0080 '/' Outflow=5.63 cfs 0.296 af
Pond dmh58: dmh	Peak Elev=896.53' Inflow=5.63 cfs 0.296 af 30.0" Round Culvert n=0.013 L=278.0' S=0.0080 '/' Outflow=5.63 cfs 0.296 af
Pond dmh59: dmh	Peak Elev=894.22' Inflow=5.63 cfs 0.296 af 30.0" Round Culvert n=0.013 L=82.0' S=0.0091 '/' Outflow=5.63 cfs 0.296 af
Pond dmh60: dmh	Peak Elev=893.35' Inflow=5.63 cfs 0.296 af 30.0" Round Culvert n=0.013 L=258.0' S=0.0115 '/' Outflow=5.63 cfs 0.296 af
Pond dmh61: dmh	Peak Elev=890.28' Inflow=5.63 cfs 0.296 af 30.0" Round Culvert n=0.013 L=278.0' S=0.0100 '/' Outflow=5.63 cfs 0.296 af
Pond dmh62: dmh	Peak Elev=887.61' Inflow=8.12 cfs 0.429 af 30.0" Round Culvert n=0.013 L=62.0' S=0.0248 '/' Outflow=8.12 cfs 0.429 af

Pond dmh69: dmh		Peak Elev=813.64' Inflow=8.12 cfs 0.429 af 30.0" Round Culvert n=0.013 L=29.0' S=0.0338 '/' Outflow=8.12 cfs 0.429 af
Pond DS-1a: detention		Peak Elev=848.37' Storage=5,991 cf Inflow=5.00 cfs 0.298 af
		Outflow=0.68 cfs 0.298 af
Pond DS-1b: detention		Peak Elev=859.78' Storage=778 cf Inflow=0.78 cfs 0.062 af Outflow=0.27 cfs 0.061 af
Pond DS-2a: detention		Peak Elev=894.60' Storage=12,540 cf Inflow=11.07 cfs 0.626 af Outflow=1.31 cfs 0.624 af
Pond DS-2b: detention		Peak Elev=863.43' Storage=2,086 cf Inflow=3.41 cfs 0.188 af Outflow=1.11 cfs 0.186 af
Pond DW-1: House Drywell		Peak Elev=3.50' Storage=1,963 cf Inflow=3.78 cfs 0.275 af Discarded=0.03 cfs 0.065 af Primary=3.59 cfs 0.191 af Outflow=3.63 cfs 0.256 af
Pond DW-10: House Drywell	Discarded=0.04 cfs 0.071 af	Peak Elev=3.50' Storage=0.054 af Inflow=3.10 cfs 0.294 af Primary=0.19 cfs 0.102 af Secondary=3.01 cfs 0.100 af Outflow=3.24 cfs 0.272 af
Pond DW-11: House Drywell		Peak Elev=3.50' Storage=0.036 af Inflow=3.37 cfs 0.252 af Discarded=0.03 cfs 0.049 af Primary=3.41 cfs 0.188 af Outflow=3.44 cfs 0.237 af
Pond DW-12: House Drywell		Peak Elev=3.50' Storage=0.036 af Inflow=2.73 cfs 0.206 af Discarded=0.03 cfs 0.049 af Primary=2.57 cfs 0.142 af Outflow=2.60 cfs 0.191 af
Pond DW-2: House Drywell		Peak Elev=3.50' Storage=0.009 af Inflow=0.88 cfs 0.066 af Discarded=0.01 cfs 0.012 af Primary=0.89 cfs 0.050 af Outflow=0.90 cfs 0.063 af
Pond DW-3: House Drywell		Peak Elev=3.50' Storage=0.041 af Inflow=2.78 cfs 0.204 af Discarded=0.03 cfs 0.056 af Primary=2.51 cfs 0.131 af Outflow=2.54 cfs 0.186 af
Pond DW-4: House Drywell		Peak Elev=3.50' Storage=0.050 af Inflow=2.98 cfs 0.216 af Discarded=0.04 cfs 0.070 af Primary=2.67 cfs 0.126 af Outflow=2.70 cfs 0.195 af
Pond DW-5: House Drywell		Peak Elev=3.50' Storage=0.036 af Inflow=2.83 cfs 0.205 af Discarded=0.03 cfs 0.051 af Primary=2.70 cfs 0.140 af Outflow=2.73 cfs 0.190 af
Pond DW-6: House Drywell		Peak Elev=3.50' Storage=0.036 af Inflow=2.74 cfs 0.199 af Discarded=0.03 cfs 0.051 af Primary=2.61 cfs 0.133 af Outflow=2.63 cfs 0.184 af
Pond DW-7: House Drywell		Peak Elev=3.50' Storage=0.045 af Inflow=5.27 cfs 0.383 af Discarded=0.03 cfs 0.066 af Primary=5.02 cfs 0.298 af Outflow=5.06 cfs 0.364 af
Pond DW-8: House Drywell		Peak Elev=3.50' Storage=0.009 af Inflow=1.19 cfs 0.086 af Discarded=0.01 cfs 0.013 af Primary=1.13 cfs 0.069 af Outflow=1.14 cfs 0.082 af
Pond DW-9: House Drywell		Peak Elev=3.50' Storage=0.027 af Inflow=2.33 cfs 0.169 af Discarded=0.02 cfs 0.039 af Primary=2.21 cfs 0.119 af Outflow=2.23 cfs 0.158 af
Pond G1: gabion		Peak Elev=878.10' Storage=167 cf Inflow=1.31 cfs 0.624 af Outflow=1.32 cfs 0.623 af
Pond G2: gabion		Peak Elev=810.37' Storage=2 cf Inflow=2.19 cfs 0.765 af Outflow=2.19 cfs 0.765 af
Link SP1: STUDY POINT #1		Inflow=3.91 cfs 0.592 af Primary=3.91 cfs 0.592 af
Link SP2: STUDY POINT #2		Inflow=2.01 cfs 0.948 af Primary=2.01 cfs 0.948 af
Link SP3: STUDY POINT #3		Inflow=2.58 cfs 0.869 af Primary=2.58 cfs 0.869 af

Link SP4: STUDY POINT #4

Link SP5: STUDY POINT #5

Inflow=0.75 cfs 0.056 af Primary=0.75 cfs 0.056 af

Inflow=0.17 cfs 0.013 af Primary=0.17 cfs 0.013 af

Total Runoff Area = 29.185 acRunoff Volume = 3.272 afAverage Runoff Depth = 1.35"76.01% Pervious = 22.184 ac23.99% Impervious = 7.001 ac

Summary for Subcatchment P-1A: Subcat P-1A

Runoff = 3.10 cfs @ 12.20 hrs, Volume= 0.294 af, Depth= 1.11" Routed to Pond DW-10 : House Drywell

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.23"

	Area ((ac) C	N Des	cription							
	0.1	168 క	55 Woo	Voods, Good, HSG B							
	0.0	059 9	98 Roo	fs, HSG B							
	0.0	085 9	98 Pav	ed parking	, HSG B						
	0.1	183 6	61 >75	% Grass c	over, Good	, HSG B					
	1.2	282	74 >75	% Grass c	over, Good	, HSG C					
	0.9	966	70 Woo	ods, Good,	HSG C						
	0.0	046 9	98 Pav	ed parking	, HSG C						
_	0.3	379 9	98 Roo	fs, HSG C							
	3.1	168	75 Wei	ghted Avei	rage						
	2.5	599	82.0	2% Pervic	us Area						
	0.8	569	17.9	8% Imper	vious Area						
	Тс	Length	Slope			Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	9.8	55	0.1670	0.09		Sheet Flow,					
						Woods: Dense underbrush n= 0.800 P2= 3.28"					
	1.1	105	0.0500	1.57		Shallow Concentrated Flow,					
						Short Grass Pasture Kv= 7.0 fps					
	2.4	622	0.0280	4.24	4.11	Trap/Vee/Rect Channel Flow,					
						Bot.W=1.00' D=0.25' Z= 3.0 & 20.0 '/' Top.W=6.75'					
_						n= 0.016 Asphalt, rough					
	13.3	782	Total								

Summary for Subcatchment P-1B: Subcat P-1B

Runoff = 0.78 cfs @ 12.12 hrs, Volume= 0.062 af, Depth= 1.30" Routed to Pond DS-1b : detention

A	rea (sf)	CN	Description							
	4,342	98	Paved park	aved parking, HSG C						
	1,445	98	Paved park	ing, HSG E	3					
	3,282	61	>75% Gras	s cover, Go	bod, HSG B					
	13,797	74	>75% Gras	s cover, Go	bod, HSG C					
	2,004	70	Woods, Go	od, HSG C						
	24,871	78	Weighted A	verage						
	19,083		76.73% Pe	rvious Area						
	5,787		23.27% Imp	pervious Ar	ea					
_										
Tc	Length	Slop		Capacity	Description					
(min)	(feet)	(ft/ft	/ / /	(cfs)						
6.6	50	0.096	0.13		Sheet Flow, A-B					
					Grass: Bermuda n= 0.410 P2= 3.28"					
1.4	183	0.096) 2.17		Shallow Concentrated Flow, B-C					
					Short Grass Pasture Kv= 7.0 fps					
0.2	82	0.084	5.88		Shallow Concentrated Flow, C-D					
					Paved Kv= 20.3 fps					
8.2	315	Total								

Summary for Subcatchment P-1C: Subcat P-1C

Runoff = 0.42 cfs @ 12.10 hrs, Volume= 0.031 af, Depth= 1.11" Routed to Link SP1 : STUDY POINT #1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.23"

Area (ac)	CN	Description
0.002	98	Paved parking, HSG C
0.068	98	Paved parking, HSG B
0.111	61	>75% Grass cover, Good, HSG B
0.156	74	>75% Grass cover, Good, HSG C
	75	Weighted Average
0.267	10	79.23% Pervious Area
0.070		20.77% Impervious Area
0.070		
Tc Length	, c	Slope Velocity Capacity Description
(min) (feet)		(ft/ft) (ft/sec) (cfs)
)	
6.0		Direct Entry, TR-55 MIN
		Summary for Subcatchment P-1D: Subcat P-1D
Runoff =	0	.88 cfs @ 12.10 hrs, Volume= 0.066 af, Depth= 1.11"
		W-2 : House Drywell
Runoff by SCS T	TR-2	0 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs
Type III 24-hr 2-		
,,	,	
Area (ac)	CN	Description
	61	>75% Grass cover Good HSG B

105 6	51 >75	>75% Grass cover, Good, HSG B								
060 9	98 Pav	Paved parking, HSG B								
027 9	98 Pav	ed parking	, HSG C							
523 7	74 >75	% Grass co	over, Good	I, HSG C						
715 7	75 Wei	ghted Aver	age							
528	87.7	87.74% Pervious Area								
288	12.2	26% Imperv	vious Area							
	<u>.</u>		A 14	-						
Length	Slope	Velocity	Capacity	Description						
(feet)	(ft/ft)	(ft/sec)	(cfs)							
	060 9 027 9 523 7 715 7 528 088 Length	060 98 Pav 027 98 Pav 523 74 >75 715 75 Wei 528 87.7 088 12.2 Length Slope	06098Paved parking,02798Paved parking,52374>75% Grass or71575Weighted Aver52887.74% Pervio08812.26% ImpervioLengthSlopeVelocity	06098Paved parking, HSG B02798Paved parking, HSG C52374>75% Grass cover, Good71575Weighted Average52887.74% Pervious Area08812.26% Impervious AreaLengthSlopeVelocityCapacity						

6.0

Direct Entry,

Summary for Subcatchment P-1E: Subcat P-1E

Runoff = 0.78 cfs @ 12.09 hrs, Volume= 0.057 af, Depth= 1.78" Routed to Reach SW-2 : swale

Area (ac)	CN	Description							
0.040	61	>75% Grass cover, Good, HSG B							
0.037	98	Paved parking, HSG B							
0.168	98	Paved parking, HSG C							
0.138	74	>75% Grass cover, Good, HSG C							
0.382	85	Weighted Average							
0.178		46.51% Pervious Area							
0.204	53.49% Impervious Area								
Tc Leng (min) (fee	,	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)							
6.0		Direct Entry, tr55 min							

Summary for Subcatchment P-1F: Subcat P-1F

Runoff = 3.78 cfs @ 12.09 hrs, Volume= 0.275 af, Depth= 1.94" Routed to Pond DW-1 : House Drywell

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.23"

Area (a	c) Cl	N De	scription						
0.77	797	4 >75	5% Grass c	over, Good	, HSG C				
0.45	57 9	8 Ro	ofs, HSG C						
0.46	61 9	8 Pav	ved parking	, HSG C					
1.69	97 8	7 We	ighted Aver	rage					
0.77	' 9	45.	45.88% Pervious Area						
0.91	9	54.12% Impervious Area							
TcL (min)	ength (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
6.0					Direct Entry, tr55 min				

Summary for Subcatchment P-2A: Subcat P-2A

Runoff = 2.73 cfs @ 12.10 hrs, Volume= Routed to Pond DW-12 : House Drywell 0.206 af, Depth= 1.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.23"

Area (ac)	CN	Description
0.188	98	Roofs, HSG C
0.001	98	Paved parking, HSG C
0.636	70	Woods, Good, HSG C
1.391	74	>75% Grass cover, Good, HSG C
2.217	75	Weighted Average
2.027		91.46% Pervious Area
0.189		8.54% Impervious Area
Tc Leng	ith S	Slope Velocity Capacity Description
(min) (fee	et)	(ft/ft) (ft/sec) (cfs)

6.0

Direct Entry,

Summary for Subcatchment P-2B: Subcat P-2B

Runoff = 3.37 cfs @ 12.10 hrs, Volume= 0.252 af, Depth= 1.17" Routed to Pond DW-11 : House Drywell

Area (ac	;) CN	Description			
1.178	8 74	>75% Grass o	cover, Good	HSG C	
0.68	7 70	Woods, Good	, HSG C		
0.30	7 65	Brush, Good,	HSG C		
0.02	1 98	Paved parking	g, HSG C		
0.384	4 98	Roofs, HSG C)		
2.57	7 76	Weighted Ave	erage		
2.17	2	84.30% Pervi	ous Area		
0.40	5	15.70% Impe	rvious Area		
	ength (feet)	Slope Velocity (ft/ft) (ft/sec)		Description	
6.0				Direct Entry,	

Summary for Subcatchment P-2E: Subcat P-2E

Runoff = 5.27 cfs @ 12.09 hrs, Volume= 0.383 af, Depth= 1.94" Routed to Pond DW-7 : House Drywell

Area (ac) CN Description
1.123 74 >75% Grass cover, Good, HSG C
0.668 98 Roofs, HSG C
0.577 98 Paved parking, HSG C 2.368 87 Weighted Average
1.123 47.41% Pervious Area
1.245 52.59% Impervious Area
Tc Length Slope Velocity Capacity Description
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry,
Summary for Subcatchment P-2F: Subcat P-2F
Runoff = 2.83 cfs @ 12.09 hrs, Volume= 0.205 af, Depth= 1.63" Routed to Pond DW-5 : House Drywell
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs
Type III 24-hr 2-year Rainfall=3.23"
Area (ac) CN Description
0.935 74 >75% Grass cover, Good, HSG C
0.289 98 Roofs, HSG C
0.284 98 Paved parking, HSG C 1.509 83 Weighted Average
0.935 61.98% Pervious Area
0.574 38.02% Impervious Area
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 Direct Entry, tr55 min
Summary for Subcatchment P-2G: Subcat P-2G
Runoff = 2.33 cfs @ 12.09 hrs, Volume= 0.169 af, Depth= 1.94" Routed to Pond DW-9 : House Drywell
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs
Type III 24-hr 2-year Rainfall=3.23"
Area (ac) CN Description
0.493 74 >75% Grass cover, Good, HSG C 0.206 98 Roofs, HSG C
0.206 98 Roofs, HSG C 0.346 98 Paved parking, HSG C
1.045 87 Weighted Average
0.493 47.19% Pervious Area
0.552 52.81% Impervious Area
Tc Length Slope Velocity Capacity Description
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 Direct Entry, tr55 min
· · · · · · · · · · · · · · · · · · ·

Summary for Subcatchment P-2H: Subcat P-2H

Runoff = 1.19 cfs @ 12.09 hrs, Volume= 0.086 af, Depth= 1.86" Routed to Pond DW-8 : House Drywell

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.23"

ea (ac)	CN	Description		
0.280	74	>75% Grass c	over, Good	, HSG C
0.058	98	Roofs, HSG C		
0.217	98	Paved parking	, HSG C	
0.555	86	Weighted Aver	age	
0.280		50.36% Pervio	us Area	
0.276		49.64% Imperv	vious Area	
			- ··	
				Description
n) (fee	et)	(ft/ft) (ft/sec)	(cfs)	
.0				Direct Entry, tr55 min
	0.280 0.058 0.217 0.555 0.280 0.276 c Leng n) (fee	0.280 74 0.058 98 0.217 98 0.555 86 0.280 0.276 c Length S n) (feet)	0.280 74 >75% Grass c 0.058 98 Roofs, HSG C 0.217 98 Paved parking 0.555 86 Weighted Aver 0.280 50.36% Pervio 0.276 49.64% Impervic c Length Slope Velocity n) (feet) (ft/ft) (ft/sec)	0.28074>75% Grass cover, Good0.05898Roofs, HSG C0.21798Paved parking, HSG C0.55586Weighted Average0.28050.36% Pervious Area0.27649.64% Impervious AreacLengthSlopevelocityCapacityn)(feet)(ft/ft)

Summary for Subcatchment P-3A: Subcat P-3A

Runoff = 3.24 cfs @ 12.25 hrs, Volume= Routed to Pond DB-1 : detention 0.353 af, Depth= 0.85"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.23"

Area	(ac) (CN	Descript	tion		
2.	.591	74	>75% G	rass co	over, Good	HSG C
0.	.847	70	Woods.	Good.	HSG C	
1.	.578	65	Brush, G	Good, H	ISG C	
5.	.016	70	Weighte	d Aver	ade	
5.	.016				ous Area	
Тс	Length	SI	ope Ve	locity	Capacity	Description
(min)	(feet)	(ft/ft) (f	t/sec)	(cfs)	
12.7	50	0.0	180	0.07		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.28"
1.0	91	0.0	850	1.46		Shallow Concentrated Flow, B-C
						Woodland Kv= 5.0 fps
1.1	204	0.1	800	2.97		Shallow Concentrated Flow, C-D
						Short Grass Pasture Kv= 7.0 fps
1.3	299	0.3	000	3.83		Shallow Concentrated Flow, D-E
						Short Grass Pasture Kv= 7.0 fps
16.1	644	Tot	al			

Summary for Subcatchment P-3B: Subcat P-3B

Runoff = 1.34 cfs @ 12.10 hrs, Volume= Routed to Reach R-01 : Routing to wetlands 0.105 af, Depth= 0.95"

Area (ac)	CN	Description
0.000	98	Roofs, HSG C
0.172	65	Brush, Good, HSG C
0.273	70	Woods, Good, HSG C
 0.878	74	>75% Grass cover, Good, HSG C
 1.323	72	Weighted Average
1.323		100.00% Pervious Area
0.000		0.00% Impervious Area

Prepared by Allen & Major	Associates, Inc
HydroCAD® 10.20-2f s/n 02881	© 2022 HydroCAD Software Solutions LLC

Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 Direct Entry,
Summary for Subcatchment P-3C: Subcat P-3C
Runoff = 0.54 cfs @ 12.10 hrs, Volume= 0.040 af, Depth= 1.30" Routed to Pond dmh56 : dmh
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.23"
Area (ac) CN Description
0.315 74 >75% Grass cover, Good, HSG C 0.055 98 Paved parking, HSG C
0.37078Weighted Average0.31585.06% Pervious Area0.05514.94% Impervious Area
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 Direct Entry, tr55 min
Summary for Subcatchment P-3D: Subcat P-3D
Runoff = 2.78 cfs @ 12.10 hrs, Volume= 0.204 af, Depth= 1.43" Routed to Pond DW-3 : House Drywell
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.23"
Area (ac) CN Description
1.319 74 >75% Grass cover, Good, HSG C 0.136 98 Roofs, HSG C
0.260 98 Paved parking, HSG C 1.714 80 Weighted Average
1.319 76.93% Pervious Area 0.395 23.07% Impervious Area
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 Direct Entry, tr-55 min
Summary for Subcatchment P-3E: Subcat P-3E
Runoff = 2.98 cfs @ 12.09 hrs, Volume= 0.216 af, Depth= 1.71" Routed to Pond DW-4 : House Drywell
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.23"
Area (ac) CN Description
0.891 74 >75% Grass cover, Good, HSG C 0.301 98 Roofs, HSG C 0.327 98 Paved parking, HSG C
1.51984Weighted Average0.89158.68% Pervious Area0.62841.32% Impervious Area
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 Direct Entry, TR-55 MIN

Summary for Subcatchment P-3F: Subcat P-3F

2.74 cfs @ 12.09 hrs, Volume= 0.199 af, Depth= 1.78" Runoff = Routed to Pond DW-6 : House Drywell

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.23"

Area	(ac)	CN	Desc	ription		
0.	704	74	>75%	6 Grass co	over, Good	, HSG C
0.	290	98	Roof	s, HSG C		
0.	345	98	Pave	d parking	, HSG C	
1.	339	85	Weig	hted Aver	age	
0.	704		52.5	6% Pervio	us Area	
0.	635		47.44	4% Imperv	∕ious Area	
_			<u>.</u> .		a	
Tc	Leng		Slope	Velocity	Capacity	Description
<u>(min)</u>	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
6.0						Direct Entry, TR-55 MIN

Summary for Subcatchment P-4: Subcat P-4

0.75 cfs @ 12.10 hrs, Volume= 0.056 af, Depth= 1.11" Runoff = Routed to Link SP4 : STUDY POINT #4

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.23"

Area (sf)	CN	Description
56	61	>75% Grass cover, Good, HSG B
14,249	74	>75% Grass cover, Good, HSG C
9,257	70	Woods, Good, HSG C
2,814	98	Paved parking, HSG C
26,375	75	Weighted Average
23,561		89.33% Pervious Area
2,814		10.67% Impervious Area
Tc Length (min) (feet)	Sloj (ft/	

6.0

Direct Entry, tr55 min

Summary for Subcatchment P-5: Subcat P-5

Runoff 0.17 cfs @ 12.10 hrs, Volume= 0.013 af, Depth= 1.00" = Routed to Link SP5 : STUDY POINT #5

A	rea (sf)	CN	Description					
	2,401	70	Woods, Go	od, HSG C				
	4,473	74	>75% Gras	s cover, Go	od, HSG C			
	6,874	73	Weighted A	verage				
	6,874		100.00% Pe	ervious Are	а			
Tc (min)	Length (feet)	Slop (ft/1	,	Capacity (cfs)	Description			
5.0					Direct Entry,	TR-55 Min.		
5.0	0	Total	Increased t	o minimum	Tc = 6.0 min			

Summary for Reach R-01: Routing to wetlands

A subcatchment performs runoff calculations, including the associated Tc anc CN determinations. It does not have any facility for routing an inflow hydrograph from another source. However, a reach may be used to perform this type of specialized routing.

This reach demonstrates a procedure for performing a shallow concetrated flow routing through woods. In this case, the "reach" is defined as a channel with very low side slopes. The Manning's value of 0.40 is selected from the table of sheet flow roughness coefficients, which is comparable to the Manning's value for "woods with light underbrush".

0.00% Impervious, Inflow Depth = 0.95" for 2-year event Inflow Area = 1.323 ac, 1.34 cfs @ 12.10 hrs, Volume= Inflow = 0.105 af 0.43 cfs @ 12.48 hrs, Volume= Outflow = 0.104 af, Atten= 68%, Lag= 22.8 min Routed to Link SP3 : STUDY POINT #3 Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 0.25 fps, Min. Travel Time= 48.8 min Avg. Velocity = 0.11 fps, Avg. Travel Time= 113.3 min Peak Storage= 1,264 cf @ 12.48 hrs Average Depth at Peak Storage= 0.14', Surface Width= 19.37' Bank-Full Depth= 1.00' Flow Area= 55.0 sf. Capacity= 43.77 cfs 5.00' x 1.00' deep channel, n= 0.400 Sheet flow: Woods+light brush Side Slope Z-value = 50.0 '/' Top Width = 105.00' Length= 722.0' Slope= 0.1087 '/' Inlet Invert= 889.50', Outlet Invert= 811.00' ‡

Summary for Reach R-02: Routing through wetland/swale

A subcatchment performs runoff calculations, including the associated Tc anc CN determinations. It does not have any facility for routing an inflow hydrograph from another source. However, a reach may be used to perform this type of specialized routing.

This reach demonstrates a procedure for performing a shallow concertated flow routing through the wooded wetland/swale adjacent to the stone wall. In this case, the "reach" is defined as a channel with low side slopes. The Manning's value of 0.40 is selected from the table of sheet flow roughness coefficients, which is comparable to the Manning's value for "woods with light underbrush".

[80] Warning: Exceeded Pond DW-12 by 877.70' @ 0.00 hrs (12.43 cfs 36.976 af) [80] Warning: Exceeded Pond G1 by 0.20' @ 0.00 hrs (5.87 cfs 6.589 af)

Inflow Area = 7.693 ac, 36.86% Impervious, Inflow Depth > 1.19" for 2-year event Inflow = 3.38 cfs @ 12.17 hrs, Volume= 0.765 af Outflow = 1.45 cfs @ 13.86 hrs, Volume= 0.762 af, Atten= 57%, Lag= 101.4 min Routed to Link SP2 : STUDY POINT #2 Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 0.22 fps, Min. Travel Time= 55.7 min Avg. Velocity = 0.11 fps, Avg. Travel Time= 108.5 min

Peak Storage= 4,840 cf @ 13.86 hrs Average Depth at Peak Storage= 0.40' , Surface Width= 23.26' Bank-Full Depth= 1.50' Flow Area= 52.7 sf, Capacity= 24.55 cfs

10.00' x 1.50' deep channel, n= 0.400 Sheet flow: Woods+light brush Side Slope Z-value= 30.0 3.5 '/' Top Width= 60.25' Length= 735.0' Slope= 0.0189 '/' Inlet Invert= 877.70', Outlet Invert= 863.80'

2889-01 - Proposed HydroCAD_rev3 Prepared by Allen & Major Associates, Inc HydroCAD® 10.20-2f s/n 02881 © 2022 HydroCAD Software Solutions LLC

‡
Summary for Reach SW-1: swale
[80] Warning: Exceeded Pond DW-2 by 884.00' @ 0.00 hrs (12.47 cfs 37.107 af)
Inflow Area = 0.715 ac, 12.26% Impervious, Inflow Depth = 0.85" for 2-year event Inflow = 0.89 cfs @ 12.12 hrs, Volume= 0.050 af Outflow = 0.87 cfs @ 12.16 hrs, Volume= 0.050 af, Atten= 3%, Lag= 2.3 min Routed to Pond DS-1a : detention
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 2.63 fps, Min. Travel Time= 1.6 min Avg. Velocity = 0.81 fps, Avg. Travel Time= 5.2 min
Peak Storage= 83 cf @ 12.16 hrs Average Depth at Peak Storage= 0.13' , Surface Width= 3.05' Bank-Full Depth= 1.00' Flow Area= 6.0 sf, Capacity= 49.36 cfs
2.00' x 1.00' deep channel, n= 0.041 Riprap, 2-inch Side Slope Z-value= 4.0 '/' Top Width= 10.00' Length= 252.0' Slope= 0.1052 '/' Inlet Invert= 884.00', Outlet Invert= 857.50'
‡
Summary for Reach SW-2: swale
Summary for Reach SW-2: swaleInflow Area =0.382 ac, 53.49% Impervious, Inflow Depth =1.78" for 2-year eventInflow =0.78 cfs @12.09 hrs, Volume=0.057 afOutflow =0.77 cfs @12.11 hrs, Volume=0.057 af, Atten= 2%, Lag= 1.0 min
Summary for Reach SW-2: swale Inflow Area = 0.382 ac, 53.49% Impervious, Inflow Depth = 1.78" for 2-year event Inflow = 0.78 cfs @ 12.09 hrs, Volume= 0.057 af Outflow = 0.77 cfs @ 12.11 hrs, Volume= 0.057 af, Atten= 2%, Lag= 1.0 min Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 2.59 fps, Min. Travel Time= 1.5 min
Inflow Area = 0.382 ac, 53.49% Impervious, Inflow Depth = 1.78" for 2-year event Inflow = 0.78 cfs @ 12.09 hrs, Volume= 0.057 af Outflow = 0.77 cfs @ 12.11 hrs, Volume= 0.057 af, Atten= 2%, Lag= 1.0 min Routed to Pond dmh01 : dmh Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 2.59 fps, Min. Travel Time= 1.5 min Avg. Velocity = 0.78 fps, Avg. Travel Time= 4.8 min Peak Storage= 68 cf @ 12.11 hrs Average Depth at Peak Storage= 0.12', Surface Width= 2.96'
Inflow Area = 0.382 ac, 53.49% Impervious, Inflow Depth = 1.78" for 2-year event Inflow = 0.78 cfs @ 12.09 hrs, Volume= 0.057 af Outflow = 0.77 cfs @ 12.11 hrs, Volume= 0.057 af, Atten= 2%, Lag= 1.0 min Routed to Pond dmh01 : dmh Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 2.59 fps, Min. Travel Time= 1.5 min Avg. Velocity = 0.78 fps, Avg. Travel Time= 4.8 min Peak Storage= 68 cf @ 12.11 hrs Average Depth at Peak Storage= 0.12', Surface Width= 2.96' Bank-Full Depth= 1.00' Flow Area= 6.0 sf, Capacity= 50.70 cfs 2.00' x 1.00' deep channel, n= 0.041 Riprap, 2-inch Side Slope Z-value= 4.0 '/ Top Width= 10.00' Length= 228.0' Slope= 0.1110 '/
Inflow Area = 0.382 ac, 53.49% Impervious, Inflow Depth = 1.78" for 2-year event Inflow = 0.78 cfs @ 12.09 hrs, Volume= 0.057 af Outflow = 0.77 cfs @ 12.11 hrs, Volume= 0.057 af, Atten= 2%, Lag= 1.0 min Routed to Pond dmh01 : dmh Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 2.59 fps, Min. Travel Time= 1.5 min Avg. Velocity = 0.78 fps, Avg. Travel Time= 4.8 min Peak Storage= 68 cf @ 12.11 hrs Average Depth at Peak Storage= 0.12', Surface Width= 2.96' Bank-Full Depth= 1.00' Flow Area= 6.0 sf, Capacity= 50.70 cfs 2.00' x 1.00' deep channel, n= 0.041 Riprap, 2-inch Side Slope Z-value= 4.0 '/ Top Width= 10.00' Length= 228.0' Slope= 0.1110 '/
Inflow Area = 0.382 ac, 53.49% Impervious, Inflow Depth = 1.78" for 2-year event Inflow = 0.78 cfs @ 12.09 hrs, Volume= 0.057 af Outflow = 0.77 cfs @ 12.11 hrs, Volume= 0.057 af, Atten= 2%, Lag= 1.0 min Routed to Pond dmh01 : dmh Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 2.59 fps, Min. Travel Time= 1.5 min Avg. Velocity = 0.78 fps, Avg. Travel Time= 4.8 min Peak Storage= 68 cf @ 12.11 hrs Average Depth at Peak Storage= 0.12', Surface Width= 2.96' Bank-Full Depth= 1.00' Flow Area= 6.0 sf, Capacity= 50.70 cfs 2.00' x 1.00' deep channel, n= 0.041 Riprap, 2-inch Side Slope Z-value= 4.0 '/ Top Width= 10.00' Length= 228.0' Slope= 0.1110 '/

Summary for Pond DB-1: detention

Inflow Area = 9.959 ac, 17.21% Impervious, Inflow Depth = 0.94" for 2-year event Inflow = 10.65 cfs @ 12.15 hrs, Volume= 0.782 af Outflow = 2.19 cfs @ 12.76 hrs, Volume= 0.765 af, Atten= 79%, Lag= 36.5 min Primary = 2.19 cfs @ 12.76 hrs, Volume= 0.765 af Routed to Pond G2 : gabion Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Routed to Link SP3 : STUDY POINT #3 Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 811.76' @ 12.76 hrs Surf.Area= 16,874 sf Storage= 12,311 cf Flood Elev= 816.00' Surf.Area= 24,900 sf Storage= 100,504 cf Plug-Flow detention time= 133.8 min calculated for 0.765 af (98% of inflow) Center-of-Mass det. time= 121.5 min (974.1 - 852.7)						
Volume Invert Avail.Storage Storage Description						
#1 811.00' 100,504 cf Custom Stage Data (Irregular)Listed below (Recalc)						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
Device Routing Invert Outlet Devices #1 Primary 811.00' 18.0'' Round Culvert L= 32.0' Ke= 0.500						
#2 Device 1 811.00' 811.00' 811.00' 811.00' 80" Vert. (2) 8" Orifice (2yr) X 2.00 C = 0.600 Limited to weir flow at low heads #3 Device 1 811.90' 12.0" Vert. (2) 12" Orifice (10yr) X 2.00 C = 0.600 Limited to weir flow at low heads #4 Device 1 813.20' 24.0" x 24.0" Horiz. 24" Top of Structure C = 0.600 Limited to weir flow at low heads #5 Secondary 814.40' 80' long x 8.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.66 2.64 2.64 2.65 2.65 2.66 2.68 2.70 2.74						
Primary OutFlow Max=2.19 cfs @ 12.76 hrs HW=811.76' TW=810.37' (Dynamic Tailwater) 1=Culvert (Passes 2.19 cfs of 2.66 cfs potential flow) -2=(2) 8" Orifice (2yr) (Orifice Controls 2.19 cfs @ 3.14 fps) -3=(2) 12" Orifice (10yr) (Controls 0.00 cfs) -4=24" Top of Structure (Controls 0.00 cfs)						
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=811.00' TW=0.00' (Dynamic Tailwater) 5=Broad-Crested Rectangular Weir(Controls 0.00 cfs)						
Summary for Pond dmh01: dmh						
Inflow Area = 0.382 ac, 53.49% Impervious, Inflow Depth = 1.78" for 2-year event Inflow = 0.77 cfs @ 12.11 hrs, Volume= 0.057 af Outflow = 0.77 cfs @ 12.11 hrs, Volume= 0.057 af, Atten= 0%, Lag= 0.0 min Primary = 0.77 cfs @ 12.11 hrs, Volume= 0.057 af Routed to Pond DS-1a : detention						
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 849.85' @ 12.11 hrs Flood Elev= 855.31'						

Device	Routing	Invert	Outlet Devices
#1	Primary	849.34'	12.0" Round Culvert L= 12.0' Ke= 0.500
			Inlet / Outlet Invert= 849.34' / 849.22' S= 0.0100 '/' Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.75 cfs @ 12.11 hrs HW=849.84' TW=847.12' (Dynamic Tailwater) -1=Culvert (Barrel Controls 0.75 cfs @ 2.81 fps)

Summary for Pond dmh05: dmh

[80] Warning: Exceeded Pond DW-1 by 868.52' @ 0.00 hrs (12.36 cfs 36.780 af)

Inflow Area =	1.697 ac, 54.12% Impervious, Inflow D	epth = 1.35" for 2-year event			
Inflow =	3.59 cfs @ 12.12 hrs, Volume=	0.191 af			
Outflow =	3.59 cfs @_ 12.12 hrs, Volume=	0.191 af, Atten= 0%, Lag= 0.0 min			
Primary =	3.59 cfs @ 12.12 hrs, Volume=	0.191 af			
Routed to Pond DS-1a : detention					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 869.52' @ 12.12 hrs Flood Elev= 883.10'

Device	Routing	Invert	Outlet Devices
#1	Primary	868.52'	15.0" Round Culvert L= 97.0' Ke= 0.500 Inlet / Outlet Invert= 868.52' / 865.12' S= 0.0351 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=3.50 cfs @ 12.12 hrs HW=869.50' TW=847.15' (Dynamic Tailwater) 1=Culvert (Inlet Controls 3.50 cfs @ 3.38 fps)

Summary for Pond dmh20: dmh

[80] Warning: Exceeded Pond DW-5 by 902.74' @ 0.00 hrs (12.61 cfs 37.500 af)

Inflow Are	a =	1.509 ac, 3	88.02% Impervi	ious, Inflow De	epth = 1.11"	for 2-year event
Inflow	=	2.70 cfs @	12.12 hrs, Vo	olume=	0.140 af	-
Outflow	=	2.70 cfs @	12.12 hrs, Vo	olume=	0.140 af, Atte	en= 0%, Lag= 0.0 min
Primary	=	2.70 cfs @	12.12 hrs, Vo	olume=	0.140 af	-
Routed	l to Pond	d dmh21 : dm	h			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 903.57' @ 12.12 hrs Flood Elev= 907.61'

Device	Routing	Invert	Outlet Devices
#1	Primary	902.74'	15.0" Round Culvert L= 205.0' Ke= 0.500 Inlet / Outlet Invert= 902.74' / 900.30' S= 0.0119 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=2.60 cfs @ 12.12 hrs HW=903.55' TW=900.76' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 2.60 cfs @ 3.07 fps)

Summary for Pond dmh21: dmh

[80] Warning: Exceeded Pond DW-7 by 899.55' @ 0.00 hrs (12.58 cfs 37.434 af)

Inflow Area =	3.876 ac, 46.92% Impervious, Inflow I	Depth = 1.36" for 2-year event			
Inflow =	7.73 cfs @ 12.12 hrs, Volume=	0.438 af			
Outflow =	7.73 cfs @ 12.12 hrs, Volume=	0.438 af, Atten= 0%, Lag= 0.0 min			
Primary =	7.73 cfs @ 12.12 hrs, Volume=	0.438 af			
Routed to Pond dmh23 : dmh					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 900.79' @ 12.12 hrs Flood Elev= 905.24'

Device	Routing	Invert	Outlet Devices
#1	Primary	899.55'	24.0" Round Culvert L= 190.0' Ke= 0.500
	-		Inlet / Outlet Invert= 899.55' / 897.65' S= 0.0100 '/' Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=7.51 cfs @ 12.12 hrs HW=900.77' TW=898.94' (Dynamic Tailwater) 1=Culvert (Inlet Controls 7.51 cfs @ 3.75 fps)

Summary for Pond dmh23: dmh

[80] Warning: Exceeded Pond DW-9 by 897.55' @ 0.00 hrs (12.57 cfs 37.393 af)

Inflow Area =	4.921 ac, 48.179	% Impervious, Inflow D	epth = 1.36" for	2-year event	
Inflow =	9.94 cfs @ 12.12	2 hrs, Volume=	0.556 af		
Outflow =	9.94 cfs @ 12.12	2 hrs, Volume=	0.556 af, Atten=	0%, Lag= 0.0 min	
Primary =	9.94 cfs @ 12.12	2 hrs, Volume=	0.556 af		
Routed to Pond DS-2a : detention					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 898.96' @ 12.12 hrs Flood Elev= 910.71'

Device	Routing	Invert	Outlet Devices
#1	Primary	897.55'	30.0" Round Culvert L= 27.0' Ke= 0.500 Inlet / Outlet Invert= 897.55' / 897.20' S= 0.0130 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf

Primary OutFlow Max=9.64 cfs @ 12.12 hrs HW=898.94' TW=893.07' (Dynamic Tailwater) 1=Culvert (Barrel Controls 9.64 cfs @ 5.00 fps)

Summary for Pond dmh25: dmh

[80] Warning: Exceeded Pond DW-8 by 922.60' @ 0.00 hrs (12.74 cfs 37.911 af)

Inflow Are	a =	0.555 ac, 49.6	64% Impervious,	Inflow Depth = 1.50	for 2-year event
Inflow	=	1.13 cfs @ 12	2.12 hrs, Volume=	0.069 af	•
Outflow	=	1.13 cfs @ 12	2.12 hrs, Volume=	= 0.069 af, A	tten= 0%, Lag= 0.0 min
Primary	=	1.13 cfs @ 12	2.12 hrs, Volume=	= 0.069 af	-
Routed to Pond DS-2a : detention					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 923.15' @ 12.12 hrs Flood Elev= 930.54'

Device	Routing	Invert	Outlet Devices
#1	Primary	922.60'	12.0" Round Culvert L= 97.0' Ke= 0.500 Inlet / Outlet Invert= 922.60' / 915.84' S= 0.0697 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.10 cfs @ 12.12 hrs HW=923.15' TW=893.06' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 1.10 cfs @ 2.51 fps)

Summary for Pond dmh50: dmh

[80] Warning: Exceeded Pond DW-6 by 927.65' @ 0.00 hrs (12.78 cfs 38.016 af)

Inflow Area =	1.339 ac, 47.44% Impervious, Inflow	Depth = 1.19" for 2-year event	
Inflow =	2.61 cfs @ 12.12 hrs, Volume=	0.133 af	
Outflow =	2.61 cfs @ 12.12 hrs, Volume=	0.133 af, Atten= 0%, Lag= 0.0 min	
Primary =	2.61 cfs @ 12.12 hrs, Volume=	0.133 af	
Routed to Pond dmh51 : dmh			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 928.47' @ 12.12 hrs Flood Elev= 933.94'

Device	Routing	Invert	Outlet Devices
#1	Primary	927.65'	15.0" Round Culvert L= 102.0' Ke= 0.500
	-		Inlet / Outlet Invert= 927.65' / 919.50' S= 0.0799 '/' Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=2.53 cfs @ 12.12 hrs HW=928.45' TW=920.20' (Dynamic Tailwater) -1=Culvert (Inlet Controls 2.53 cfs @ 3.05 fps)

Summary for Pond dmh51: dmh

 Inflow Area =
 1.339 ac, 47.44% Impervious, Inflow Depth =
 1.19" for 2-year event

 Inflow =
 2.61 cfs @
 12.12 hrs, Volume=
 0.133 af

 Outflow =
 2.61 cfs @
 12.12 hrs, Volume=
 0.133 af

 Primary =
 2.61 cfs @
 12.12 hrs, Volume=
 0.133 af

 Routed to Pond dmh52 : dmh
 0.133 af
 0.133 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 920.22' @ 12.12 hrs Flood Elev= 924.04'

Device	Routing	Invert	Outlet Devices
#1	Primary	919.40'	15.0" Round Culvert L= 127.0' Ke= 0.500
			Inlet / Outlet Invert= 919.40' / 909.50' S= 0.0780 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=2.53 cfs @ 12.12 hrs HW=920.20' TW=893.32' (Dynamic Tailwater) 1=Culvert (Inlet Controls 2.53 cfs @ 3.05 fps)

Summary for Pond dmh52: dmh

 Inflow Area =
 1.339 ac, 47.44% Impervious, Inflow Depth =
 1.19" for 2-year event

 Inflow =
 2.61 cfs @
 12.12 hrs, Volume=
 0.133 af

 Outflow =
 2.61 cfs @
 12.12 hrs, Volume=
 0.133 af, Atten= 0%, Lag= 0.0 min

 Primary =
 2.61 cfs @
 12.12 hrs, Volume=
 0.133 af, Atten= 0%, Lag= 0.0 min

 Primary =
 2.61 cfs @
 12.12 hrs, Volume=
 0.133 af

 Routed to Pond dmh62 : dmh
 12.12 hrs, Volume=
 0.133 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 893.34' @ 12.12 hrs Flood Elev= 914.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	892.52'	15.0" Round Culvert L= 62.0' Ke= 0.500
			Inlet / Outlet Invert= 892.52' / 887.55' S= 0.0802 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=2.53 cfs @ 12.12 hrs HW=893.32' TW=887.56' (Dynamic Tailwater) 1=Culvert (Inlet Controls 2.53 cfs @ 3.05 fps)

Summary for Pond dmh53: dmh

[80] Warning: Exceeded Pond DW-4 by 916.83' @ 0.00 hrs (12.70 cfs 37.793 af)

Inflow Are	a =	1.519 ac, 41.32% Impervious, Inflow Depth = 0.99" for 2-year	event
Inflow	=	2.67 cfs @ 12.15 hrs, Volume= 0.126 af	
Outflow	=	2.67 cfs @ 12.15 hrs, Volume= 0.126 af, Atten= 0%, La	g= 0.0 min
Primary	=	2.67 cfs @_ 12.15 hrs, Volume= 0.126 af	-
Routed	l to Pond	dmh55 : dmh	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 917.59' @ 12.15 hrs Flood Elev= 921.46'

Device	Routing	Invert	Outlet Devices
#1	Primary	916.83'	18.0" Round Culvert L= 31.0' Ke= 0.500
			Inlet / Outlet Invert= 916.83' / 915.39' S= 0.0465 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=2.63 cfs @ 12.15 hrs HW=917.58' TW=903.58' (Dynamic Tailwater) -1=Culvert (Inlet Controls 2.63 cfs @ 2.96 fps)

Summary for Pond dmh55: dmh

[80] Warning: Exceeded Pond DW-3 by 902.61' @ 0.00 hrs (12.61 cfs 37.498 af)

Inflow Area = 3.233 ac, 31.64% Impervious, Inflow Depth = 0.95" for 2-year event Inflow = 5.18 cfs @ 12.15 hrs, Volume= 0.256 af Outflow = 5.18 cfs @ 12.15 hrs, Volume= 0.256 af, Atten= 0%, Lag= 0.0 min Primary = 5.18 cfs @ 12.15 hrs, Volume= 0.256 af Routed to Pond dmh56 : dmh 0.256 af
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 903.59' @ 12.15 hrs Flood Elev= 911.86'
DeviceRoutingInvertOutlet Devices#1Primary902.61' 24.0'' Round Culvert L= 72.0' Ke= 0.500 Inlet / Outlet Invert= 902.61' / 899.92' S= 0.0374 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf
Primary OutFlow Max=5.16 cfs @ 12.15 hrs HW=903.59' TW=897.87' (Dynamic Tailwater) ↓ 1=Culvert (Inlet Controls 5.16 cfs @ 3.37 fps)
Summary for Pond dmh56: dmh
Inflow Area = 3.604 ac, 29.93% Impervious, Inflow Depth = 0.99" for 2-year event Inflow = 5.63 cfs @ 12.15 hrs, Volume= 0.296 af Outflow = 5.63 cfs @ 12.15 hrs, Volume= 0.296 af, Atten= 0%, Lag= 0.0 min Primary = 5.63 cfs @ 12.15 hrs, Volume= 0.296 af Routed to Pond dmh57 : dmh Kolume 0.296 af
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 897.88' @ 12.16 hrs Flood Elev= 908.47'
Device Routing Invert Outlet Devices
#1 Primary 896.80' 30.0" Round Culvert L= 20.0' Ke= 0.500 Inlet / Outlet Invert= 896.80' / 896.60' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=5.09 cfs @ 12.15 hrs HW=897.87' TW=897.48' (Dynamic Tailwater) 1=Culvert (Outlet Controls 5.09 cfs @ 3.75 fps)
Summary for Pond dmh57: dmh
Inflow Area = 3.604 ac, 29.93% Impervious, Inflow Depth = 0.99" for 2-year event Inflow = 5.63 cfs @ 12.15 hrs, Volume= 0.296 af Outflow = 5.63 cfs @ 12.15 hrs, Volume= 0.296 af, Atten= 0%, Lag= 0.0 min Primary = 5.63 cfs @ 12.15 hrs, Volume= 0.296 af Routed to Pond dmh58 : dmh 0.296 af
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 897.48' @ 12.15 hrs Flood Elev= 908.00'
Device Routing Invert Outlet Devices
#1 Primary 896.50' 30.0" Round Culvert L= 103.0' Ke= 0.500 Inlet / Outlet Invert= 896.50' / 895.68' S= 0.0080 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=5.33 cfs @ 12.15 hrs HW=897.48' TW=896.52' (Dynamic Tailwater)

1=Culvert (Outlet Controls 5.33 cfs @ 4.44 fps)

Summary for Pond dmh58: dmh

Inflow Area = 3.604 ac, 29.93% Impervious, Inflow Depth = 0.99" for 2-year event Inflow = 5.63 cfs @ 12.15 hrs, Volume= 0.296 af Outflow = 5.63 cfs @ 12.15 hrs, Volume= 0.296 af, Atten= 0%, Lag= 0.0 min Primary = 5.63 cfs @ 12.15 hrs, Volume= 0.296 af Routed to Pond dmh59 : dmh
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 896.53' @ 12.15 hrs Flood Elev= 901.46'
Device Routing Invert Outlet Devices #1 Primary 895.58' 30.0" Round Culvert L= 278.0' Ke= 0.500 Inlet / Outlet Invert= 895.58' / 893.35' S= 0.0080 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=5.57 cfs @ 12.15 hrs HW=896.52' TW=894.22' (Dynamic Tailwater) [●] 1=Culvert (Inlet Controls 5.57 cfs @ 3.30 fps)
Summary for Pond dmh59: dmh
Inflow Area = 3.604 ac, 29.93% Impervious, Inflow Depth = 0.99" for 2-year event Inflow = 5.63 cfs @ 12.15 hrs, Volume= 0.296 af Outflow = 5.63 cfs @ 12.15 hrs, Volume= 0.296 af, Atten= 0%, Lag= 0.0 min Primary = 5.63 cfs @ 12.15 hrs, Volume= 0.296 af Routed to Pond dmh60 : dmh
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 894.22' @ 12.15 hrs Flood Elev= 909.31'
Device Routing Invert Outlet Devices
#1 Primary 893.25' 30.0" Round Culvert L= 82.0' Ke= 0.500 Inlet / Outlet Invert= 893.25' / 892.50' S= 0.0091 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=5.31 cfs @ 12.15 hrs HW=894.22' TW=893.34' (Dynamic Tailwater) [●] 1=Culvert (Outlet Controls 5.31 cfs @ 4.49 fps)
Summary for Pond dmh60: dmh
Inflow Area = 3.604 ac, 29.93% Impervious, Inflow Depth = 0.99" for 2-year event Inflow = 5.63 cfs @ 12.15 hrs, Volume= 0.296 af Outflow = 5.63 cfs @ 12.15 hrs, Volume= 0.296 af, Atten= 0%, Lag= 0.0 min Primary = 5.63 cfs @ 12.15 hrs, Volume= 0.296 af Routed to Pond dmh61 : dmh
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 893.35' @ 12.15 hrs Flood Elev= 901.96'
Device Routing Invert Outlet Devices
#1 Primary 892.40' 30.0" Round Culvert L= 258.0' Ke= 0.500 Inlet / Outlet Invert= 892.40' / 889.43' S= 0.0115 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=5.57 cfs @ 12.15 hrs HW=893.34' TW=890.27' (Dynamic Tailwater)

└─1=Culvert (Inlet Controls 5.57 cfs @ 3.30 fps)

Summary for Pond dmh61: dmh

Inflow Area = 3.604 ac, 29.93% Impervious, Inflow Depth = 0.99" for 2-year event Inflow = 5.63 cfs @ 12.15 hrs, Volume= 0.296 af Outflow = 5.63 cfs @ 12.15 hrs, Volume= 0.296 af, Atten= 0%, Lag= 0.0 min Primary = 5.63 cfs @ 12.15 hrs, Volume= 0.296 af Routed to Pond dmh62 : dmh
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 890.28' @ 12.15 hrs Flood Elev= 898.16'
Device Routing Invert Outlet Devices
#1 Primary 889.33' 30.0" Round Culvert L= 278.0' Ke= 0.500 Inlet / Outlet Invert= 889.33' / 886.55' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=5.57 cfs @ 12.15 hrs HW=890.27' TW=887.60' (Dynamic Tailwater)
Summary for Pond dmh62: dmh
Inflow Area = 4.942 ac, 34.67% Impervious, Inflow Depth = 1.04" for 2-year event Inflow = 8.12 cfs @ 12.14 hrs, Volume= 0.429 af Outflow = 8.12 cfs @ 12.14 hrs, Volume= 0.429 af, Atten= 0%, Lag= 0.0 min Primary = 8.12 cfs @ 12.14 hrs, Volume= 0.429 af Routed to Pond dmh69 : dmh
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 887.61' @ 12.14 hrs Flood Elev= 902.00'
Device Routing Invert Outlet Devices
#1 Primary 886.45' 30.0" Round Culvert L= 62.0' Ke= 0.500 Inlet / Outlet Invert= 886.45' / 884.91' S= 0.0248 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=7.94 cfs @ 12.14 hrs HW=887.59' TW=813.62' (Dynamic Tailwater)
Summary for Pond dmh69: dmh
Inflow Area = 4.942 ac, 34.67% Impervious, Inflow Depth = 1.04" for 2-year event Inflow = 8.12 cfs @ 12.14 hrs, Volume= 0.429 af Outflow = 8.12 cfs @ 12.14 hrs, Volume= 0.429 af, Atten= 0%, Lag= 0.0 min Primary = 8.12 cfs @ 12.14 hrs, Volume= 0.429 af Routed to Pond DB-1 : detention
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 813.64' @ 12.14 hrs Flood Elev= 818.02'
Device Routing Invert Outlet Devices
#1 Primary 812.48' 30.0'' Round Culvert L= 29.0' Ke= 0.500 Inlet / Outlet Invert= 812.48' / 811.50' S= 0.0338 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=7.94 cfs @ 12.14 hrs HW=813.62' TW=811.24' (Dynamic Tailwater)

Primary OutFlow Max=7.94 cfs @ 12.14 hrs HW=813.62' TW=811.24' (Dynamic Tailwater) -1=Culvert (Inlet Controls 7.94 cfs @ 3.64 fps)

Summary for Pond DS-1a: detention

[44] 1 1111. 1	44] Hint: Outlet device #2 is below defined storage				
Inflow Outflow Primary	Inflow Area = 2.795 ac, 43.32% Impervious, Inflow Depth = 1.28" for 2-year event Inflow = 5.00 cfs @ 12.13 hrs, Volume= 0.298 af Outflow = 0.68 cfs @ 12.78 hrs, Volume= 0.298 af, Atten= 86%, Lag= 38.7 min Primary = 0.68 cfs @ 12.78 hrs, Volume= 0.298 af Routed to Link SP1 : STUDY POINT #1				
Peak Elev	= 848.37' @	12.78 hrs Surf./	Span= 0.00-36.00 hrs, dt= 0.05 hrs Area= 3,584 sf Storage= 5,991 cf sf Storage= 20,434 cf		
	Plug-Flow detention time= 220.9 min calculated for 0.297 af (100% of inflow) Center-of-Mass det. time= 221.0 min(1,046.8-825.8)				
Volume	Invert	Avail.Storage	Storage Description		
#1A	846.50'	0 cf	64.00'W x 56.00'L x 5.67'H Field A		
			20,309 cf Overall - 20,309 cf Embedded = 0 cf		
#2A	846.50'	16,000 cf	retain_it retain_it 5.0' x 56 Inside #1		
#2A	846.50'	16,000 cf	retain_it retain_it 5.0' x 56 Inside #1 Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf		
#2A	846.50'	16,000 cf	retain_it retain_it 5.0' x 56 Inside #1 Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf		
			retain_it retain_it 5.0' x 56 Inside #1 Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf 8 Rows adjusted for 311.7 cf perimeter wall		
#2A #3B	846.50' 851.50'		retain_it retain_it 5.0' x 56 Inside #1 Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf 8 Rows adjusted for 311.7 cf perimeter wall 64.00'W x 56.00'L x 2.17'H Field B		
#3B	851.50'	0 cf	retain_it retain_it 5.0' x 56 Inside #1 Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf 8 Rows adjusted for 311.7 cf perimeter wall 64.00'W x 56.00'L x 2.17'H Field B 7,765 cf Overall - 7,765 cf Embedded = 0 cf x 40.0% Voids		
		0 cf	retain_it retain_it 5.0' x 56 Inside #1 Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf 8 Rows adjusted for 311.7 cf perimeter wall 64.00'W x 56.00'L x 2.17'H Field B		
#3B	851.50'	0 cf	<pre>retain_it retain_it 5.0' x 56 Inside #1 Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf 8 Rows adjusted for 311.7 cf perimeter wall 64.00'W x 56.00'L x 2.17'H Field B 7,765 cf Overall - 7,765 cf Embedded = 0 cf x 40.0% Voids retain_it retain_it 1.5' x 56 Inside #3</pre>		
#3B	851.50'	0 cf	retain_it retain_it 5.0' x 56 Inside #1 Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf 8 Rows adjusted for 311.7 cf perimeter wall 64.00'W x 56.00'L x 2.17'H Field B 7,765 cf Overall - 7,765 cf Embedded = 0 cf x 40.0% Voids retain_it retain_it 1.5' x 56 Inside #3 Inside= 84.0"W x 18.0"H => 9.90 sf x 8.00'L = 79.2 cf		
#3B	851.50'	0 cf 4,434 cf	retain_it retain_it 5.0' x 56 Inside #1 Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf 8 Rows adjusted for 311.7 cf perimeter wall 64.00'W x 56.00'L x 2.17'H Field B 7,765 cf Overall - 7,765 cf Embedded = 0 cf x 40.0% Voids retain_it retain_it 1.5' x 56 Inside #3 Inside= 84.0"W x 18.0"H => 9.90 sf x 8.00'L = 79.2 cf Outside= 96.0"W x 26.0"H => 17.33 sf x 8.00'L = 138.7 cf		

Storage Group A created with Chamber Wizard Storage Group B created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	846.40'	15.0" Round Culvert L= 129.0' Ke= 0.500
	-		Inlet / Outlet Invert= 846.40' / 845.62' S= 0.0060 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf
#2	Device 1	846.40'	2.0" Vert. 2" Orifice (2yr) X 2.00 C= 0.600 Limited to weir flow at low heads
#3	Device 1	848.10'	6.0" Vert. 6" Orifice (10yr) X 2.00 C= 0.600 Limited to weir flow at low heads
#4	Device 1	849.40'	5.0" Vert. 5" Orifice (25yr) X 2.00 C= 0.600 Limited to weir flow at low heads
#5	Device 1	850.70'	5.0" Vert. 5" Orifice (50yr) X 2.00 C= 0.600 Limited to weir flow at low heads
#6	Device 1	852.80'	4.0' long Overflow Weir 2 End Contraction(s) 4.0' Crest Height

Primary OutFlow Max=0.68 cfs @ 12.78 hrs HW=848.37' TW=0.00' (Dynamic Tailwater)

1=Culvert (Passes 0.68 cfs of 5.68 cfs potential flow)

-2=2" Orifice (2yr) (Orifice Controls 0.29 cfs @ 6.62 fps)

-3=6" Orifice (10yr) (Orifice Controls 0.39 cfs @ 1.78 fps) -4=5" Orifice (25yr) (Controls 0.00 cfs)

-5=5" Orifice (50yr) (Controls 0.00 cfs)

-6=Overflow Weir (Controls 0.00 cfs)

Summary for Pond DS-1b: detention

Inflow Area = 0.571 ac, 23.27% Impervious, Inflow Depth = 1.30" for 2-year event 0.78 cfs @ 12.12 hrs, Volume= Inflow = 0.062 af 0.27 cfs @ 12.48 hrs, Volume= 0.27 cfs @ 12.48 hrs, Volume= Outflow 0.061 af, Atten= 65%, Lag= 21.6 min = Primary = 0.061 af Routed to Link SP1 : STUDY POINT #1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 859.78' @ 12.48 hrs Surf.Area= 1,536 sf Storage= 778 cf Flood Elev= 862.70' Surf.Area= 1,536 sf Storage= 4,684 cf

Plug-Flow detention time= 64.1 min calculated for 0.061 af (99% of inflow)

2889-01 - Proposed HydroCAD_rev3

Center-of-Mass det. time= 61.9 min (912.6 - 850.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	859.20'	0 cf	64.00'W x 24.00'L x 4.17'H Field A
			6,400 cf Overall - 6,400 cf Embedded = 0 cf x 40.0% Voids
#2A	859.20'	4,684 cf	retain_it retain_it 3.5' x 24 Inside #1
			Inside= 84.0"W x 42.0"H => 25.10 sf x 8.00'L = 200.8 cf
			Outside= 96.0"W x 50.0"H => 33.33 sf x 8.00'L = 266.7 cf
			8 Rows adjusted for 135.1 cf perimeter wall
		4,684 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Primary OutFlow Max=0.27 cfs @ 12.48 hrs HW=859.78' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Passes 0.27 cfs of 1.23 cfs potential flow)

1-2=4" Orifice (Orifice Controls 0.27 cfs @ 3.10 fps)

3=Overflow (Controls 0.00 cfs)

Summary for Pond DS-2a: detention

[92] Warning: Device #4 is above defined storage

[92] Warning: Device #5 is above defined storage

[92] Warning: Device #6 is above defined storage

Inflow Area =	5.477 ac, 4	8.32% Impervious, Inflo	w Depth = 1.37" for 2-year event	
Inflow =	11.07 cfs @	12.12 hrs, Volume=	0.626 af	
Outflow =	1.31 cfs @	12.84 hrs, Volume=	0.624 af, Atten= 88%, Lag= 43.5 min	
Primary =	1.31 cfs @	12.84 hrs, Volume=	0.624 af	
Routed to Pond G1 : gabion				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 894.60' @ 12.84 hrs Surf.Area= 4,704 sf Storage= 12,540 cf Flood Elev= 902.66' Storage= 48,125 cf

Plug-Flow detention time= 127.0 min calculated for 0.623 af (100% of inflow) Center-of-Mass det. time= 125.7 min (947.1 - 821.4)

Volume	Invert	Avail.Storage	Storage Description		
#1	892.00'	24,073 cf	retain_it retain_it 5.0' x 84		
			Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf		
			Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf		
	007.001	04.050 6	7 Rows adjusted for 394.8 cf perimeter wall		
#2	897.00'	24,052 cf			
			Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf		
			Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf		
			6 Rows adjusted for 415.6 cf perimeter wall		
		48,125 cf	Total Available Storage		
Device	Routing	Invert Out	let Devices		
#1	Primary	892.00' 24.0)" Round Culvert L= 46.0' Ke= 0.500		
		Inle	t / Outlet Invert= 892.00' / 890.75' S= 0.0272 '/' Cc= 0.900		
			0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf		
#2	Device 1		' Vert. Orifice (2yr) X 2.00 C= 0.600 Limited to weir flow at low heads		
#3	Device 1		' Vert. Orifice (10yr) C= 0.600 Limited to weir flow at low heads		
#4	Device 1	898.20' 8.0 '	' Vert. Orifice (25yr) C= 0.600 Limited to weir flow at low heads		
#5	Device 1	899.90' 4.0 '	'Vert. Orifice (50yr) C= 0.600 Limited to weir flow at low heads		
#6	Device 1	901.60' 4.0'	long Sharp-Crested Weir Overflow (100yr) 2 End Contraction(s)		

Primary OutFlow Max=1.31 cfs @ 12.84 hrs HW=894.60' TW=878.06' (Dynamic Tailwater) 1=Culvert (Passes 1.31 cfs of 19.16 cfs potential flow) 2=Orifice (2yr) (Orifice Controls 1.31 cfs @ 7.52 fps) -3=Orifice (10yr) (Controls 0.00 cfs) -4=Orifice (25yr) (Controls 0.00 cfs) -5=Orifice (50yr) (Controls 0.00 cfs)

-6=Sharp-Crested Weir Overflow (100yr)(Controls 0.00 cfs)

Summary for Pond DS-2b: detention

[80] Warning: Exceeded Pond DW-11 by 863.00' @ 0.00 hrs (12.32 cfs 36.663 af)

Inflow Are	a =	2.577 ac, 15.70% Impervious, Inflow Depth = 0.87" for 2-year event	
Inflow	=	3.41 cfs @ 12.12 hrs, Volume= 0.188 af	
Outflow	=	1.11 cfs @ 12.47 hrs, Volume= 0.186 af, Atten= 67%, Lag= 20).9 min
Primary	=	1.11 cfs @ 12.47 hrs, Volume= 0.186 af	
Routed	l to Link	SP2 : STUDY POINT #2	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 863.43' @ 12.47 hrs Surf.Area= 5,568 sf Storage= 2,086 cf Flood Elev= 866.00' Surf.Area= 5,568 sf Storage= 14,541 cf

Plug-Flow detention time= 70.5 min calculated for 0.186 af (99% of inflow) Center-of-Mass det. time= 65.7 min (920.0 - 854.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	863.00'	0 cf	232.00'W x 24.00'L x 3.67'H Field A
			20,416 cf Overall - 20,416 cf Embedded = 0 cf x 40.0% Voids
#2A	863.00'	14,541 cf	retain_it retain_it 3.0' x 87 Inside #1
			Inside= 84.0"W x 36.0"H => 21.33 sf x 8.00'L = 170.6 cf
			Outside= 96.0"W x 44.0"H => 29.33 sf x 8.00'L = 234.7 cf
			29 Rows adjusted for 302.1 cf perimeter wall
		14,541 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	860.45'	12.0" Round Culvert L= 45.0' Ke= 0.500
			Inlet / Outlet Invert= 860.45' / 858.44' S= 0.0447 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
			II- 0.015 Collugated I E, shootil interior, Tiow Area- 0.79 si
#2	Device 1	863.00'	24.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=1.10 cfs @ 12.47 hrs HW=863.43' TW=0.00' (Dynamic Tailwater) 1=Culvert (Passes 1.10 cfs of 5.95 cfs potential flow) 2=Orifice/Grate (Orifice Controls 1.10 cfs @ 2.23 fps)

Summary for Pond DW-1: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	1.697 ac, 54.12% Impervious, Inflow De	epth = 1.94" for 2-year event		
Inflow =	3.78 cfs @ 12.09 hrs, Volume=	0.275 af		
Outflow =	3.63 cfs @ 12.12 hrs, Volume=	0.256 af, Atten= 4%, Lag= 1.4 min		
Discarded =	0.03 cfs @ 11.95 hrs, Volume=	0.065 af		
Primary =	3.59 cfs @ 12.12 hrs, Volume=	0.191 af		
Routed to Pond dmh05 : dmh				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 11.95 hrs Surf.Area= 958 sf Storage= 1,963 cf

Plug-Flow detention time= 160.0 min calculated for 0.255 af (93% of inflow) Center-of-Mass det. time= 124.8 min (943.2 - 818.5)

2889-01 - Proposed HydroCAD_rev3 Prepared by Allen & Major Associates, Inc

		Major Associat 02881 © 2022 H	es, Inc ydroCAD Software Solutions LLC	Printed	Page 28
Volume	Invert	Avail.Storage	Storage Description		
#1A	0.00'		7.67'W x 12.50'L x 3.50'H Field A		
	0.07	400 6	335 cf Overall - 166 cf Embedded = 169 cf x 40.0% Voids		
#2A	0.67'	129 cf	Shea Dry Well 1000gal Inside #1 Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf		
			Outside= $68.0^{\circ}W \times 34.0^{\circ}H \Rightarrow 15.80 \text{ sf} \times 10.50^{\circ}L = 165.9 \text{ cf}$		
		196 cf	x 10.00 = 1,963 cf Total Available Storage		
Stora	age Group A cr	eated with Chan	ber Wizard		
Device	Routing	Invert Out	let Devices		
#0	Primary		omatic Storage Overflow (Discharged without head)		
#1 #2	Discarded		00 in/hr Exfiltration over Wetted area ' Round Culvert L= 10.0' Ke= 0.500		
#2	Primary		t / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900		
			0.010 PVC, smooth interior, Flow Area= 0.09 sf		
		1ax=0.03 cfs @ [·] iltration Controls	1.95 hrs HW=3.50' (Free Discharge) 0.03 cfs)		
Duimen		. 0.00 -f- 0.40			
	JULTION Max Join Contro		12 hrs HW=3.50' TW=869.50' (Dynamic Tailwater)		
			Summary for Pond DW-10: House Drywell		
System	sized based or	n standard 1,000	g drywell at each dwelling unit.		
Storage	multiplyer add	ed to account for	number of dwelling units with subcatchment.		
Area mu	ultiplyer adjuste	ed to the account	for the percentage of roof area within subcatchment.		
[90] Wai	rning: Qout>Qi	n may require sr	naller dt or Finer Routing		
Inflow A	.rea = 3.1	168 ac. 17.98%	Impervious, Inflow Depth = 1.11" for 2-year event		
Inflow	= 3.1	0 cfs @ 12.20	nrs, Volume= 0.294 af		
Outflow		4 cfs @ 12.27			
Discarde Primary	ed = 0.0 = 0.1	4 cfs @ 12.20 9 cfs @ 12.20	nrs, Volume= 0.071 af nrs, Volume= 0.102 af		
	ed to Link SP1	: STUDY POIN	115, Volume– 0.102 al		
Seconda		1 cfs @ 12.27			
Route	ed to Link SP1	: STUDY POIN	⁻ #1		
Routing	by Dyn-Stor-Ir	nd method, Time	Span= 0.00-36.00 hrs, dt= 0.05 hrs		
Primary	area = Inflow a	area x 0.142			
Peak Ele	ev= 3.50' @ 12	2.20 hrs Surf.Ar	ea= 0.026 ac Storage= 0.054 af		
Plug-Flo	w detention tir	ne= 171.0 min ca	lculated for 0.272 af (92% of inflow)		
Center-o	of-Mass det. tir	ne= 134.4 min (999.4 - 865.0)		
Volume	Invert	Avail.Storage	Storage Description		
#1A	0.00'		7.67'W x 12.50'L x 3.50'H Field A		
	0.07	0.000	0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids		
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1 Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf		
			Outside= $68.0^{\circ}W \times 34.0^{\circ}H => 15.80 \text{ sf } \times 10.50^{\circ}L = 165.9 \text{ cf}$		
		0.005 af	x 12.00 = 0.054 af Total Available Storage		
Stora	age Group A cr	eated with Chan	iber Wizard		
Device	Routing	Invert Out	let Devices		
#0	Secondary		omatic Storage Overflow (Discharged without head)		
#1	Discarded	0.00' 0.6	00 in/hr Exfiltration over Wetted area		
#2	Primary		' Round Culvert L= 10.0' Ke= 0.500		
			t / Outlet Invert= 3.00' / 3.00' S= 0.0000 '/' Cc= 0.900 0.010 PVC, smooth interior, Flow Area= 0.09 sf		
		11- 1			

Discarded OutFlow Max=0.04 cfs @ 12.20 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=0.19 cfs @ 12.20 hrs HW=3.50' TW=0.00' (Dynamic Tailwater) -2=Culvert (Barrel Controls 0.19 cfs @ 2.14 fps)

Secondary OutFlow Max=0.00 cfs @ 12.27 hrs HW=3.50' TW=0.00' (Dynamic Tailwater)

Summary for Pond DW-11: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

[90] Warning: Qout>Qin may require smaller dt or Finer Routing

Inflow Area =	2.577 ac, 15	5.70% Impervious,	Inflow Depth = 1.17"	for 2-year event
Inflow =	3.37 cfs @	12.10 hrs, Volume	e= 0.252 af	-
Outflow =	3.44 cfs @	12.12 hrs, Volume	e= 0.237 af, Atte	en= 0%, Lag= 1.6 min
Discarded =	0.03 cfs @	12.05 hrs, Volume	e= 0.049 af	
Primary =	3.41 cfs @	12.12 hrs, Volume	e= 0.188 af	
Routed to Pond DS-2b : detention				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 12.05 hrs Surf.Area= 0.018 ac Storage= 0.036 af

Plug-Flow detention time= 135.8 min calculated for 0.236 af (94% of inflow) Center-of-Mass det. time= 105.0 min (960.1 - 855.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 8.00 = 0.036 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
			Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.03 cfs @ 12.05 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 12.12 hrs HW=3.50' TW=863.13' (Dynamic Tailwater) 2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-12: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	2.217 ac,	8.54% Impervious, Inflow D	epth = 1.11" for 2-year event
Inflow =	2.73 cfs @	12.10 hrs, Volume=	0.206 af
Outflow =	2.60 cfs @	12.16 hrs, Volume=	0.191 af, Atten= 5%, Lag= 3.9 min
Discarded =	0.03 cfs @	12.10 hrs, Volume=	0.049 af
Primary =	2.57 cfs @	12.16 hrs, Volume=	0.142 af
Routed to Reach R-02 : Routing through wetland/swale			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 12.10 hrs Surf.Area= 0.018 ac Storage= 0.036 af

Plug-Flow detention time= 166.2 min calculated for 0.190 af (92% of inflow) Center-of-Mass det. time= 129.4 min (987.6 - 858.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 8.00 = 0.036 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
			Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.03 cfs @ 12.10 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 12.16 hrs HW=3.50' TW=877.81' (Dynamic Tailwater)

Summary for Pond DW-2: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

[90] Warning: Qout>Qin may require smaller dt or Finer Routing

Inflow Area =	0.715 ac, 12.26% Impervious, Inflow	Depth = 1.11" for 2-year event		
Inflow =	0.88 cfs @ 12.10 hrs, Volume=	0.066 af		
Outflow =	0.90 cfs @ 12.12 hrs, Volume=	0.063 af, Atten= 0%, Lag= 1.5 min		
Discarded =	0.01 cfs @ 12.05 hrs, Volume=	0.012 af		
Primary =	0.89 cfs @ 12.12 hrs, Volume=	0.050 af		
Routed to Reach SW-1 : swale				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 12.05 hrs Surf.Area= 0.004 ac Storage= 0.009 af

Plug-Flow detention time= 128.5 min calculated for 0.063 af (94% of inflow) Center-of-Mass det. time= 99.3 min (957.5 - 858.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 2.00 = 0.009 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
	-		Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.01 cfs @ 12.05 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 12.12 hrs HW=3.50' TW=884.11' (Dynamic Tailwater) 2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-3: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	1.714 ac, 23.07% Impervious, Inflow De	epth = 1.43" for 2-year event
Inflow =	2.78 cfs @ 12.10 hrs, Volume=	0.204 af
Outflow =	2.54 cfs @ 12.15 hrs, Volume=	0.186 af, Atten= 9%, Lag= 3.4 min
Discarded =	0.03 cfs @ 12.10 hrs, Volume=	0.056 af
Primary =	2.51 cfs @ 12.15 hrs, Volume=	0.131 af
Routed to Pond	d dmh55 : dmh	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 12.10 hrs Surf.Area= 0.020 ac Storage= 0.041 af

Plug-Flow detention time= 191.3 min calculated for 0.186 af (92% of inflow) Center-of-Mass det. time= 148.9 min (991.1 - 842.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 9.00 = 0.041 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
			Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.03 cfs @ 12.10 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 12.15 hrs HW=3.50' TW=903.59' (Dynamic Tailwater) -2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-4: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	1.519 ac, 41.32% Impervious, Inflow D	epth = 1.71" for 2-year event
Inflow =	2.98 cfs @ 12.09 hrs, Volume=	0.216 af
Outflow =	2.70 cfs @ 12.15 hrs, Volume=	0.195 af, Atten= 9%, Lag= 3.2 min
Discarded =	0.04 cfs @12.10 hrs, Volume=	0.070 af
Primary =	2.67 cfs @ 12.15 hrs, Volume=	0.126 af
Routed to Pon	d dmh53 : dmh	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 12.10 hrs Surf.Area= 0.024 ac Storage= 0.050 af

Plug-Flow detention time= 220.1 min calculated for 0.195 af (90% of inflow)

2889-01 - Proposed HydroCAD_rev3

Center-of-Mass det. time= 173.8 min (1,002.9 - 829.1)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 11.00 = 0.050 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices	
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)	
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area	
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500 Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900 n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf	
Discarded OutFlow Max=0.04 cfs @ 12.10 hrs HW=3.50' (Free Discharge)				

1=Exfiltration (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=0.00 cfs @ 12.15 hrs HW=3.50' TW=917.58' (Dynamic Tailwater) ←2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-5: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	1.509 ac, 38.02% Impervious, Inflow De	epth = 1.63" for 2-year event
Inflow =	2.83 cfs @ 12.09 hrs, Volume=	0.205 af
Outflow =	2.73 cfs @ 12.12 hrs, Volume=	0.190 af, Atten= 4%, Lag= 1.5 min
Discarded =	0.03 cfs @ 12.05 hrs, Volume=	0.051 af
Primary =	2.70 cfs @ 12.12 hrs, Volume=	0.140 af
Routed to Pond	d dmh20 : dmh	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 12.05 hrs Surf.Area= 0.018 ac Storage= 0.036 af

Plug-Flow detention time= 169.7 min calculated for 0.190 af (93% of inflow) Center-of-Mass det. time= 131.4 min (963.9 - 832.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 8.00 = 0.036 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
			Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.03 cfs @ 12.05 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Summary for Pond DW-6: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area = Inflow = Outflow = Discarded = Primary = Routed to Pone	2.74 cfs @ 2.63 cfs @ 0.03 cfs @ 2.61 cfs @	7.44% Impervious, Inf 12.09 hrs, Volume= 12.12 hrs, Volume= 12.00 hrs, Volume= 12.12 hrs, Volume= h	0.199 af	for 2-year event n= 4%, Lag= 1.4 min			
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 12.00 hrs Surf.Area= 0.018 ac Storage= 0.036 af							
Plug-Flow detention time= 176.0 min calculated for 0.184 af (92% of inflow)							

Center-of-Mass det. time= 136.6 min (962.3 - 825.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 8.00 = 0.036 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
	-		Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.03 cfs @ 12.00 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 12.12 hrs HW=3.50' TW=928.45' (Dynamic Tailwater) -2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-7: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	2.368 ac, 52.59% Impervious, Inflow De	epth = 1.94" for 2-year event			
Inflow =	5.27 cfs @ 12.09 hrs, Volume=	0.383 af			
Outflow =	5.06 cfs @ 12.12 hrs, Volume=	0.364 af, Atten= 4%, Lag= 1.4 min			
Discarded =	0.03 cfs @ 11.80 hrs, Volume=	0.066 af			
Primary =	5.02 cfs @ 12.12 hrs, Volume=	0.298 af			
Routed to Pond dmh21 : dmh					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 11.80 hrs Surf.Area= 0.022 ac Storage= 0.045 af

Plug-Flow detention time= 116.7 min calculated for 0.363 af (95% of inflow) Center-of-Mass det. time= 90.3 min (908.8 - 818.5)

2889-01 - Proposed HydroCAD_rev3 Prepared by Allen & Major Associates, Inc

		n 02881 © 2022	HydroCAD Software Solutions LLC	Finited	Page 34
Volume			Storage Description		
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A 0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids		
#2A	0.67'	0 003 af	Shea Dry Well 1000gal Inside #1		
π Δ Λ	0.07	0.000 ai	Inside = 62.0 "W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf		
			Outside= 68.0 "W x 34.0 "H => 15.80 sf x 10.50 'L = 165.9 cf		
		0.005 af	x 10.00 = 0.045 af Total Available Storage		
Storage	e Group A c	reated with Cha	mber Wizard		
Device F	Routing	Invert Ou	tlet Devices		
#0 F	Primary	3.50' A ı	tomatic Storage Overflow (Discharged without head)		
	Discarded		600 in/hr Exfiltration over Wetted area		
#2 F	Primary		" Round Culvert L= 10.0' Ke= 0.500		
			et / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900		
		n=	0.010 PVC, smooth interior, Flow Area= 0.09 sf		
Discardeo	d OutFlow	Max=0.03 cfs @	11.80 hrs HW=3.50' (Free Discharge)		
└─1=Exfil	tration (Ex	filtration Controls	s 0.03 cfs)		
D	N 4 🗖 I N / .				
	vert (Contro		2.12 hrs HW=3.50' TW=900.77' (Dynamic Tailwater)		
-2-Cuiv		JIS 0.00 CIS)			
			Summary for Pond DW-8: House Drywell		
Storage m	ultiplyer add	led to account for	Og drywell at each dwelling unit. or number of dwelling units with subcatchment.		
Area multi	plyer adjust	ed to the accour	t for the percentage of roof area within subcatchment.		
Inflow Are	a= 0	555 ac 49 64%	Impervious, Inflow Depth = 1.86" for 2-year event		
nflow		19 cfs @ 12.09			
Outflow		14 cfs @ 12.12			
Discarded		01 cfs @ 11.75			
Primary	= 1.1	13 cfs @ 12.12	hrs, Volume= 0.069 af		
Routed	l to Pond dr	nh25 : dmh			
Douting by	Dup Stor I	nd mothod Time	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		
			e Span= 0.00-36.00 hrs, dt= 0.05 hrs rea= 0.004 ac Storage= 0.009 af		
	- 0.00 @ 1		104 - 0.004 do - 0.012g0 - 0.000 di		
Plug-Flow	detention ti	me= 103.8 min o	alculated for 0.082 af (95% of inflow)		
Center-of-	Mass det. ti	me= 80.2 min (§	902.4 - 822.1)		
/aluma	Invort	Avail Starage	Storage Description		
Volume			Storage Description		
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A 0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids		
#2A	0.67'	0.003 af			
#27	0.07	0.000 ai	Inside = 62.0° W x 30.0°H => 12.86 sf x 10.00'L = 128.6 cf		
			Outside= $68.0^{\circ}W \times 34.0^{\circ}H \Rightarrow 15.80 \text{ sf} \times 10.50^{\circ}L = 165.9 \text{ cf}$		
		0.005 af	x 2.00 = 0.009 af Total Available Storage		
Storad	e Group A c	reated with Cha	mber Wizard		
Device F	Routing	invert OL	tlet Devices		

Device	Routing	inven	Outlet Devices	
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)	
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area	
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500	
			Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900	
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf	

Discarded OutFlow Max=0.01 cfs @ 11.75 hrs HW=3.50' (Free Discharge) **—1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 12.12 hrs HW=3.50' TW=923.15' (Dynamic Tailwater) -2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-9: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Primary =	1.045 ac, 52.81% Impervious, Inflov 2.33 cfs @ 12.09 hrs, Volume= 2.23 cfs @ 12.12 hrs, Volume= 0.02 cfs @ 11.95 hrs, Volume= 2.21 cfs @ 12.12 hrs, Volume= d dmh23 : dmh	w Depth = 1.94" for 2-year event 0.169 af 0.158 af, Atten= 4%, Lag= 1.4 min 0.039 af 0.119 af					
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 11.95 hrs Surf.Area= 0.013 ac Storage= 0.027 af							
Plug-Flow detention time= 157.2 min calculated for 0.158 af (93% of inflow) Center-of-Mass det. time= 121.6 min(940.1 - 818.5)							

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 6.00 = 0.027 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500 Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900 n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.02 cfs @ 11.95 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.00 cfs @ 12.12 hrs HW=3.50' TW=898.94' (Dynamic Tailwater) -2=Culvert (Controls 0.00 cfs)

Summary for Pond G1: gabion

[92] Warning: Device #3 is above defined storage

[90] Warning: Qout>Qin may require smaller dt or Finer Routing

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=21)

Inflow Are	a =	5.477 ac, 48.32% Impervie	ous, Inflow Depth > 1.37"	' for 2-year event
Inflow	=	1.31 cfs @ 12.84 hrs, Vol	ume= 0.624 af	-
Outflow	=	1.32 cfs @ 12.80 hrs, Vol	ume= 0.623 af, A	tten= 0%, Lag= 0.0 min
Primary	=	1.32 cfs @ 12.80 hrs, Vol	ume= 0.623 af	-
Routed	to Read	h R-02 : Routing through we	tland/swale	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 878.10' @ 13.88 hrs Surf.Area= 368 sf Storage= 167 cf Flood Elev= 880.00' Surf.Area= 2 sf Storage= 444 cf

Plug-Flow detention time= 3.9 min calculated for 0.622 af (100% of inflow) Center-of-Mass det. time= 2.7 min (949.8 - 947.1)

2889-01 - Proposed HydroCAD_rev3 Prepared by Allen & Major Associates, Inc HydroCAD® 10.20-2f s/n 02881 © 2022 HydroCAD Software Solutions LLC

Volume Invert Avail.Storage Storage Description
#1 877.50' 442 cf 18.0" Round Pipe Storage
L= 250.0' #2 879.00' 2 cf 1.50'D x 1.00'H Vertical Cone/Cylinder
444 cf Total Available Storage
Device Routing Invert Outlet Devices
#1 Primary 877.50' 2.0" Horiz. invert orifices X 125.00 C= 0.600 Limited to weir flow at low heads
#2Primary878.25'2.0" Vert. spring line orifices X 125.00C= 0.600Limited to weir flow at low heads#3Primary880.00'18.0" Horiz. overflow grates X 2.00C= 0.600Limited to weir flow at low heads
Primary OutFlow Max=0.83 cfs @ 12.80 hrs HW=878.06' TW=878.05' (Dynamic Tailwater) 1=invert orifices (Orifice Controls 0.83 cfs @ 0.30 fps) 2=spring line orifices (Controls 0.00 cfs) 3=overflow grates (Controls 0.00 cfs)
Summary for Pond G2: gabion
[92] Warning: Device #3 is above defined storage
Inflow Area = 9.959 ac, 17.21% Impervious, Inflow Depth > 0.92" for 2-year event
Inflow = 2.19 cfs @ 12.76 hrs, Volume= 0.765 af Outflow = 2.19 cfs @ 12.76 hrs, Volume= 0.765 af, Atten= 0%, Lag= 0.1 min
Primary = 2.19 cfs @ 12.76 hrs, Volume= 0.765 af Routed to Link SP3 : STUDY POINT #3
Rouled to Link SP3 . STODY POINT #3
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 810.37' @ 12.76 hrs Surf.Area= 50 sf Storage= 2 cf
Flood Elev= 811.80' Storage= 141 cf
Plug-Flow detention time= 0.0 min calculated for 0.764 af (100% of inflow) Center-of-Mass det. time= 0.0 min(974.1-974.1)
Values Invest Avail Charage Charage Description
Volume Invert Avail.Storage Storage Description
volume Invert Avail.Storage Storage Description #1 810.30' 141 cf 18.0" Round Pipe Storage L= 80.0'
#1 810.30' 141 cf 18.0" Round Pipe Storage
#1 810.30' 141 cf 18.0" Round Pipe Storage L= 80.0'
#1 810.30' 141 cf 18.0" Round Pipe Storage L = 80.0' Device Routing Invert Outlet Devices #1 Primary #2 810.30' 2.0" Horiz. invert orifices X 80.00 C= 0.600 Limited to weir flow at low heads #2 Primary 811.05' 2.0" Vert. spring line orifices X 80.00 C= 0.600 Limited to weir flow at low heads
#1 810.30' 141 cf 18.0" Round Pipe Storage L= 80.0' Device Routing Invert Outlet Devices #1 Primary 810.30' 2.0" Horiz. invert orifices X 80.00 C= 0.600 Limited to weir flow at low heads #2 Primary 811.05' 2.0" Vert. spring line orifices X 80.00 C= 0.600 Limited to weir flow at low heads #3 Primary 811.80' 18.0" Horiz. overflow grates X 2.00 C= 0.600 Limited to weir flow at low heads Primary OutFlow Max=2.19 cfs @ 12.76 hrs HW=810.37' TW=0.00' (Dynamic Tailwater) 1=invert orifices (Orifice Controls 2.19 cfs @ 1.26 fps) 2.19 cfs @ 1.26 fps) 2=spring line orifices (Controls 0.00 cfs)
#1 810.30' 141 cf 18.0" Round Pipe Storage L= 80.0' Device Routing Invert Outlet Devices #1 Primary 810.30' 2.0" Horiz. invert orifices X 80.00 C= 0.600 Limited to weir flow at low heads #2 Primary 811.05' 2.0" Vert. spring line orifices X 80.00 C= 0.600 Limited to weir flow at low heads #3 Primary 811.80' 18.0" Horiz. overflow grates X 2.00 C= 0.600 Limited to weir flow at low heads Primary OutFlow Max=2.19 cfs @ 12.76 hrs HW=810.37' TW=0.00' (Dynamic Tailwater) 1=invert orifices (Orifice Controls 2.19 cfs @ 1.26 fps) 2=spring line orifices (Controls 0.00 cfs) 3=overflow grates (Controls 0.00 cfs) Summary for Link SP1: STUDY POINT #1 Inflow Area = 6.871 ac, 28.86% Impervious, Inflow Depth = 1.03" for 2-year event
#1 810.30' 141 cf 18.0" Round Pipe Storage L= 80.0' Device Routing Invert Outlet Devices #1 Primary 810.30' 2.0" Horiz. invert orifices X 80.00 C= 0.600 Limited to weir flow at low heads #2 Primary 811.05' 2.0" Vert. spring line orifices X 80.00 C= 0.600 Limited to weir flow at low heads #3 Primary 811.80' 18.0" Horiz. overflow grates X 2.00 C= 0.600 Limited to weir flow at low heads Primary OutFlow Max=2.19 cfs @ 12.76 hrs HW=810.37' TW=0.00' (Dynamic Tailwater) 1=invert orifices (Controls 2.19 cfs @ 1.26 fps) 2=spring line orifices (Controls 0.00 cfs) 2=spring line orifices (Controls 0.00 cfs) Summary for Link SP1: STUDY POINT #1
#1 810.30' 141 cf 18.0" Round Pipe Storage L = 80.0' Device Routing Invert Outlet Devices #1 Primary 810.30' 2.0" Horiz. invert orifices X 80.00 C = 0.600 Limited to weir flow at low heads #2 Primary 811.05' 2.0" Vert. spring line orifices X 80.00 C = 0.600 Limited to weir flow at low heads #3 Primary 811.80' 18.0" Horiz. overflow grates X 2.00 C = 0.600 Limited to weir flow at low heads #1=invert orifices (Orifice Controls 2.19 cfs @ 12.76 hrs HW=810.37' TW=0.00' (Dynamic Tailwater) 1=invert orifices (Orifice Controls 2.19 cfs @ 1.26 fps) 2=spring line orifices (Controls 0.00 cfs) 3=overflow grates (Controls 0.00 cfs) Summary for Link SP1: STUDY POINT #1 Inflow Area = 6.871 ac, 28.86% Impervious, Inflow Depth = 1.03" for 2-year event 0.592 af
#1 810.30' 141 cf 18.0" Round Pipe Storage L = 80.0' Device Rouing Invert Outlet Devices #1 Primary 810.30' 2.0" Horiz. invert orifices X 80.00 C = 0.600 Limited to weir flow at low heads #2 Primary 811.05' 2.0" Vert. spring line orifices X 80.00 C = 0.600 Limited to weir flow at low heads #3 Primary 811.80' 18.0" Horiz. overflow grates X 2.00 C = 0.600 Limited to weir flow at low heads #3 Primary 811.80' 18.0" Horiz. overflow grates X 2.00 C = 0.600 Limited to weir flow at low heads Primary OutFlow Max=2.19 cfs @ 12.76 hrs HW=810.37' TW=0.00' (Dynamic Tailwater) -1=invert orifices (Orifice Controls 2.19 cfs @ 1.26 fps) -2=spring line orifices (Controls 0.00 cfs) -2=spring line orifices (Controls 0.00 cfs) Summary for Link SP1: STUDY POINT #1 Inflow Area = 6.871 ac, 28.86% Impervious, Inflow Depth = 1.03" for 2-year event Inflow = 3.91 cfs @ 12.27 hrs, Volume= 0.592 af Primary = 3.91 cfs @ 12.27 hrs, Volume= 0.592 af Primary = 3.91 cfs @ 12.27 hrs, Volume= 0.592 af
#1 810.30' 141 cf 18.0" Round Pipe Storage L = 80.0' Device Routing Invert Outlet Devices #1 Primary 810.30' 2.0" Horiz. invert orifices X 80.00 C = 0.600 Limited to weir flow at low heads #2 Primary 811.05' 2.0" Vert. spring line orifices X 80.00 C = 0.600 Limited to weir flow at low heads #3 Primary 811.80' 18.0" Horiz. overflow grates X 2.00 C = 0.600 Limited to weir flow at low heads Primary OutFlow Max=2.19 cfs @ 12.76 hrs HW=810.37' TW=0.00' (Dynamic Tailwater) ==invert orifices (Orifice Controls 2.19 cfs @ 1.26 fps) 2=spring line orifices (Controls 0.00 cfs) 3=overflow grates (Controls 0.00 cfs) 3=overflow grates (Controls 0.00 cfs) Summary for Link SP1: STUDY POINT #1 Inflow Area = 6.871 ac, 28.86% Impervious, Inflow Depth = 1.03" for 2-year event Inflow = 3.91 cfs @ 12.27 hrs, Volume= 0.592 af Primary = 3.91 cfs @ 12.27 hrs, Volume= 0.592 af Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs
#1 810.30' 141 of 18.0" Round Pipe Storage L= 80.0' Device Routing Invert Outlet Devices #1 Primary 810.30' 2.0" Horiz. invert orifices X 80.00 C= 0.600 Limited to weir flow at low heads #2 Primary 811.05' 2.0" Vert. spring line orifices X 80.00 C= 0.600 Limited to weir flow at low heads #3 Primary 811.80'' Horiz. overflow grates X 2.00 C= 0.600 Limited to weir flow at low heads Primary OutFlow Max=2.19 cfs @ 12.76 hrs HW=810.37' TW=0.00' (Dynamic Tailwater) -1=invert orifices (Controls 2.19 cfs @ 1.26 hps) 12.6 fps) 2=spring line orifices (Controls 0.00 cfs) Summary for Link SP1: STUDY POINT #1 Inflow Area = 6.871 ac, 28.86% Impervious, Inflow Depth = 1.03" for 2-year event Inflow = 3.91 cfs @ 12.27 hrs, Volume= 0.592 af Primary = 3.91 cfs @ 12.27 hrs, Volume= 0.592 af, Atten= 0%, Lag= 0.0 min Primary = 3.91 cfs @ 12.27 hrs, Volume= 0.592 af, Atten= 0%, Lag= 0.0 min Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Summary for Link SP2: STUDY POINT #2 Inflow Area = 10.270 ac, 31.55% Impervious, Inflow Depth > 1.11" for 2-year event Inflow = Inflow = 2.01 cfs @ 12.59 hrs, Volume=
#1 810.30' 141 cf 18.0" Round Pipe Storage L= 80.0' Device Routing Invert Outlet Devices #1 Primary 810.30' 2.0" Horiz. invert orifices X 80.00 C= 0.600 Limited to weir flow at low heads #2 Primary 811.05' 2.0" Vert. spring line orifices X 80.00 C= 0.600 Limited to weir flow at low heads #3 Primary 811.80' 18.0" Horiz. overflow grates X 2.00 C = 0.600 Limited to weir flow at low heads #1=invert orifices (Controls 0.10 cfs) 12.76 hrs HW=810.37' TW=0.00' (Dynamic Tailwater) 1=singering line orifices 12.76 hrs HW=810.37' TW=0.00' (Dynamic Tailwater) 1=singering line orifices (Controls 0.00 cfs) 3=overflow grates (Controls 0.00 cfs) 3=overflow grates (Controls 0.00 cfs) Summary for Link SP1: STUDY POINT #1 Inflow Area = 6.871 ac, 28.86% Impervious, Inflow Depth = 1.03" for 2-year event Inflow = 3.91 cfs @ 12.27 hrs, Volume= 0.592 af Primary = 3.91 cfs @ 12.27 hrs, Volume= 0.592 af Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Summary for Link SP2: STUDY POINT #2 Inflow Area = 10.270 ac, 31.55% Impervious, Inflow Depth > 1.11" for 2-year event

Summary for Link SP3: STUDY POINT #3

Inflow Area =	11.281 ac, 15.19% Impervious, Infl	ow Depth > 0.92" for 2-year event
Inflow =	2.58 cfs @ 12.67 hrs, Volume=	0.869 af
Primary =	2.58 cfs @ 12.67 hrs, Volume=	0.869 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP4: STUDY POINT #4

Inflow Area =	0.605 ac, 10.67% Impervious, Inflow	v Depth = 1.11" for 2-year event
Inflow =	0.75 cfs @ 12.10 hrs, Volume=	0.056 af
Primary =	0.75 cfs @12.10 hrs, Volume=	0.056 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP5: STUDY POINT #5

Inflow Area =	0.158 ac,	0.00% Impervious, Inflow	Depth = 1.00"	for 2-year event
Inflow =	0.17 cfs @	12.10 hrs, Volume=	0.013 af	
Primary =	0.17 cfs @	12.10 hrs, Volume=	0.013 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentP-1A: Subcat P-1A	Runoff Area=3.168 ac 17.98% Impervious Runoff Depth=2.33" Flow Length=782' Tc=13.3 min CN=75 Runoff=6.75 cfs 0.615 af
SubcatchmentP-1B: Subcat P-1B	Runoff Area=24,871 sf 23.27% Impervious Runoff Depth=2.58" Flow Length=315' Tc=8.2 min CN=78 Runoff=1.58 cfs 0.123 af
SubcatchmentP-1C: Subcat P-1C	Runoff Area=0.337 ac 20.77% Impervious Runoff Depth=2.33" Tc=6.0 min CN=75 Runoff=0.90 cfs 0.065 af
SubcatchmentP-1D: Subcat P-1D	Runoff Area=0.715 ac 12.26% Impervious Runoff Depth=2.33" Tc=6.0 min CN=75 Runoff=1.91 cfs 0.139 af
SubcatchmentP-1E: Subcat P-1E	Runoff Area=0.382 ac 53.49% Impervious Runoff Depth=3.23" Tc=6.0 min CN=85 Runoff=1.40 cfs 0.103 af
SubcatchmentP-1F: Subcat P-1F	Runoff Area=1.697 ac 54.12% Impervious Runoff Depth=3.43" Tc=6.0 min CN=87 Runoff=6.56 cfs 0.485 af
SubcatchmentP-2A: Subcat P-2A	Runoff Area=2.217 ac 8.54% Impervious Runoff Depth=2.33" Tc=6.0 min CN=75 Runoff=5.91 cfs 0.430 af
SubcatchmentP-2B: Subcat P-2B	Runoff Area=2.577 ac 15.70% Impervious Runoff Depth=2.41" Tc=6.0 min CN=76 Runoff=7.13 cfs 0.518 af
SubcatchmentP-2E: Subcat P-2E	Runoff Area=2.368 ac 52.59% Impervious Runoff Depth=3.43" Tc=6.0 min CN=87 Runoff=9.15 cfs 0.676 af
SubcatchmentP-2F: Subcat P-2F	Runoff Area=1.509 ac 38.02% Impervious Runoff Depth=3.04" Tc=6.0 min CN=83 Runoff=5.24 cfs 0.382 af
SubcatchmentP-2G: Subcat P-2G	Runoff Area=1.045 ac 52.81% Impervious Runoff Depth=3.43" Tc=6.0 min CN=87 Runoff=4.04 cfs 0.298 af
SubcatchmentP-2H: Subcat P-2H	Runoff Area=0.555 ac 49.64% Impervious Runoff Depth=3.33" Tc=6.0 min CN=86 Runoff=2.09 cfs 0.154 af
SubcatchmentP-3A: Subcat P-3A	Runoff Area=5.016 ac 0.00% Impervious Runoff Depth=1.93" Flow Length=644' Tc=16.1 min CN=70 Runoff=8.07 cfs 0.805 af
SubcatchmentP-3B: Subcat P-3B	Runoff Area=1.323 ac 0.00% Impervious Runoff Depth=2.08" Tc=6.0 min CN=72 Runoff=3.13 cfs 0.230 af
SubcatchmentP-3C: Subcat P-3C	Runoff Area=0.370 ac 14.94% Impervious Runoff Depth=2.58" Tc=6.0 min CN=78 Runoff=1.10 cfs 0.080 af
SubcatchmentP-3D: Subcat P-3D	Runoff Area=1.714 ac 23.07% Impervious Runoff Depth=2.76" Tc=6.0 min CN=80 Runoff=5.44 cfs 0.395 af
SubcatchmentP-3E: Subcat P-3E	Runoff Area=1.519 ac 41.32% Impervious Runoff Depth=3.13" Tc=6.0 min CN=84 Runoff=5.43 cfs 0.397 af
SubcatchmentP-3F: Subcat P-3F	Runoff Area=1.339 ac 47.44% Impervious Runoff Depth=3.23" Tc=6.0 min CN=85 Runoff=4.92 cfs 0.360 af
SubcatchmentP-4: Subcat P-4	Runoff Area=26,375 sf 10.67% Impervious Runoff Depth=2.33" Tc=6.0 min CN=75 Runoff=1.62 cfs 0.117 af
SubcatchmentP-5: Subcat P-5	Runoff Area=6,874 sf 0.00% Impervious Runoff Depth=2.16" Tc=6.0 min CN=73 Runoff=0.39 cfs 0.028 af
Reach R-01: Routing to wetlands	Avg. Flow Depth=0.23' Max Vel=0.32 fps Inflow=3.13 cfs 0.230 af n=0.400 L=722.0' S=0.1087 '/' Capacity=43.77 cfs Outflow=1.22 cfs 0.230 af

Reach R-02: Routing through wetland/swale	Avg. Flow Depth=0.68' Max Vel=0.30 fps Inflow=6.84 cfs 1.643 af n=0.400 L=735.0' S=0.0189 '/' Capacity=24.55 cfs Outflow=4.25 cfs 1.640 af
Reach SW-1: swale	Avg. Flow Depth=0.19' Max Vel=3.31 fps Inflow=1.82 cfs 0.122 af n=0.041 L=252.0' S=0.1052 '/' Capacity=49.36 cfs Outflow=1.79 cfs 0.122 af
Reach SW-2: swale	Avg. Flow Depth=0.17' Max Vel=3.13 fps Inflow=1.40 cfs 0.103 af n=0.041 L=228.0' S=0.1110 '/' Capacity=50.70 cfs Outflow=1.39 cfs 0.103 af
Pond DB-1: detention	Peak Elev=812.66' Storage=28,258 cf Inflow=22.01 cfs 1.797 af Primary=7.69 cfs 1.778 af Secondary=0.00 cfs 0.000 af Outflow=7.69 cfs 1.778 af
Pond dmh01: dmh	Peak Elev=850.06' Inflow=1.39 cfs 0.103 af 12.0" Round Culvert n=0.013 L=12.0' S=0.0100 '/' Outflow=1.39 cfs 0.103 af
Pond dmh05: dmh	Peak Elev=870.27' Inflow=6.27 cfs 0.397 af 15.0" Round Culvert n=0.013 L=97.0' S=0.0351 '/' Outflow=6.27 cfs 0.397 af
Pond dmh20: dmh	Peak Elev=904.08' Inflow=5.01 cfs 0.313 af 15.0" Round Culvert n=0.013 L=205.0' S=0.0119 '/' Outflow=5.01 cfs 0.313 af
Pond dmh21: dmh	Peak Elev=901.38' Inflow=13.77 cfs 0.900 af 24.0" Round Culvert n=0.013 L=190.0' S=0.0100 '/' Outflow=13.77 cfs 0.900 af
Pond dmh23: dmh	Peak Elev=899.57' Inflow=17.63 cfs 1.146 af 30.0" Round Culvert n=0.013 L=27.0' S=0.0130 '/' Outflow=17.63 cfs 1.146 af
Pond dmh25: dmh	Peak Elev=923.39' Inflow=2.00 cfs 0.136 af 12.0" Round Culvert n=0.013 L=97.0' S=0.0697 '/' Outflow=2.00 cfs 0.136 af
Pond dmh50: dmh	Peak Elev=928.90' Inflow=4.70 cfs 0.291 af 15.0" Round Culvert n=0.013 L=102.0' S=0.0799 '/' Outflow=4.70 cfs 0.291 af
Pond dmh51: dmh	Peak Elev=920.65' Inflow=4.70 cfs 0.291 af 15.0" Round Culvert n=0.013 L=127.0' S=0.0780 '/' Outflow=4.70 cfs 0.291 af
Pond dmh52: dmh	Peak Elev=893.77' Inflow=4.70 cfs 0.291 af 15.0" Round Culvert n=0.013 L=62.0' S=0.0802 '/' Outflow=4.70 cfs 0.291 af
Pond dmh53: dmh	Peak Elev=917.96' Inflow=5.18 cfs 0.302 af 18.0" Round Culvert n=0.013 L=31.0' S=0.0465 '/' Outflow=5.18 cfs 0.302 af
Pond dmh55: dmh	Peak Elev=904.09' Inflow=10.37 cfs 0.621 af 24.0" Round Culvert n=0.013 L=72.0' S=0.0374 '/' Outflow=10.37 cfs 0.621 af
Pond dmh56: dmh	Peak Elev=898.47' Inflow=11.44 cfs 0.701 af 30.0" Round Culvert n=0.013 L=20.0' S=0.0100 '/' Outflow=11.44 cfs 0.701 af
Pond dmh57: dmh	Peak Elev=898.00' Inflow=11.44 cfs 0.701 af 30.0" Round Culvert n=0.013 L=103.0' S=0.0080 '/' Outflow=11.44 cfs 0.701 af
Pond dmh58: dmh	Peak Elev=896.99' Inflow=11.44 cfs 0.701 af 30.0" Round Culvert n=0.013 L=278.0' S=0.0080 '/' Outflow=11.44 cfs 0.701 af
Pond dmh59: dmh	Peak Elev=894.74' Inflow=11.44 cfs 0.701 af 30.0" Round Culvert n=0.013 L=82.0' S=0.0091 '/' Outflow=11.44 cfs 0.701 af
Pond dmh60: dmh	Peak Elev=893.80' Inflow=11.44 cfs 0.701 af 30.0" Round Culvert n=0.013 L=258.0' S=0.0115 '/' Outflow=11.44 cfs 0.701 af
Pond dmh61: dmh	Peak Elev=890.73' Inflow=11.44 cfs 0.701 af 30.0" Round Culvert n=0.013 L=278.0' S=0.0100 '/' Outflow=11.44 cfs 0.701 af
Pond dmh62: dmh	Peak Elev=888.17' Inflow=16.14 cfs 0.992 af 30.0" Round Culvert n=0.013 L=62.0' S=0.0248 '/' Outflow=16.14 cfs 0.992 af

2889-01 - Proposed HydroCAD_rev3 Prepared by Allen & Major Associates, Inc HydroCAD® 10.20-2f s/n 02881 © 2022 HydroCAD Software Solutions LLC

Pond dmh69: dmh	Peak Elev=814.20' Inflow=16.14 cfs 0.992 af 30.0" Round Culvert n=0.013 L=29.0' S=0.0338 '/' Outflow=16.14 cfs 0.992 af
Pond DS-1a: detention	Peak Elev=849.77' Storage=10,453 cf Inflow=9.40 cfs 0.622 af Outflow=3.15 cfs 0.622 af
Pond DS-1b: detention	Peak Elev=860.49' Storage=1,725 cf Inflow=1.58 cfs 0.123 af Outflow=0.45 cfs 0.123 af
Pond DS-2a: detention	Peak Elev=897.24' Storage=25,211 cf Inflow=19.63 cfs 1.282 af Outflow=3.95 cfs 1.280 af
Pond DS-2b: detention	Peak Elev=863.87' Storage=4,240 cf Inflow=6.81 cfs 0.451 af Outflow=4.21 cfs 0.450 af
Pond DW-1: House Drywell	Peak Elev=3.50' Storage=1,963 cf Inflow=6.56 cfs 0.485 af Discarded=0.03 cfs 0.069 af Primary=6.27 cfs 0.397 af Outflow=6.30 cfs 0.466 af
Pond DW-10: House Drywell Discarded=0.04 cfs 0.075	Peak Elev=3.50' Storage=0.054 af Inflow=6.75 cfs 0.615 af af Primary=0.19 cfs 0.153 af Secondary=6.43 cfs 0.365 af Outflow=6.65 cfs 0.593 af
Pond DW-11: House Drywell	Peak Elev=3.50' Storage=0.036 af Inflow=7.13 cfs 0.518 af Discarded=0.03 cfs 0.051 af Primary=6.81 cfs 0.451 af Outflow=6.83 cfs 0.503 af
Pond DW-12: House Drywell	Peak Elev=3.50' Storage=0.036 af Inflow=5.91 cfs 0.430 af Discarded=0.03 cfs 0.051 af Primary=5.64 cfs 0.364 af Outflow=5.66 cfs 0.415 af
Pond DW-2: House Drywell	Peak Elev=3.50' Storage=0.009 af Inflow=1.91 cfs 0.139 af Discarded=0.01 cfs 0.013 af Primary=1.82 cfs 0.122 af Outflow=1.83 cfs 0.135 af
Pond DW-3: House Drywell	Peak Elev=3.50' Storage=0.041 af Inflow=5.44 cfs 0.395 af Discarded=0.03 cfs 0.059 af Primary=5.19 cfs 0.319 af Outflow=5.22 cfs 0.377 af
Pond DW-4: House Drywell	Peak Elev=3.50' Storage=0.050 af Inflow=5.43 cfs 0.397 af Discarded=0.04 cfs 0.073 af Primary=5.18 cfs 0.302 af Outflow=5.21 cfs 0.376 af
Pond DW-5: House Drywell	Peak Elev=3.50' Storage=0.036 af Inflow=5.24 cfs 0.382 af Discarded=0.03 cfs 0.053 af Primary=5.01 cfs 0.313 af Outflow=5.03 cfs 0.367 af
Pond DW-6: House Drywell	Peak Elev=3.50' Storage=0.036 af Inflow=4.92 cfs 0.360 af Discarded=0.03 cfs 0.054 af Primary=4.70 cfs 0.291 af Outflow=4.72 cfs 0.345 af
Pond DW-7: House Drywell	Peak Elev=3.50' Storage=0.045 af Inflow=9.15 cfs 0.676 af Discarded=0.03 cfs 0.070 af Primary=8.76 cfs 0.587 af Outflow=8.79 cfs 0.657 af
Pond DW-8: House Drywell	Peak Elev=3.50' Storage=0.009 af Inflow=2.09 cfs 0.154 af Discarded=0.01 cfs 0.014 af Primary=2.00 cfs 0.136 af Outflow=2.01 cfs 0.150 af
Pond DW-9: House Drywell	Peak Elev=3.50' Storage=0.027 af Inflow=4.04 cfs 0.298 af Discarded=0.02 cfs 0.041 af Primary=3.86 cfs 0.246 af Outflow=3.88 cfs 0.287 af
Pond G1: gabion	Peak Elev=878.40' Storage=275 cf Inflow=3.95 cfs 1.280 af Outflow=3.95 cfs 1.279 af
Pond G2: gabion	Peak Elev=811.09' Storage=75 cf Inflow=7.69 cfs 1.778 af Outflow=7.68 cfs 1.778 af
Link SP1: STUDY POINT #1	Inflow=9.80 cfs 1.327 af Primary=9.80 cfs 1.327 af
Link SP2: STUDY POINT #2	Inflow=6.84 cfs 2.089 af Primary=6.84 cfs 2.089 af
Link SP3: STUDY POINT #3	Inflow=8.82 cfs 2.007 af Primary=8.82 cfs 2.007 af

Link SP4: STUDY POINT #4

Link SP5: STUDY POINT #5

Inflow=1.62 cfs 0.117 af Primary=1.62 cfs 0.117 af

Inflow=0.39 cfs 0.028 af Primary=0.39 cfs 0.028 af

Total Runoff Area = 29.185 acRunoff Volume = 6.400 afAverage Runoff Depth = 2.63"76.01% Pervious = 22.184 ac23.99% Impervious = 7.001 ac

Summary for Subcatchment P-1A: Subcat P-1A

[47] Hint: Peak is 164% of capacity of segment #3

Runoff = 6.75 cfs @ 12.19 hrs, Volume= 0.615 af, Depth= 2.33" Routed to Pond DW-10 : House Drywell

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.85"

	Area	(ac) (CN D	escription						
	0.	168	55 V	/oods, Good	, HSG B					
	0.	059	98 F	oofs, HSG B						
	0.	085	98 F	aved parking, HSG B						
	0.	183	61 >	75% Ġrass d	over, Good	, HSG B				
	1.:	282	74 >	75% Grass o	over, Good	, HSG C				
	0.	966	70 V	/oods, Good	, HSG C					
	0.	046	98 F	aved parking	, HSG C					
_	0.3	379	98 F	oofs, HSG C	,					
	3.	168	75 V	/eighted Ave	rage					
	2.	599	8	2.02% Pervi	ous Area					
	0.	569	1	7.98% Imper	vious Area					
	Tc	Length	Slo	be Velocity	Capacity	Description				
_	(min)	(feet)	(ft	ft) (ft/sec)	(cfs)					
	9.8	55	0.16	70 0.09		Sheet Flow,				
						Woods: Dense underbrush n= 0.800 P2= 3.28"				
	1.1	105	0.05	0 1.57		Shallow Concentrated Flow,				
						Short Grass Pasture Kv= 7.0 fps				
	2.4	622	0.02	30 4.24	4.11	Trap/Vee/Rect Channel Flow,				
						Bot.W=1.00' D=0.25' Z= 3.0 & 20.0 '/' Top.W=6.75'				
_						n= 0.016 Asphalt, rough				
	133	782	Tota							

13.3 782 Total

Summary for Subcatchment P-1B: Subcat P-1B

Runoff = 1.58 cfs @ 12.12 hrs, Volume= 0.123 af, Depth= 2.58" Routed to Pond DS-1b : detention

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.85"

A	Area (sf)	CN	Description		
	4,342	98	Paved park	ing, HSG C	
	1,445		Paved park		
	3,282	61	>75% Gras	s cover, Go	bod, HSG B
	13,797	74	>75% Gras	s cover, Go	bod, HSG C
	2,004	70	Woods, Go	od, HSG C	
	24,871	78	Weighted A	verage	
	19,083		76.73% Pe	rvious Area	
	5,787		23.27% Imp	pervious Ar	ea
Тс	Length	Slope	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft	,	(cfs)	Beschpiton
6.6	. ,	0.0960	/ (/ /	(/	Sheet Flow, A-B
0.0		0.000			Grass: Bermuda $n= 0.410$ P2= 3.28"
1.4	183	0.0960) 2.17		Shallow Concentrated Flow, B-C
					Short Grass Pasture Kv= 7.0 fps
0.2	82	0.0840	5.88		Shallow Concentrated Flow, C-D
					Paved Kv= 20.3 fps
8.2	315	Total			

Summary for Subcatchment P-1C: Subcat P-1C

Runoff = 0.90 cfs @ 12.09 hrs, Volume= 0.065 af, Depth= 2.33" Routed to Link SP1 : STUDY POINT #1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.85"

Area (ac)	CN	Description
0.002	98	Paved parking, HSG C
0.068	98	Paved parking, HSG B
0.111	61	>75% Grass cover, Good, HSG B
0.156	74	>75% Grass cover, Good, HSG C
0.337	75	Weighted Average
0.267		79.23% Pervious Area
0.070		20.77% Impervious Area
Tc Leng	,	lope Velocity Capacity Description
(min) (fe	et)	(ft/ft) (ft/sec) (cfs)
6.0		Direct Entry, TR-55 MIN

Summary for Subcatchment P-1D: Subcat P-1D

0.139 af, Depth= 2.33"

Runoff = 1.91 cfs @ 12.09 hrs, Volume= Routed to Pond DW-2 : House Drywell

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.85"

Area (ac)	CN	Description	Description							
0.105	61	>75% Grass cove	>75% Grass cover, Good, HSG B							
0.060	98	Paved parking, H	ISG B							
0.027	98	Paved parking, H	ISG C							
0.523	74	>75% Grass cove	er, Good,	HSG C						
0.715	75	Weighted Averag	Weighted Average							
0.628		87.74% Pervious	s Area							
0.088		12.26% Impervious Area								
Tc Len (min) (fe	gth eet)	Slope Velocity C (ft/ft) (ft/sec)	Capacity (cfs)	Description						
6.0				Direct Entry,						

Summary for Subcatchment P-1E: Subcat P-1E

Runoff = 1.40 cfs @ 12.09 hrs, Volume= 0.103 af, Depth= 3.23" Routed to Reach SW-2 : swale

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.85"

Area (ac)	CN	Description					
0.040	61	>75% Grass cover, Good, HSG B					
0.037	98	Paved parking, HSG B					
0.168	98	Paved parking, HSG C					
0.138	74	>75% Grass cover, Good, HSG C					
0.382	85	Weighted Average					
0.178		46.51% Pervious Area					
0.204		53.49% Impervious Area					
Tc Leng (min) (fee	,	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)					
6.0		Direct Entry, tr55 min					

Summary for Subcatchment P-1F: Subcat P-1F

Runoff = 6.56 cfs @ 12.09 hrs, Volume= 0.485 af, Depth= 3.43" Routed to Pond DW-1 : House Drywell

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.85"

Area ((ac)	CN	Desc	Description					
0.1	779	74	>75%	% Grass co	over, Good	, HSG C			
0.4	457	98	Roof	s, HSG C					
0.4	461	98	Pave	ed parking,	HSG C				
1.0	697	87	Weig	Veighted Average					
0.1	779		45.8	45.88% Pervious Area					
0.9	919	54.12% Impervious Area							
Та	اممط	h	Clana	Volocity	Consoitu	Description			
	Lengt		Slope	Velocity	Capacity	Description			
<u>(min)</u>	(fee	t)	(ft/ft)	(ft/sec)	(cfs)				
6.0						Direct Entry, tr55 min			

Summary for Subcatchment P-2A: Subcat P-2A

Runoff = 5.91 cfs @ 12.09 hrs, Volume= Routed to Pond DW-12 : House Drywell

0.430 af, Depth= 2.33"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.85"

Area (ac)	CN	Description								
0.188	98	Roofs, HSG C								
0.001	98	Paved parking, HSG C								
0.636	70	Woods, Good, HSG C								
1.391	74	>75% Grass cover, Good, HSG C								
2.217	75	Weighted Average								
2.027	,	91.46% Pervious Area								
0.189)	8.54% Impervious Area								
Tc Le	ngth	Slope Velocity Capacity Description								
(min) (⁻	feet)	(ft/ft) (ft/sec) (cfs)								

6.0

Direct Entry,

Summary for Subcatchment P-2B: Subcat P-2B

Runoff = 7.13 cfs @ 12.09 hrs, Volume= 0.518 af, Depth= 2.41" Routed to Pond DW-11 : House Drywell

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.85"

Area (ac)	CN	Description								
1.178	74	>75% Grass cover, Good, HSG C	_							
0.687	70	Woods, Good, HSG C								
0.307	65	Brush, Good, HSG C								
0.021	98	Paved parking, HSG C								
0.384	98	Roofs, HSG Č								
2.577	76	Weighted Average								
2.172		84.30% Pervious Area								
0.405		15.70% Impervious Area								
Tc Leng (min) (fee	,	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)	_							
6.0		Direct Entry,								

Summary for Subcatchment P-2E: Subcat P-2E

9.15 cfs @ 12.09 hrs, Volume= 0.676 af, Depth= 3.43" Runoff = Routed to Pond DW-7 : House Drywell

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.85"

Area (ac) CN Description								
1.123 74 >75% Grass cover, Good, HSG C								
0.668 98 Roofs, HSG C								
0.577 98 Paved parking, HSG C								
2.368 87 Weighted Average 1.123 47.41% Pervious Area								
1.245 52.59% Impervious Area								
Tc Length Slope Velocity Capacity Description								
(min) (feet) (ft/ft) (ft/sec) (cfs)								
6.0 Direct Entry,								
Summary for Subcatchment P-2F: Subcat P-2F								
Runoff = 5.24 cfs @ 12.09 hrs, Volume= 0.382 af, Depth= 3.04" Routed to Pond DW-5 : House Drywell								
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.85"								
Area (ac) CN Description								
0.935 74 >75% Grass cover, Good, HSG C								
0.289 98 Roofs, HSG C								
0.284 98 Paved parking, HSG C 1.509 83 Weighted Average								
1.509 83 Weighted Average 0.935 61.98% Pervious Area								
0.574 38.02% Impervious Area								
Tc Length Slope Velocity Capacity Description								
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, tr55 min								
0.0 Direct Lifty, dog him								
Summary for Subcatchment P-2G: Subcat P-2G								
Runoff = 4.04 cfs @ 12.09 hrs, Volume= 0.298 af, Depth= 3.43" Routed to Pond DW-9 : House Drywell								
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.85"								
Area (ac) CN Description								
0.493 74 >75% Grass cover, Good, HSG C								
0.206 98 Roofs, HSG C								
0.346 98 Paved parking, HSG C								
1.045 87 Weighted Average 0.493 47.19% Pervious Area								
0.552 52.81% Impervious Area								

	0	Velocity (ft/sec)	Capacity (cfs)	Description
6.0				Direct Entry,

Direct Entry, tr55 min

Summary for Subcatchment P-2H: Subcat P-2H

Runoff = 2.09 cfs @ 12.09 hrs, Volume= 0.154 af, Depth= 3.33" Routed to Pond DW-8 : House Drywell

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.85"

Area	(ac)	CN	Desc	escription							
0.	.280	74	>75%	% Grass co	over, Good	SG C					
0.	.058	98		fs, HSG C							
0.	.217	98	Pave	ed parking	, HSG C						
0.	.555	86	Weig	ghted Aver	age						
0.	.280		50.3	6% Pervio	us Area						
0.	0.276 49.64% Impervious Area			4% Imper	∕ious Area						
-			<u>.</u>		o						
Тс	Leng		Slope	Velocity	Capacity	escription					
<u>(min)</u>	(fee	et)	(ft/ft)	(ft/sec)	(cfs)						
6.0						irect Entry, tr55 min					

Summary for Subcatchment P-3A: Subcat P-3A

Runoff = 8.07 cfs @ 12.23 hrs, Volume= 0.805 af, Depth= 1.93" Routed to Pond DB-1 : detention

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.85"

Area	a (ac)	CN	Deso	cription		
2.591 74 >75% Grass cover, Good, I					over, Good	, HSG C
(0.847	70		ds. Good.		
	1.578	65	5 Brus	h, Good, H	ISG C	
	5.016	70) Weid	phted Aver	ade	
	5.016			00% Pervi		
To	Leng	th	Slope	Velocity	Capacity	Description
(min)) (fee	et)	(ft/ft)	(ft/sec)	(cfs)	
12.7	' 5	50	0.0180	0.07		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.28"
1.0) (91	0.0850	1.46		Shallow Concentrated Flow, B-C
						Woodland Kv= 5.0 fps
1.1	20)4	0.1800	2.97		Shallow Concentrated Flow, C-D
						Short Grass Pasture Kv= 7.0 fps
1.3	29	99	0.3000	3.83		Shallow Concentrated Flow, D-E
						Short Grass Pasture Kv= 7.0 fps
16.1	64	4	Total			

Summary for Subcatchment P-3B: Subcat P-3B

Runoff = 3.13 cfs @ 12.10 hrs, Volume= Routed to Reach R-01 : Routing to wetlands 0.230 af, Depth= 2.08"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.85"

Area (ac)	CN	Description				
0.000	98	Roofs, HSG C				
0.172	65	Brush, Good, HSG C				
0.273	70	bods, Good, HSG C				
 0.878	74	75% Grass cover, Good, HSG C				
 1.323	72	eighted Average				
1.323		00.00% Pervious Area				
0.000		0.00% Impervious Area				

Prepared by Allen & Major	Associates, Inc
HydroCAD® 10.20-2f s/n 02881	© 2022 HydroCAD Software Solutions LLC

Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)									
6.0 Direct Entry,									
Summary for Subcatchment P-3C: Subcat P-3C									
Runoff = 1.10 cfs @ 12.09 hrs, Volume= 0.080 af, Depth= 2.58" Routed to Pond dmh56 : dmh									
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.85"									
Area (ac) CN Description									
0.315 74 >75% Grass cover, Good, HSG C 0.055 98 Paved parking, HSG C									
0.370 78 Weighted Average 0.315 85.06% Pervious Area 0.055 14.94% Impervious Area									
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)									
(min) (feet) (ft/sec) (cfs) 6.0 Direct Entry, tr55 min									
Summary for Subcatchment P-3D: Subcat P-3D									
Runoff = 5.44 cfs @ 12.09 hrs, Volume= 0.395 af, Depth= 2.76" Routed to Pond DW-3 : House Drywell									
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.85"									
Area (ac) CN Description									
1.319 74 >75% Grass cover, Good, HSG C 0.136 98 Roofs, HSG C									
0.260 98 Paved parking, HSG C									
1.71480Weighted Average1.31976.93% Pervious Area									
0.395 23.07% Impervious Area									
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)									
(min) (feet) (ft/sec) (cfs) 6.0 Direct Entry, tr-55 min									
Summary for Subcatchment P-3E: Subcat P-3E									
Runoff = 5.43 cfs @ 12.09 hrs, Volume= 0.397 af, Depth= 3.13" Routed to Pond DW-4 : House Drywell									
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.85"									
Area (ac) CN Description									
0.891 74 >75% Grass cover, Good, HSG C 0.301 98 Roofs, HSG C 0.327 98 Paved parking, HSG C									
1.51984Weighted Average0.89158.68% Pervious Area0.62841.32% Impervious Area									
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)									
6.0 Direct Entry, TR-55 MIN									

Summary for Subcatchment P-3F: Subcat P-3F

0.360 af, Depth= 3.23" Runoff = 4.92 cfs @ 12.09 hrs, Volume= Routed to Pond DW-6 : House Drywell

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.85"

Area	(ac)	CN	Desc	Description							
0.	704	74	>75%	6 Grass co	over, Good	HSG C					
0.	290	98	Roof	s, HSG C							
0.	345	98	Pave	ed parking	, HSG C						
1.	339	85	Weig	hted Aver	age						
0.	704		52.5	6% Pervio	us Area						
0.	0.635 47.44% Impervious Area			4% Imper∖	vious Area						
					_						
Тс	Leng		Slope	Velocity	Capacity	Description					
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)						
6.0						Direct Entry, TR-55 MIN					

Summary for Subcatchment P-4: Subcat P-4

1.62 cfs @ 12.09 hrs, Volume= 0.117 af, Depth= 2.33" Runoff = Routed to Link SP4 : STUDY POINT #4

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.85"

Area (sf)	CN	Description
56	61	>75% Grass cover, Good, HSG B
14,249	74	>75% Grass cover, Good, HSG C
9,257	70	Woods, Good, HSG C
2,814	98	Paved parking, HSG C
26,375	75	Weighted Average
23,561		89.33% Pervious Area
2,814		10.67% Impervious Area
Tc Length (min) (feet)	Slop (ft/	

6.0

Direct Entry, tr55 min

Summary for Subcatchment P-5: Subcat P-5

Runoff 0.39 cfs @ 12.10 hrs, Volume= 0.028 af, Depth= 2.16" = Routed to Link SP5 : STUDY POINT #5

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.85"

	Area (sf) (CN	Description			
	2,401	1	70	Woods, Go	od, HSG C		
	4,473	3	74	>75% Gras	s cover, Go	od, HSG C	
	6,874	1	73	Weighted A	verage		
	6,874	1		100.00% Pe	ervious Are	а	
(r	Tc Lengt nin) (fee		Slope (ft/ft)		Capacity (cfs)	Description	n
	5.0					Direct Entry,	try, TR-55 Min.
	5.0	0	Total,	Increased t	o minimum	Tc = 6.0 min	in

Summary for Reach R-01: Routing to wetlands

A subcatchment performs runoff calculations, including the associated Tc anc CN determinations. It does not have any facility for routing an inflow hydrograph from another source. However, a reach may be used to perform this type of specialized routing.

This reach demonstrates a procedure for performing a shallow concetrated flow routing through woods. In this case, the "reach" is defined as a channel with very low side slopes. The Manning's value of 0.40 is selected from the table of sheet flow roughness coefficients, which is comparable to the Manning's value for "woods with light underbrush".

0.00% Impervious, Inflow Depth = 2.08" for 10-year event Inflow Area = 1.323 ac, 3.13 cfs @ 12.10 hrs, Volume= 0.230 af Inflow = 1.22 cfs @ 12.38 hrs, Volume= Outflow = 0.230 af, Atten= 61%, Lag= 17.1 min Routed to Link SP3 : STUDY POINT #3 Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 0.32 fps, Min. Travel Time= 37.3 min Avg. Velocity = 0.12 fps, Avg. Travel Time= 97.8 min Peak Storage= 2,732 cf @ 12.38 hrs Average Depth at Peak Storage= 0.23', Surface Width= 27.96' Bank-Full Depth= 1.00' Flow Area= 55.0 sf. Capacity= 43.77 cfs 5.00' x 1.00' deep channel, n= 0.400 Sheet flow: Woods+light brush Side Slope Z-value = 50.0 '/' Top Width = 105.00' Length= 722.0' Slope= 0.1087 '/' Inlet Invert= 889.50', Outlet Invert= 811.00' ‡

Summary for Reach R-02: Routing through wetland/swale

A subcatchment performs runoff calculations, including the associated Tc anc CN determinations. It does not have any facility for routing an inflow hydrograph from another source. However, a reach may be used to perform this type of specialized routing.

This reach demonstrates a procedure for performing a shallow concetrated flow routing through the wooded wetland/swale adjacent to the stone wall. In this case, the "reach" is defined as a channel with low side slopes. The Manning's value of 0.40 is selected from the table of sheet flow roughness coefficients, which is comparable to the Manning's value for "woods with light underbrush".

[80] Warning: Exceeded Pond DW-12 by 877.70' @ 0.00 hrs (12.43 cfs 36.977 af) [80] Warning: Exceeded Pond G1 by 0.20' @ 0.00 hrs (5.87 cfs 6.049 af)

Inflow Area = 7.693 ac, 36.86% Impervious, Inflow Depth > 2.56" for 10-year event Inflow = 6.84 cfs @ 12.10 hrs, Volume= 1.643 af Outflow = 4.25 cfs @ 12.97 hrs, Volume= 1.640 af, Atten= 38%, Lag= 52.0 min Routed to Link SP2 : STUDY POINT #2 Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 0.30 fps, Min. Travel Time= 41.5 min Avg. Velocity = 0.14 fps, Avg. Travel Time= 88.8 min

Peak Storage= 10,572 cf @ 12.97 hrs Average Depth at Peak Storage= 0.68' , Surface Width= 32.61' Bank-Full Depth= 1.50' Flow Area= 52.7 sf, Capacity= 24.55 cfs

10.00' x 1.50' deep channel, n= 0.400 Sheet flow: Woods+light brush Side Slope Z-value= 30.0 3.5 '/' Top Width= 60.25' Length= 735.0' Slope= 0.0189 '/' Inlet Invert= 877.70', Outlet Invert= 863.80'

2889-01 - Proposed HydroCAD_rev3 Prepared by Allen & Major Associates, Inc HydroCAD® 10.20-2f s/n 02881 © 2022 HydroCAD Software Solutions LLC

‡
Summary for Reach SW-1: swale
[80] Warning: Exceeded Pond DW-2 by 884.00' @ 0.00 hrs (12.47 cfs 37.107 af)
Inflow Area = 0.715 ac, 12.26% Impervious, Inflow Depth = 2.05" for 10-year event Inflow = 1.82 cfs @ 12.12 hrs, Volume= 0.122 af Outflow = 1.79 cfs @ 12.14 hrs, Volume= 0.122 af, Atten= 2%, Lag= 1.2 min Routed to Pond DS-1a : detention
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 3.31 fps, Min. Travel Time= 1.3 min Avg. Velocity = 1.07 fps, Avg. Travel Time= 3.9 min
Peak Storage= 136 cf @ 12.14 hrs Average Depth at Peak Storage= 0.19' , Surface Width= 3.56' Bank-Full Depth= 1.00' Flow Area= 6.0 sf, Capacity= 49.36 cfs
2.00' x 1.00' deep channel, n= 0.041 Riprap, 2-inch Side Slope Z-value= 4.0 '/' Top Width= 10.00' Length= 252.0' Slope= 0.1052 '/' Inlet Invert= 884.00', Outlet Invert= 857.50'
+
‡
Summary for Reach SW-2: swale
Summary for Reach SW-2: swale Inflow Area = 0.382 ac, 53.49% Impervious, Inflow Depth = 3.23" for 10-year event Inflow = 1.40 cfs @ 12.09 hrs, Volume= 0.103 af Outflow = 1.39 cfs @ 12.11 hrs, Volume= 0.103 af, Atten= 1%, Lag= 0.9 min Routed to Pond dmh01 : dmh 0.103 af, Atten= 1%, Lag= 0.9 min
Inflow Area = 0.382 ac, 53.49% Impervious, Inflow Depth = 3.23" for 10-year event Inflow = 1.40 cfs @ 12.09 hrs, Volume= 0.103 af Outflow = 1.39 cfs @ 12.11 hrs, Volume= 0.103 af, Atten= 1%, Lag= 0.9 min
Inflow Area = 0.382 ac, 53.49% Impervious, Inflow Depth = 3.23" for 10-year event Inflow = 1.40 cfs @ 12.09 hrs, Volume= 0.103 af Outflow = 1.39 cfs @ 12.11 hrs, Volume= 0.103 af, Atten= 1%, Lag= 0.9 min Routed to Pond dmh01 : dmh Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 3.13 fps, Min. Travel Time= 1.2 min
Inflow Area = 0.382 ac, 53.49% Impervious, Inflow Depth = 3.23" for 10-year event Inflow = 1.40 cfs @ 12.09 hrs, Volume= 0.103 af Outflow = 1.39 cfs @ 12.11 hrs, Volume= 0.103 af, Atten= 1%, Lag= 0.9 min Routed to Pond dmh01 : dmh Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 3.13 fps, Min. Travel Time= 1.2 min Avg. Velocity = 0.92 fps, Avg. Travel Time= 4.1 min Peak Storage= 101 cf @ 12.11 hrs Average Depth at Peak Storage= 0.17', Surface Width= 3.33'
Inflow Area = 0.382 ac, 53.49% Impervious, Inflow Depth = 3.23" for 10-year event Inflow = 1.40 cfs @ 12.09 hrs, Volume= 0.103 af Outflow = 1.39 cfs @ 12.11 hrs, Volume= 0.103 af, Atten= 1%, Lag= 0.9 min Routed to Pond dmh01 : dmh Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 3.13 fps, Min. Travel Time= 1.2 min Avg. Velocity = 0.92 fps, Avg. Travel Time= 4.1 min Peak Storage= 101 cf @ 12.11 hrs Average Depth at Peak Storage= 0.17', Surface Width= 3.33' Bank-Full Depth= 1.00' Flow Area= 6.0 sf, Capacity= 50.70 cfs 2.00' x 1.00' deep channel, n= 0.041 Riprap, 2-inch Side Slope Z-value= 4.0 '/' Top Width= 10.00' Length= 228.0' Slope= 0.1110 '/'
Inflow Area = 0.382 ac, 53.49% Impervious, Inflow Depth = 3.23" for 10-year event Inflow = 1.40 cfs @ 12.09 hrs, Volume= 0.103 af Outflow = 1.39 cfs @ 12.11 hrs, Volume= 0.103 af, Atten= 1%, Lag= 0.9 min Routed to Pond dmh01 : dmh Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 3.13 fps, Min. Travel Time= 1.2 min Avg. Velocity = 0.92 fps, Avg. Travel Time= 4.1 min Peak Storage= 101 cf @ 12.11 hrs Average Depth at Peak Storage= 0.17', Surface Width= 3.33' Bank-Full Depth= 1.00' Flow Area= 6.0 sf, Capacity= 50.70 cfs 2.00' x 1.00' deep channel, n= 0.041 Riprap, 2-inch Side Slope Z-value= 4.0 '/' Top Width= 10.00' Length= 228.0' Slope= 0.1110 '/'
Inflow Area = 0.382 ac, 53.49% Impervious, Inflow Depth = 3.23" for 10-year event Inflow = 1.40 cfs @ 12.09 hrs, Volume= 0.103 af Outflow = 1.39 cfs @ 12.11 hrs, Volume= 0.103 af, Atten= 1%, Lag= 0.9 min Routed to Pond dmh01 : dmh Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 3.13 fps, Min. Travel Time= 1.2 min Avg. Velocity = 0.92 fps, Avg. Travel Time= 4.1 min Peak Storage= 101 cf @ 12.11 hrs Average Depth at Peak Storage= 0.17', Surface Width= 3.33' Bank-Full Depth= 1.00' Flow Area= 6.0 sf, Capacity= 50.70 cfs 2.00' x 1.00' deep channel, n= 0.041 Riprap, 2-inch Side Slope Z-value= 4.0 '/' Top Width= 10.00' Length= 228.0' Slope= 0.1110 '/'

Summary for Pond DB-1: detention

Summary for Pond DB-1. detention					
Inflow Area = 9.959 ac, 17.21% Impervious, Inflow Depth = 2.17" for 10-year event Inflow = 22.01 cfs @ 12.14 hrs, Volume= 1.797 af Outflow = 7.69 cfs @ 12.55 hrs, Volume= 1.778 af, Atten= 65%, Lag= 25.0 min Primary = 7.69 cfs @ 12.55 hrs, Volume= 1.778 af Routed to Pond G2 : gabion Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Routed to Link SP3 : STUDY POINT #3 Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 812.66' @ 12.55 hrs Surf.Area= 18,491 sf Storage= 28,258 cf Flood Elev= 816.00' Surf.Area= 24,900 sf Storage= 100,504 cf					
Plug-Flow detention time= 99.4 min calculated for 1.775 af (99% of inflow) Center-of-Mass det. time= 94.1 min (930.7 - 836.6) Volume Invert Avail.Storage Storage Description					
#1 811.00' 100,504 cf Custom Stage Data (Irregular)Listed below (Recalc)					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
#3 Device 1 811.90' 12.0" Vert. (2) 12" Orifice (10yr) X 2.00 C= 0.600 Limited to weir flow at low heads #4 Device 1 813.20' 24.0" X 24.0" Horiz. 24" Top of Structure C= 0.600 Limited to weir flow at low heads #5 Secondary 814.40' 80' long x 8.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64 2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74					
Primary OutFlow Max=7.68 cfs @ 12.55 hrs HW=812.66' TW=811.09' (Dynamic Tailwater) -1=Culvert (Passes 7.68 cfs of 8.12 cfs potential flow) -2=(2) 8" Orifice (2yr) (Orifice Controls 3.87 cfs @ 5.55 fps) -3=(2) 12" Orifice (10yr) (Orifice Controls 3.81 cfs @ 2.97 fps) -4=24" Top of Structure (Controls 0.00 cfs)					
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=811.00' TW=0.00' (Dynamic Tailwater) 5=Broad-Crested Rectangular Weir(Controls 0.00 cfs)					
Summary for Pond dmh01: dmh					
Inflow Area = 0.382 ac, 53.49% Impervious, Inflow Depth = 3.23" for 10-year event Inflow = 1.39 cfs @ 12.11 hrs, Volume= 0.103 af Outflow = 1.39 cfs @ 12.11 hrs, Volume= 0.103 af, Atten= 0%, Lag= 0.0 min Primary = 1.39 cfs @ 12.11 hrs, Volume= 0.103 af Routed to Pond DS-1a : detention					
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 850.06' @ 12.11 hrs Flood Elev= 855.31'

Device	Routing	Invert	Outlet Devices	
#1	Primary	849.34'	12.0" Round Culvert L= 12.0' Ke= 0.500	
			Inlet / Outlet Invert= 849.34' / 849.22' S= 0.0100 '/' 0	Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.37 cfs @ 12.11 hrs HW=850.05' TW=848.58' (Dynamic Tailwater) -1=Culvert (Barrel Controls 1.37 cfs @ 3.21 fps)

Summary for Pond dmh05: dmh

[80] Warning: Exceeded Pond DW-1 by 868.52' @ 0.00 hrs (12.36 cfs 36.781 af)

Inflow Are	a =	1.697 ac, 5	64.12% Impervious,	Inflow Depth = 2.80	" for 10-year event	
Inflow	=	6.27 cfs @	12.11 hrs, Volume	= 0.397 af		
Outflow	=	6.27 cfs @	12.11 hrs, Volume	= 0.397 af, A	tten= 0%, Lag= 0.0 min	
Primary	=	6.27 cfs @	12.11 hrs, Volume	= 0.397 af		
Routed to Pond DS-1a : detention						

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 870.27' @ 12.11 hrs Flood Elev= 883.10'

Device	Routing	Invert	Outlet Devices
#1	Primary	868.52'	15.0" Round Culvert L= 97.0' Ke= 0.500 Inlet / Outlet Invert= 868.52' / 865.12' S= 0.0351 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=6.12 cfs @ 12.11 hrs HW=870.22' TW=848.65' (Dynamic Tailwater) 1=Culvert (Inlet Controls 6.12 cfs @ 4.99 fps)

Summary for Pond dmh20: dmh

[80] Warning: Exceeded Pond DW-5 by 902.74' @ 0.00 hrs (12.61 cfs 37.500 af)

Inflow Area	a =	1.509 ac, 3	8.02% Imperv	ious, Inflow D	Depth = 2.49"	for 10-year event
Inflow	=	5.01 cfs @	12.11 hrs, Vo	olume=	0.313 af	-
Outflow	=	5.01 cfs @	12.11 hrs, Vo	olume=	0.313 af, Atte	en= 0%, Lag= 0.0 min
Primary	=	5.01 cfs @	12.11 hrs, Vo	olume=	0.313 af	-
Routed to Pond dmh21 : dmh						

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 904.08' @ 12.11 hrs Flood Elev= 907.61'

Device I	Routing	Invert	Outlet Devices
#1	Primary	902.74'	15.0" Round Culvert L= 205.0' Ke= 0.500 Inlet / Outlet Invert= 902.74' / 900.30' S= 0.0119 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=4.88 cfs @ 12.11 hrs HW=904.05' TW=901.35' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 4.88 cfs @ 3.97 fps)

Summary for Pond dmh21: dmh

[80] Warning: Exceeded Pond DW-7 by 899.55' @ 0.00 hrs (12.58 cfs 37.434 af)

Inflow Area =	3.876 ac, 46.92% Impervious, Inflow	Depth = 2.79" for 10-year event				
Inflow =	13.77 cfs @ 12.11 hrs, Volume=	0.900 af				
Outflow =	13.77 cfs @_ 12.11 hrs, Volume=	0.900 af, Atten= 0%, Lag= 0.0 min				
Primary =	13.77 cfs @12.11 hrs, Volume=	0.900 af				
Routed to Pond dmh23 : dmh						

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 901.38' @ 12.12 hrs Flood Elev= 905.24'

Device	Routing	Invert	Outlet Devices
#1	Primary	899.55'	24.0" Round Culvert L= 190.0' Ke= 0.500
	-		Inlet / Outlet Invert= 899.55' / 897.65' S= 0.0100 '/' Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=13.14 cfs @ 12.11 hrs HW=901.35' TW=899.54' (Dynamic Tailwater) -1=Culvert (Outlet Controls 13.14 cfs @ 5.84 fps)

Summary for Pond dmh23: dmh

[80] Warning: Exceeded Pond DW-9 by 897.55' @ 0.00 hrs (12.57 cfs 37.393 af)

 Inflow Area =
 4.921 ac, 48.17% Impervious, Inflow Depth = 2.79" for 10-year event

 Inflow =
 17.63 cfs @
 12.11 hrs, Volume=
 1.146 af

 Outflow =
 17.63 cfs @
 12.11 hrs, Volume=
 1.146 af

 Primary =
 17.63 cfs @
 12.11 hrs, Volume=
 1.146 af

 Routed to Pond DS-2a : detention
 12.11 hrs, Volume=
 1.146 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 899.57' @ 12.11 hrs Flood Elev= 910.71'

#1 Primary 897.55' 30.0" Round Culvert L= 27.0' Ke= 0.500 Inlet / Outlet Invert= 897.55' / 897.20' S= 0.0130 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf	Device	Routing	Invert	Outlet Devices
	#1	Primary	897.55'	Inlet / Outlet Invert= 897.55' / 897.20' S= 0.0130 '/' Cc= 0.900

Primary OutFlow Max=17.19 cfs @ 12.11 hrs HW=899.54' TW=895.08' (Dynamic Tailwater) 1=Culvert (Barrel Controls 17.19 cfs @ 5.63 fps)

Summary for Pond dmh25: dmh

[80] Warning: Exceeded Pond DW-8 by 922.60' @ 0.00 hrs (12.74 cfs 37.911 af)

Inflow Area	a =	0.555 ac, 4	19.64% Impe	ervious, I	nflow De	pth =	2.94"	for 10-	year event
Inflow	=	2.00 cfs @	12.11 hrs,	Volume=		0.136	af		-
Outflow	=	2.00 cfs @	12.11 hrs,	Volume=		0.136	af, Atte	en= 0%,	Lag= 0.0 min
Primary	=	2.00 cfs @	12.11 hrs,	Volume=		0.136	af		
Routed to Pond DS-2a : detention									

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 923.39' @ 12.11 hrs Flood Elev= 930.54'

Device	Routing	Invert	Outlet Devices
#1	Primary	922.60'	12.0" Round Culvert L= 97.0' Ke= 0.500 Inlet / Outlet Invert= 922.60' / 915.84' S= 0.0697 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.95 cfs @ 12.11 hrs HW=923.37' TW=895.08' (Dynamic Tailwater) -1=Culvert (Inlet Controls 1.95 cfs @ 3.00 fps)

Summary for Pond dmh50: dmh

[80] Warning: Exceeded Pond DW-6 by 927.65' @ 0.00 hrs (12.78 cfs 38.016 af)

Inflow Area =	1.339 ac, 47.44% Impervious, Inflow D	Depth = 2.61" for 10-year event		
Inflow =	4.70 cfs @ 12.11 hrs, Volume=	0.291 af		
Outflow =	4.70 cfs @ 12.11 hrs, Volume=	0.291 af, Atten= 0%, Lag= 0.0 min		
Primary =	4.70 cfs @ 12.11 hrs, Volume=	0.291 af		
Routed to Pond dmh51 : dmh				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 928.90' @ 12.11 hrs Flood Elev= 933.94'

Device	Routing	Invert	Outlet Devices
#1	Primary	927.65'	15.0" Round Culvert L= 102.0' Ke= 0.500
	-		Inlet / Outlet Invert= 927.65' / 919.50' S= 0.0799 '/' Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=4.59 cfs @ 12.11 hrs HW=928.87' TW=920.62' (Dynamic Tailwater) -1=Culvert (Inlet Controls 4.59 cfs @ 3.76 fps)

Summary for Pond dmh51: dmh

 Inflow Area =
 1.339 ac, 47.44% Impervious, Inflow Depth =
 2.61" for 10-year event

 Inflow =
 4.70 cfs @
 12.11 hrs, Volume=
 0.291 af

 Outflow =
 4.70 cfs @
 12.11 hrs, Volume=
 0.291 af

 Primary =
 4.70 cfs @
 12.11 hrs, Volume=
 0.291 af

 Routed to Pond dmh52 : dmh
 0.291 af
 0.291 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 920.65' @ 12.11 hrs Flood Elev= 924.04'

Device	Routing	Invert	Outlet Devices
#1	Primary	919.40'	15.0" Round Culvert L= 127.0' Ke= 0.500
			Inlet / Outlet Invert= 919.40' / 909.50' S= 0.0780 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=4.59 cfs @ 12.11 hrs HW=920.62' TW=893.74' (Dynamic Tailwater) 1=Culvert (Inlet Controls 4.59 cfs @ 3.76 fps)

Summary for Pond dmh52: dmh

 Inflow Area =
 1.339 ac, 47.44% Impervious, Inflow Depth = 2.61" for 10-year event

 Inflow =
 4.70 cfs @
 12.11 hrs, Volume=
 0.291 af

 Outflow =
 4.70 cfs @
 12.11 hrs, Volume=
 0.291 af, Atten= 0%, Lag= 0.0 min

 Primary =
 4.70 cfs @
 12.11 hrs, Volume=
 0.291 af, Atten= 0%, Lag= 0.0 min

 Routed to Pond dmh62 : dmh
 0.291 af
 0.291 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 893.77' @ 12.11 hrs Flood Elev= 914.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	892.52'	15.0" Round Culvert L= 62.0' Ke= 0.500
			Inlet / Outlet Invert= 892.52' / 887.55' S= 0.0802 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=4.59 cfs @ 12.11 hrs HW=893.74' TW=888.15' (Dynamic Tailwater) -1=Culvert (Inlet Controls 4.59 cfs @ 3.76 fps)

Summary for Pond dmh53: dmh

[80] Warning: Exceeded Pond DW-4 by 916.83' @ 0.00 hrs (12.70 cfs 37.793 af)

Inflow Are	a =	1.519 ac, 41.32% Impervious, Inflow Depth = 2.39" for	or 10-year event
Inflow	=	5.18 cfs @ 12.11 hrs, Volume= 0.302 af	
Outflow	=	5.18 cfs @ 12.11 hrs, Volume= 0.302 af, Atten	= 0%, Lag= 0.0 min
Primary	=	5.18 cfs @ 12.11 hrs, Volume= 0.302 af	-
Routed	to Pond	dmh55 : dmh	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 917.96' @ 12.11 hrs Flood Elev= 921.46'

Device	Routing	Invert	Outlet Devices
#1	Primary	916.83'	18.0" Round Culvert L= 31.0' Ke= 0.500
			Inlet / Outlet Invert= 916.83' / 915.39' S= 0.0465 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=5.04 cfs @ 12.11 hrs HW=917.94' TW=904.07' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 5.04 cfs @ 3.59 fps)

Summary for Pond dmh55: dmh

[80] Warning: Exceeded Pond DW-3 by 902.61' @ 0.00 hrs (12.61 cfs 37.498 af)

Inflow Area = 3.233 ac, 31.64% Impervious, Inflow Depth = 2.31" for 10-year event Inflow = 10.37 cfs @ 12.12 hrs, Volume= 0.621 af Outflow = 10.37 cfs @ 12.12 hrs, Volume= 0.621 af, Atten= 0%, Lag= 0.0 min Primary = 10.37 cfs @ 12.12 hrs, Volume= 0.621 af Routed to Pond dmh56 : dmh 0.621 af
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 904.09' @ 12.12 hrs Flood Elev= 911.86'
Device Routing Invert Outlet Devices
#1 Primary 902.61' 24.0" Round Culvert L= 72.0' Ke= 0.500 Inlet / Outlet Invert= 902.61' / 899.92' S= 0.0374 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf
Primary OutFlow Max=10.09 cfs @ 12.12 hrs HW=904.07' TW=898.43' (Dynamic Tailwater) └─1=Culvert (Inlet Controls 10.09 cfs @ 4.11 fps)
Summary for Pond dmh56: dmh
Inflow Area = 3.604 ac, 29.93% Impervious, Inflow Depth = 2.33" for 10-year event Inflow = 11.44 cfs @ 12.11 hrs, Volume= 0.701 af Outflow = 11.44 cfs @ 12.11 hrs, Volume= 0.701 af, Atten= 0%, Lag= 0.0 min Primary = 11.44 cfs @ 12.11 hrs, Volume= 0.701 af Routed to Pond dmh57 : dmh 0.701 af
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 898.47' @ 12.14 hrs Flood Elev= 908.47'
Device Routing Invert Outlet Devices
#1 Primary 896.80' 30.0" Round Culvert L= 20.0' Ke= 0.500 Inlet / Outlet Invert= 896.80' / 896.60' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=9.92 cfs @ 12.11 hrs HW=898.43' TW=897.98' (Dynamic Tailwater) ▲1=Culvert (Outlet Controls 9.92 cfs @ 4.16 fps)
Summary for Pond dmh57: dmh
Inflow Area = 3.604 ac, 29.93% Impervious, Inflow Depth = 2.33" for 10-year event Inflow = 11.44 cfs @ 12.11 hrs, Volume= 0.701 af Outflow = 11.44 cfs @ 12.11 hrs, Volume= 0.701 af, Atten= 0%, Lag= 0.0 min Primary = 11.44 cfs @ 12.11 hrs, Volume= 0.701 af, Atten= 0%, Lag= 0.0 min Primary = 11.44 cfs @ 12.11 hrs, Volume= 0.701 af Routed to Pond dmh58 : dmh 0.701 af 0.701 af
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 898.00' @ 12.13 hrs Flood Elev= 908.00'
Device Routing Invert Outlet Devices
#1 Primary 896.50' 30.0" Round Culvert L= 103.0' Ke= 0.500 Inlet / Outlet Invert= 896.50' / 895.68' S= 0.0080 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=10.58 cfs @ 12.11 hrs HW=897.98' TW=896.97' (Dynamic Tailwater) ▲ 1=Culvert (Outlet Controls 10.58 cfs @ 5.04 fps)

1=Culvert (Outlet Controls 10.58 cfs @ 5.04 fps)

Summary for Pond dmh58: dmh

-
Inflow Area = 3.604 ac, 29.93% Impervious, Inflow Depth = 2.33" for 10-year event Inflow = 11.44 cfs @ 12.11 hrs, Volume= 0.701 af Outflow = 11.44 cfs @ 12.11 hrs, Volume= 0.701 af, Atten= 0%, Lag= 0.0 min Primary = 11.44 cfs @ 12.11 hrs, Volume= 0.701 af Routed to Pond dmh59 : dmh
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 896.99' @ 12.12 hrs Flood Elev= 901.46'
Device Routing Invert Outlet Devices
#1 Primary 895.58' 30.0" Round Culvert L= 278.0' Ke= 0.500 Inlet / Outlet Invert= 895.58' / 893.35' S= 0.0080 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=10.94 cfs @ 12.11 hrs HW=896.97' TW=894.72' (Dynamic Tailwater) □ 1=Culvert (Outlet Controls 10.94 cfs @ 5.65 fps)
Summary for Pond dmh59: dmh
Inflow Area = 3.604 ac, 29.93% Impervious, Inflow Depth = 2.33" for 10-year event Inflow = 11.44 cfs @ 12.11 hrs, Volume= 0.701 af Outflow = 11.44 cfs @ 12.11 hrs, Volume= 0.701 af, Atten= 0%, Lag= 0.0 min Primary = 11.44 cfs @ 12.11 hrs, Volume= 0.701 af Routed to Pond dmh60 : dmh
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 894.74' @ 12.13 hrs Flood Elev= 909.31'
Device Routing Invert Outlet Devices
#1 Primary 893.25' 30.0" Round Culvert L= 82.0' Ke= 0.500 Inlet / Outlet Invert= 893.25' / 892.50' S= 0.0091 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=10.57 cfs @ 12.11 hrs HW=894.72' TW=893.78' (Dynamic Tailwater) ☐1=Culvert (Outlet Controls 10.57 cfs @ 5.07 fps)
Summary for Pond dmh60: dmh
Inflow Area = 3.604 ac, 29.93% Impervious, Inflow Depth = 2.33" for 10-year event Inflow = 11.44 cfs @ 12.11 hrs, Volume= 0.701 af Outflow = 11.44 cfs @ 12.11 hrs, Volume= 0.701 af, Atten= 0%, Lag= 0.0 min Primary = 11.44 cfs @ 12.11 hrs, Volume= 0.701 af Routed to Pond dmh61 : dmh
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 893.80' @ 12.11 hrs Flood Elev= 901.96'
Device Routing Invert Outlet Devices
#1 Primary 892.40' 30.0" Round Culvert L= 258.0' Ke= 0.500 Inlet / Outlet Invert= 892.40' / 889.43' S= 0.0115 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=11.16 cfs @ 12.11 hrs HW=893.78' TW=890.71' (Dynamic Tailwater)

Summary for Pond dmh61: dmh

-
Inflow Area = 3.604 ac, 29.93% Impervious, Inflow Depth = 2.33" for 10-year event Inflow = 11.44 cfs @ 12.11 hrs, Volume= 0.701 af Outflow = 11.44 cfs @ 12.11 hrs, Volume= 0.701 af, Atten= 0%, Lag= 0.0 min Primary = 11.44 cfs @ 12.11 hrs, Volume= 0.701 af Routed to Pond dmh62 : dmh
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 890.73' @ 12.11 hrs Flood Elev= 898.16'
Device Routing Invert Outlet Devices
#1 Primary 889.33' 30.0" Round Culvert L= 278.0' Ke= 0.500 Inlet / Outlet Invert= 889.33' / 886.55' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=11.16 cfs @ 12.11 hrs HW=890.71' TW=888.15' (Dynamic Tailwater) 1=Culvert (Inlet Controls 11.16 cfs @ 4.00 fps)
Summary for Pond dmh62: dmh
Inflow Area = 4.942 ac, 34.67% Impervious, Inflow Depth = 2.41" for 10-year event Inflow = 16.14 cfs @ 12.11 hrs, Volume= 0.992 af Outflow = 16.14 cfs @ 12.11 hrs, Volume= 0.992 af, Atten= 0%, Lag= 0.0 min Primary = 16.14 cfs @ 12.11 hrs, Volume= 0.992 af Routed to Pond dmh69 : dmh
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 888.17' @ 12.11 hrs Flood Elev= 902.00'
Device Routing Invert Outlet Devices
#1 Primary 886.45' 30.0" Round Culvert L= 62.0' Ke= 0.500 Inlet / Outlet Invert= 886.45' / 884.91' S= 0.0248 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=15.73 cfs @ 12.11 hrs HW=888.15' TW=814.18' (Dynamic Tailwater)
Summary for Pond dmh69: dmh
Inflow Area = 4.942 ac, 34.67% Impervious, Inflow Depth = 2.41" for 10-year event Inflow = 16.14 cfs @ 12.11 hrs, Volume= 0.992 af Outflow = 16.14 cfs @ 12.11 hrs, Volume= 0.992 af, Atten= 0%, Lag= 0.0 min Primary = 16.14 cfs @ 12.11 hrs, Volume= 0.992 af Routed to Pond DB-1 : detention
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 814.20' @ 12.11 hrs Flood Elev= 818.02'
Device Routing Invert Outlet Devices
#1 Primary 812.48' 30.0" Round Culvert L= 29.0' Ke= 0.500 Inlet / Outlet Invert= 812.48' / 811.50' S= 0.0338 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=15.73 cfs @ 12.11 hrs HW=814.18' TW=811.88' (Dynamic Tailwater)

1=Culvert (Inlet Controls 15.73 cfs @ 4.44 fps)

Summary for Pond DS-1a: detention

[44] Hint: (44] Hint: Outlet device #2 is below defined storage					
Inflow Outflow Primary	Outflow = 3.15 cfs @ 12.44 hrs, Volume= 0.622 af, Atten= 66%, Lag= 19.3 min					
Routing by	y Dyn-Stor-Ir	nd method, Time	Span= 0.00-36.00 hrs, dt= 0.05 hrs			
			Area= 3,584 sf Storage= 10,453 cf			
Flood Elev	v= 853.00' S	Surf.Area= 7,168	sf Storage= 20,434 cf			
Plug-Flow	detention tir	ne= 149 3 min ca	Iculated for 0.621 af (100% of inflow)			
Plug-Flow detention time= 149.3 min calculated for 0.621 af (100% of inflow) Center-of-Mass det. time= 149.7 min (965.7 - 816.1)						
	Mass det. tir	ne= 149.7 min (9	165.7 - 816.1)			
	Mass det. tir	ne= 149.7 min(9	65.7 - 816.1)			
	Mass det. tir Invert		65.7 - 816.1) Storage Description			
Center-of-		Avail.Storage	Storage Description 64.00'W x 56.00'L x 5.67'H Field A			
Center-of- <u>Volume</u> #1A	Invert 846.50'	Avail.Storage 0 cf	Storage Description 64.00'W x 56.00'L x 5.67'H Field A 20,309 cf Overall - 20,309 cf Embedded = 0 cf			
Center-of- Volume	Invert	Avail.Storage 0 cf	Storage Description 64.00'W x 56.00'L x 5.67'H Field A 20,309 cf Overall - 20,309 cf Embedded = 0 cf retain_it retain_it 5.0' x 56 Inside #1			
Center-of- <u>Volume</u> #1A	Invert 846.50'	Avail.Storage 0 cf	Storage Description 64.00'W x 56.00'L x 5.67'H Field A 20,309 cf Overall - 20,309 cf Embedded = 0 cf retain_it retain_it 5.0' x 56 Inside #1 Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf			
Center-of- <u>Volume</u> #1A	Invert 846.50'	Avail.Storage 0 cf	Storage Description 64.00'W x 56.00'L x 5.67'H Field A 20,309 cf Overall - 20,309 cf Embedded = 0 cf retain_it retain_it 5.0' x 56 Inside #1 Inside= 84.0''W x 60.0''H => 36.41 sf x 8.00'L = 291.3 cf Outside= 96.0''W x 68.0''H => 45.33 sf x 8.00'L = 362.7 cf			
Center-of- <u>Volume</u> #1A #2A	Invert 846.50' 846.50'	Avail.Storage 0 cf 16,000 cf	Storage Description 64.00'W x 56.00'L x 5.67'H Field A 20,309 cf Overall - 20,309 cf Embedded = 0 cf retain_it retain_it 5.0' x 56 Inside #1 Inside= 84.0'W x 60.0''H => 36.41 sf x 8.00'L = 291.3 cf Outside= 96.0''W x 68.0''H => 45.33 sf x 8.00'L = 362.7 cf 8 Rows adjusted for 311.7 cf perimeter wall			
Center-of- <u>Volume</u> #1A	Invert 846.50'	Avail.Storage 0 cf 16,000 cf	Storage Description 64.00'W x 56.00'L x 5.67'H Field A 20,309 cf Overall - 20,309 cf Embedded = 0 cf retain_it retain_it 5.0' x 56 Inside #1 Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf 8 Rows adjusted for 311.7 cf perimeter wall 64.00'W x 56.00'L x 2.17'H Field B			
Center-of- <u>Volume</u> #1A #2A	Invert 846.50' 846.50'	Avail.Storage 0 cf 16,000 cf	Storage Description 64.00'W x 56.00'L x 5.67'H Field A 20,309 cf Overall - 20,309 cf Embedded = 0 cf retain_it retain_it 5.0' x 56 Inside #1 Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf 8 Rows adjusted for 311.7 cf perimeter wall 64.00'W x 56.00'L x 2.17'H Field B 7,765 cf Overall - 7,765 cf Embedded = 0 cf x 40.0% Voids			
Center-of- <u>Volume</u> #1A #2A #3B	Invert 846.50' 846.50' 851.50'	Avail.Storage 0 cf 16,000 cf 0 cf	Storage Description 64.00'W x 56.00'L x 5.67'H Field A 20,309 cf Overall - 20,309 cf Embedded = 0 cf retain_it retain_it 5.0' x 56 Inside #1 Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf 8 Rows adjusted for 311.7 cf perimeter wall 64.00'W x 56.00'L x 2.17'H Field B			
Center-of- <u>Volume</u> #1A #2A #3B	Invert 846.50' 846.50' 851.50'	Avail.Storage 0 cf 16,000 cf 0 cf	Storage Description 64.00'W x 56.00'L x 5.67'H Field A 20,309 cf Overall - 20,309 cf Embedded = 0 cf retain_it retain_it 5.0' x 56 Inside #1 Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf 8 Rows adjusted for 311.7 cf perimeter wall 64.00'W x 56.00'L x 2.17'H Field B 7,765 cf Overall - 7,765 cf Embedded = 0 cf x 40.0% Voids retain_it retain_it 1.5' x 56 Inside #3			
Center-of- <u>Volume</u> #1A #2A #3B	Invert 846.50' 846.50' 851.50'	Avail.Storage 0 cf 16,000 cf 0 cf	Storage Description 64.00'W x 56.00'L x 5.67'H Field A 20,309 cf Overall - 20,309 cf Embedded = 0 cf retain_it retain_it 5.0' x 56 Inside #1 Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf 8 Rows adjusted for 311.7 cf perimeter wall 64.00'W x 56.00'L x 2.17'H Field B 7,765 cf Overall - 7,765 cf Embedded = 0 cf x 40.0% Voids retain_it retain_it 1.5' x 56 Inside #3 Inside= 84.0"W x 18.0"H => 9.90 sf x 8.00'L = 79.2 cf			

Storage Group A created with Chamber Wizard Storage Group B created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	846.40'	15.0" Round Culvert L= 129.0' Ke= 0.500
	-		Inlet / Outlet Invert= 846.40' / 845.62' S= 0.0060 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf
#2	Device 1	846.40'	2.0" Vert. 2" Orifice (2yr) X 2.00 C= 0.600 Limited to weir flow at low heads
#3	Device 1	848.10'	6.0" Vert. 6" Orifice (10yr) X 2.00 C= 0.600 Limited to weir flow at low heads
#4	Device 1	849.40'	5.0" Vert. 5" Orifice (25yr) X 2.00 C= 0.600 Limited to weir flow at low heads
#5	Device 1	850.70'	5.0" Vert. 5" Orifice (50yr) X 2.00 C= 0.600 Limited to weir flow at low heads
#6	Device 1	852.80'	4.0' long Overflow Weir 2 End Contraction(s) 4.0' Crest Height

Primary OutFlow Max=3.15 cfs @ 12.44 hrs HW=849.76' TW=0.00' (Dynamic Tailwater)

1=Culvert (Passes 3.15 cfs of 7.89 cfs potential flow)

-2=2" Orifice (2yr) (Orifice Controls 0.38 cfs @ 8.72 fps)

-3=6" Orifice (10yr) (Orifice Controls 2.25 cfs @ 5.73 fps) -4=5" Orifice (25yr) (Orifice Controls 0.52 cfs @ 2.05 fps)

-5=5" Orifice (50yr) (Controls 0.00 cfs)

-6=Overflow Weir (Controls 0.00 cfs)

Summary for Pond DS-1b: detention

Inflow Area = 0.571 ac, 23.27% Impervious, Inflow Depth = 2.58" for 10-year event 1.58 cfs @ 12.12 hrs, Volume= Inflow = 0.123 af 0.45 cfs @ 12.52 hrs, Volume= 0.45 cfs @ 12.52 hrs, Volume= Outflow 0.123 af, Atten= 72%, Lag= 24.0 min = Primary = 0.123 af Routed to Link SP1 : STUDY POINT #1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 860.49' @ 12.52 hrs Surf.Area= 1,536 sf Storage= 1,725 cf Flood Elev= 862.70' Surf.Area= 1,536 sf Storage= 4,684 cf

Plug-Flow detention time= 61.0 min calculated for 0.123 af (100% of inflow)

2889-01 - Proposed HydroCAD_rev3

Center-of-Mass det. time= 59.3 min (889.9 - 830.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	859.20'	0 cf	64.00'W x 24.00'L x 4.17'H Field A
			6,400 cf Overall - 6,400 cf Embedded = 0 cf x 40.0% Voids
#2A	859.20'	4,684 cf	retain_it retain_it 3.5' x 24 Inside #1
			Inside= 84.0"W x 42.0"H => 25.10 sf x 8.00'L = 200.8 cf
			Outside= 96.0"W x 50.0"H => 33.33 sf x 8.00'L = 266.7 cf
			8 Rows adjusted for 135.1 cf perimeter wall
		4,684 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	859.20'	12.0" Round Culvert L= 100.0' Ke= 0.500
	•		Inlet / Outlet Invert= 859.20' / 858.10' S= 0.0110 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	859.20'	4.0" Vert. 4" Orifice C= 0.600 Limited to weir flow at low heads
#3	Device 1	862.50'	12.0" Vert. Overflow C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=0.44 cfs @ 12.52 hrs HW=860.49' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Passes 0.44 cfs of 3.36 cfs potential flow)

2=4" Orifice (Orifice Controls 0.44 cfs @ 5.10 fps)

3=Overflow (Controls 0.00 cfs)

Summary for Pond DS-2a: detention

[92] Warning: Device #4 is above defined storage

[92] Warning: Device #5 is above defined storage

[92] Warning: Device #6 is above defined storage

[93] Warning: Storage range exceeded by 0.24'

 Inflow Area =
 5.477 ac, 48.32% Impervious, Inflow Depth = 2.81" for 10-year event

 Inflow =
 19.63 cfs @
 12.11 hrs, Volume=
 1.282 af

 Outflow =
 3.95 cfs @
 12.56 hrs, Volume=
 1.280 af, Atten= 80%, Lag= 26.9 min

 Primary =
 3.95 cfs @
 12.56 hrs, Volume=
 1.280 af

 Routed to Pond G1 : gabion
 12.56 hrs, Volume=
 1.280 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 897.24' @ 12.56 hrs Surf.Area= 4,704 sf Storage= 25,211 cf Flood Elev= 902.66' Storage= 48,125 cf

Plug-Flow detention time= 128.3 min calculated for 1.280 af (100% of inflow) Center-of-Mass det. time= 127.2 min (939.6 - 812.5)

Volume	Invert	Avail.Storage	Storage Description
#1	892.00'	24,073 cf	
			Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf
			Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf
			7 Rows adjusted for 394.8 cf perimeter wall
#2	897.00'	24,052 cf	
			Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf
			Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf
			6 Rows adjusted for 415.6 cf perimeter wall
		48,125 cf	Total Available Storage
Device	Routing	Invert Out	let Devices
#1	Primary	892.00' 24.0)" Round Culvert L= 46.0' Ke= 0.500
		Inle	t / Outlet Invert= 892.00' / 890.75' S= 0.0272 '/' Cc= 0.900
		n= (0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf
#2	Device 1	892.00' 4.0'	Vert. Orifice (2yr) X 2.00 C= 0.600 Limited to weir flow at low heads
#3	Device 1	895.40' 8.0'	'Vert. Orifice (10yr) C= 0.600 Limited to weir flow at low heads
#4	Device 1	898.20' 8.0'	' Vert. Orifice (25yr) C= 0.600 Limited to weir flow at low heads
#5	Device 1	899.90' 4.0'	' Vert. Orifice (50yr) C= 0.600 Limited to weir flow at low heads
#6	Device 1	901.60' 4.0'	long Sharp-Crested Weir Overflow (100yr) 2 End Contraction(s)

Primary OutFlow Max=3.95 cfs @ 12.56 hrs HW=897.23' TW=878.36' (Dynamic Tailwater) 1=Culvert (Passes 3.95 cfs of 31.12 cfs potential flow) 2=Orifice (2yr) (Orifice Controls 1.89 cfs @ 10.84 fps) -3=Orifice (10yr) (Orifice Controls 2.06 cfs @ 5.90 fps) -4=Orifice (25yr) (Controls 0.00 cfs) -5=Orifice (50yr) (Controls 0.00 cfs)

-6=Sharp-Crested Weir Overflow (100yr)(Controls 0.00 cfs)

Summary for Pond DS-2b: detention

[80] Warning: Exceeded Pond DW-11 by 863.00' @ 0.00 hrs (12.32 cfs 36.663 af)

Inflow Area =	2.577 ac, 15.70% Impervious, Inflo	w Depth = 2.10" for 10-year event
Inflow =	6.81 cfs @ 12.12 hrs, Volume=	0.451 af
Outflow =	4.21 cfs @ 12.25 hrs, Volume=	0.450 af, Atten= 38%, Lag= 8.0 min
Primary =	4.21 cfs @ 12.25 hrs, Volume=	0.450 af
Routed to Link	k SP2 : STUDY POINT #2	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 863.87' @ 12.25 hrs Surf.Area= 5,568 sf Storage= 4,240 cf Flood Elev= 866.00' Surf.Area= 5,568 sf Storage= 14,541 cf

Plug-Flow detention time= 43.4 min calculated for 0.449 af (99% of inflow) Center-of-Mass det. time= 42.0 min (878.4 - 836.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	863.00'	0 cf	232.00'W x 24.00'L x 3.67'H Field A
			20,416 cf Overall - 20,416 cf Embedded = 0 cf x 40.0% Voids
#2A	863.00'	14,541 cf	retain_it retain_it 3.0' x 87 Inside #1
			Inside= 84.0"W x 36.0"H => 21.33 sf x 8.00'L = 170.6 cf
			Outside= 96.0"W x 44.0"H => 29.33 sf x 8.00'L = 234.7 cf
			29 Rows adjusted for 302.1 cf perimeter wall
		14,541 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	860.45'	12.0" Round Culvert L= 45.0' Ke= 0.500
	-		Inlet / Outlet Invert= 860.45' / 858.44' S= 0.0447 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	863.00'	24.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=4.20 cfs @ 12.25 hrs HW=863.87' TW=0.00' (Dynamic Tailwater) 1=Culvert (Passes 4.20 cfs of 6.47 cfs potential flow) 2=Orifice/Grate (Orifice Controls 4.20 cfs @ 3.18 fps)

Summary for Pond DW-1: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	1.697 ac, 54.12% Impervious, Inflow De	epth = 3.43" for 10-year event
Inflow =	6.56 cfs @ 12.09 hrs, Volume=	0.485 af
Outflow =	6.30 cfs @ 12.11 hrs, Volume=	0.466 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.03 cfs @ 11.25 hrs, Volume=	0.069 af
Primary =	6.27 cfs @ 12.11 hrs, Volume=	0.397 af
Routed to Pond	d dmh05 : dmh	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 11.25 hrs Surf.Area= 958 sf Storage= 1,963 cf

Plug-Flow detention time= 98.2 min calculated for 0.466 af (96% of inflow) Center-of-Mass det. time= 75.6 min (878.0 - 802.4)

2889-01 - Proposed HydroCAD_rev3 Prepared by Allen & Major Associates, Inc

		n 02881 © 2022	HydroCAD Software Solutions LLC	Page 61
Volume	Invert	Avail.Storag	e Storage Description	
#1A	0.00'	68	cf 7.67'W x 12.50'L x 3.50'H Field A	
			335 cf Overall - 166 cf Embedded = 169 cf x 40.0% Voids	
#2A	0.67'	129	cf Shea Dry Well 1000gal Inside #1	
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf	
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf	
		196	cf x 10.00 = 1,963 cf Total Available Storage	
Stora	age Group A c	reated with Cha	amber Wizard	
Device	Routing	Invert C	utlet Devices	
#0	Primary	3.50' A	utomatic Storage Overflow (Discharged without head)	
#1	Discarded	0.00' 0	600 in/hr Exfiltration over Wetted area	
#2	Primary	2.50' 4	0" Round Culvert L= 10.0' Ke= 0.500	
			let / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900	
		n	= 0.010 PVC, smooth interior, Flow Area= 0.09 sf	
		Max=0.03 cfs @ filtration Contro) 11.25 hrs HW=3.50' (Free Discharge) ls 0.03 cfs)	
			,	
Primary	OutFlow Ma Ivert (Control	x=0.00 cfs @ 1 ols 0.00 cfs)	2.11 hrs HW=3.50' TW=870.22' (Dynamic Tailwater)	
			Summary for Pond DW-10: House Drywell	
			······································	
	sized based o	n standard 1.0	00g drywell at each dwelling unit.	
	multiplyer add	led to account	for number of dwelling units with subcatchment.	
	multiplyer add	led to account	for number of dwelling units with subcatchment. nt for the percentage of roof area within subcatchment.	
Area mu	multiplyer add Iltiplyer adjust	led to account ed to the accou	nt for the percentage of roof area within subcatchment.	
Area mu Inflow A	multiplyer add Iltiplyer adjust rea = 3.	ded to account ed to the accou 168 ac, 17.98	nt for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 2.33" for 10-year event	
Area mu Inflow A Inflow	rea = 3. = 6.	ded to account ed to the accou 168 ac, 17.98 75 cfs @ 12.1	nt for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 2.33" for 10-year event 9 hrs, Volume= 0.615 af	
Area mu Inflow A Inflow Outflow	multiplyer adjust itiplyer adjust rea = $3.$ = 6.1 = 6.0	ded to account ed to the accou 168 ac, 17.98 75 cfs @ 12.1 65 cfs @ 12.2	nt for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 2.33" for 10-year event 9 hrs, Volume= 0.615 af 2 hrs, Volume= 0.593 af, Atten= 1%, Lag= 1.5 min	
Area mu Inflow A Inflow Outflow Discarde	multiplyer add ultiplyer adjuste rea = 3. = 6.1 = 6.0 ed = 0.0	ded to account ed to the account 168 ac, 17.98 75 cfs @ 12.1 65 cfs @ 12.2 04 cfs @ 11.9	nt for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 2.33" for 10-year event 9 hrs, Volume= 0.615 af 2 hrs, Volume= 0.593 af, Atten= 1%, Lag= 1.5 min 0 hrs, Volume= 0.075 af	
Area mu Inflow A Inflow Outflow Discarde Primary	multiplyer adjust Itiplyer adjust rea = 3. = 6.1 = 6.6 ed = 0.1 = 0.1	ded to account ed to the account 168 ac, 17.98 75 cfs @ 12.1 65 cfs @ 12.2 04 cfs @ 11.9	nt for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 2.33" for 10-year event 9 hrs, Volume= 0.615 af 2 hrs, Volume= 0.593 af, Atten= 1%, Lag= 1.5 min 0 hrs, Volume= 0.075 af 0 hrs, Volume= 0.153 af	
Area mu Inflow A Inflow Outflow Discarde Primary Route	multiplyer add ultiplyer adjuste rea = 3. = 6.1 = 6.0 ed = 0.1 = 0.7 ed to Link SP	ded to account ed to the account 168 ac, 17.98 75 cfs @ 12.1 65 cfs @ 12.2 04 cfs @ 11.9 19 cfs @ 11.9 1 : STUDY POI	nt for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 2.33" for 10-year event 9 hrs, Volume= 0.615 af 2 hrs, Volume= 0.593 af, Atten= 1%, Lag= 1.5 min 0 hrs, Volume= 0.075 af 0 hrs, Volume= 0.153 af	
Area mu Inflow A Inflow Outflow Discarde Primary Route Seconda	multiplyer adjust Itiplyer adjust rea = 3. = 6.1 = 6.1 ed = 0.1 = 0.7 ed to Link SP ary = 6.4	ded to account ed to the account 168 ac, 17.98 75 cfs @ 12.1 65 cfs @ 12.2 04 cfs @ 11.9 19 cfs @ 11.9 1 : STUDY POI	nt for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 2.33" for 10-year event 9 hrs, Volume= 0.615 af 2 hrs, Volume= 0.593 af, Atten= 1%, Lag= 1.5 min 0 hrs, Volume= 0.075 af 0 hrs, Volume= 0.153 af NT #1 2 hrs, Volume= 0.365 af	
Area mu Inflow A Inflow Outflow Discarde Primary Rout Routing	multiplyer add ultiplyer adjust rea = 3. = 6.1 = 6.1 ed = 0.1 = 0.7 ed to Link SP ² ary = 6.2 ed to Link SP ² by Dyn-Stor-I	ded to account ed to the account 168 ac, 17.98 75 cfs @ 12.1 65 cfs @ 12.2 04 cfs @ 11.9 19 cfs @ 11.9 1 : STUDY POI 43 cfs @ 12.2 1 : STUDY POI nd method, Tin	nt for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 2.33" for 10-year event 9 hrs, Volume= 0.615 af 2 hrs, Volume= 0.593 af, Atten= 1%, Lag= 1.5 min 0 hrs, Volume= 0.075 af 0 hrs, Volume= 0.153 af NT #1 2 hrs, Volume= 0.365 af	
Area mu Inflow A Inflow Outflow Discarde Primary Rout Seconda Routing Primary	multiplyer adjust rea = 3. = 6.7 = 6.6 ed = 0.7 ed to Link SP ary = 6.4 ed to Link SP by Dyn-Stor-I area = Inflow	ded to account ed to the account 168 ac, 17.984 75 cfs @ 12.1 35 cfs @ 12.2 04 cfs @ 11.9 19 cfs @ 11.9 1 : STUDY POI 43 cfs @ 12.2 1 : STUDY POI nd method, Tin area x 0.142	nt for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 2.33" for 10-year event 9 hrs, Volume= 0.615 af 2 hrs, Volume= 0.593 af, Atten= 1%, Lag= 1.5 min 0 hrs, Volume= 0.075 af 0 hrs, Volume= 0.153 af NT #1 2 hrs, Volume= 0.365 af NT #1 me Span= 0.00-36.00 hrs, dt= 0.05 hrs	
Area mu Inflow A Inflow Outflow Discarde Primary Rout Seconda Routing Primary	multiplyer adjust rea = 3. = 6.7 = 6.6 ed = 0.7 ed to Link SP ary = 6.4 ed to Link SP by Dyn-Stor-I area = Inflow	ded to account ed to the account 168 ac, 17.984 75 cfs @ 12.1 35 cfs @ 12.2 04 cfs @ 11.9 19 cfs @ 11.9 1 : STUDY POI 43 cfs @ 12.2 1 : STUDY POI nd method, Tin area x 0.142	nt for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 2.33" for 10-year event 9 hrs, Volume= 0.615 af 2 hrs, Volume= 0.593 af, Atten= 1%, Lag= 1.5 min 0 hrs, Volume= 0.075 af 0 hrs, Volume= 0.153 af NT #1 2 hrs, Volume= 0.365 af NT #1	
Area mu Inflow A Inflow Outflow Discarde Primary Routi Seconda Routing Primary Peak Ele Plug-Flo	multiplyer add ultiplyer adjust rea = 3. = 6.1 = 6.1 = 0.1 ed = 0.1 ed to Link SP ary = 6.2 ed to Link SP by Dyn-Stor-I area = Inflow ev= 3.50' @ 1 pw detention ti	ded to account ed to the account 168 ac, 17.984 75 cfs @ 12.1 35 cfs @ 12.2 04 cfs @ 11.9 19 cfs @ 11.9 19 cfs @ 12.2 1 : STUDY POI 43 cfs @ 12.2 1 : STUDY POI nd method, Tin area x 0.142 1.90 hrs Surf me= 84.6 min c	nt for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 2.33" for 10-year event 9 hrs, Volume= 0.615 af 2 hrs, Volume= 0.593 af, Atten= 1%, Lag= 1.5 min 0 hrs, Volume= 0.075 af 0 hrs, Volume= 0.153 af NT #1 2 hrs, Volume= 0.365 af NT #1 ne Span= 0.00-36.00 hrs, dt= 0.05 hrs Area= 0.026 ac Storage= 0.054 af alculated for 0.592 af (96% of inflow)	
Area mu Inflow A Inflow Outflow Discarde Primary Routi Seconda Routing Primary Peak Ele Plug-Flo	multiplyer add ultiplyer adjust rea = 3. = 6.1 = 6.1 = 0.1 ed = 0.1 ed to Link SP ary = 6.2 ed to Link SP by Dyn-Stor-I area = Inflow ev= 3.50' @ 1 pw detention ti	ded to account ed to the account 168 ac, 17.984 75 cfs @ 12.1 35 cfs @ 12.2 04 cfs @ 11.9 19 cfs @ 11.9 19 cfs @ 12.2 1 : STUDY POI 43 cfs @ 12.2 1 : STUDY POI nd method, Tin area x 0.142 1.90 hrs Surf me= 84.6 min c	nt for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 2.33" for 10-year event 9 hrs, Volume= 0.615 af 2 hrs, Volume= 0.593 af, Atten= 1%, Lag= 1.5 min 0 hrs, Volume= 0.075 af 0 hrs, Volume= 0.153 af NT #1 2 hrs, Volume= 0.365 af NT #1 he Span= 0.00-36.00 hrs, dt= 0.05 hrs Area= 0.026 ac Storage= 0.054 af	
Area mu Inflow A Inflow Outflow Discarde Primary Routi Seconda Routing Primary Peak Ele Plug-Flo	multiplyer add ultiplyer adjust rea = 3. = 6.1 = 6.1 = 0.1 ed = 0.1 ed to Link SP ary = 6.2 ed to Link SP by Dyn-Stor-I area = Inflow ev= 3.50' @ 1 pw detention ti	ded to account ed to the account 168 ac, 17.984 75 cfs @ 12.1 35 cfs @ 12.2 04 cfs @ 11.9 19 cfs @ 11.9 19 cfs @ 12.2 1 : STUDY POI 43 cfs @ 12.2 1 : STUDY POI nd method, Tin area x 0.142 1.90 hrs Surf. me= 84.6 min c me= 65.6 min (nt for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 2.33" for 10-year event 9 hrs, Volume= 0.615 af 2 hrs, Volume= 0.593 af, Atten= 1%, Lag= 1.5 min 0 hrs, Volume= 0.075 af 0 hrs, Volume= 0.153 af NT #1 2 hrs, Volume= 0.365 af NT #1 ne Span= 0.00-36.00 hrs, dt= 0.05 hrs Area= 0.026 ac Storage= 0.054 af alculated for 0.592 af (96% of inflow)	
Area mu Inflow A Inflow Outflow Discarde Primary Routi Seconda Routing Primary Peak Ele Plug-Flo Center-o	multiplyer add ultiplyer adjust rea = 3. = 6.1 = 6.1 = 0.1 ed = 0.1 ed to Link SP ² ary = 6.2 ed to Link SP ² by Dyn-Stor-I area = Inflow ev= 3.50' @ 1 by detention ti of-Mass det. ti	ded to account ed to the account 168 ac, 17.984 75 cfs @ 12.1 35 cfs @ 12.2 04 cfs @ 11.9 19 cfs @ 11.9 19 cfs @ 12.2 1 : STUDY POI 43 cfs @ 12.2 1 : STUDY POI nd method, Tin area x 0.142 1.90 hrs Surf me= 84.6 min c me= 65.6 min (Avail.Storage	nt for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 2.33" for 10-year event 9 hrs, Volume= 0.615 af 2 hrs, Volume= 0.593 af, Atten= 1%, Lag= 1.5 min 0 hrs, Volume= 0.075 af 0 hrs, Volume= 0.153 af NT #1 2 hrs, Volume= 0.365 af NT #1 the Span= 0.00-36.00 hrs, dt= 0.05 hrs Area= 0.026 ac Storage= 0.054 af alculated for 0.592 af (96% of inflow) 908.7 - 843.1) Storage Description 7.67'W x 12.50'L x 3.50'H Field A	
Area mu Inflow A Inflow Outflow Discarde Primary Routi Seconda Routing Primary Peak Ele Plug-Flo Center-o Volume #1A	multiplyer add Itiplyer adjust rea = 3. = 6.1 = 6.1 = 0.1 ed = 0.1 ed to Link SP ² ary = 6.2 ed to Link SP ² by Dyn-Stor-I area = Inflow ev= 3.50' @ 1 by detention tip of-Mass det. tip Invert 0.00'	ded to account ed to the account 168 ac, 17.984 75 cfs @ 12.1 35 cfs @ 12.2 04 cfs @ 11.9 19 cfs @ 11.9 19 cfs @ 11.9 1 : STUDY POI 43 cfs @ 12.2 1 : STUDY POI nd method, Tin area x 0.142 1.90 hrs Surf me= 84.6 min c me= 65.6 min (<u>Avail.Storage</u> 0.002 at	nt for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 2.33" for 10-year event 9 hrs, Volume= 0.615 af 2 hrs, Volume= 0.593 af, Atten= 1%, Lag= 1.5 min 0 hrs, Volume= 0.075 af 0 hrs, Volume= 0.153 af NT #1 2 hrs, Volume= 0.365 af NT #1 the Span= 0.00-36.00 hrs, dt= 0.05 hrs Area= 0.026 ac Storage= 0.054 af alculated for 0.592 af (96% of inflow) 908.7 - 843.1) 5 Storage Description 7.67'W x 12.50'L x 3.50'H Field A 0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids	
Area mu Inflow A Inflow Outflow Discarde Primary Routi Seconda Routing Primary Peak Ele Plug-Flo Center-o Volume	multiplyer add Itiplyer adjust rea = 3. = 6.1 = 6.1 = 0.1 ed = 0.1 ed to Link SP ² ary = 6.2 ed to Link SP ² by Dyn-Stor-I area = Inflow ev= 3.50' @ 1 by detention tiple of-Mass det. tiple	ded to account ed to the account 168 ac, 17.98 75 cfs @ 12.1 35 cfs @ 12.2 04 cfs @ 11.9 19 cfs @ 11.9 19 cfs @ 11.9 1 : STUDY POI 43 cfs @ 12.2 1 : STUDY POI nd method, Tin area x 0.142 1.90 hrs Surf me= 84.6 min c me= 65.6 min (Avail.Storage	nt for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 2.33" for 10-year event 9 hrs, Volume= 0.615 af 2 hrs, Volume= 0.593 af, Atten= 1%, Lag= 1.5 min 0 hrs, Volume= 0.075 af 0 hrs, Volume= 0.153 af NT #1 2 hrs, Volume= 0.365 af NT #1 ne Span= 0.00-36.00 hrs, dt= 0.05 hrs Area= 0.026 ac Storage= 0.054 af alculated for 0.592 af (96% of inflow) 908.7 - 843.1) 5 Storage Description 7.67'W x 12.50'L x 3.50'H Field A 0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids 5 hea Dry Well 1000gal Inside #1	
Area mu Inflow A Inflow Outflow Discarde Primary Routi Seconda Routing Primary Peak Ele Plug-Flo Center-o Volume #1A	multiplyer add Itiplyer adjust rea = 3. = 6.1 = 6.1 = 0.1 ed = 0.1 ed to Link SP ² ary = 6.2 ed to Link SP ² by Dyn-Stor-I area = Inflow ev= 3.50' @ 1 by detention tip of-Mass det. tip Invert 0.00'	ded to account ed to the account 168 ac, 17.984 75 cfs @ 12.1 35 cfs @ 12.2 04 cfs @ 11.9 19 cfs @ 11.9 19 cfs @ 11.9 1 : STUDY POI 43 cfs @ 12.2 1 : STUDY POI nd method, Tin area x 0.142 1.90 hrs Surf me= 84.6 min c me= 65.6 min (<u>Avail.Storage</u> 0.002 at	nt for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 2.33" for 10-year event 9 hrs, Volume= 0.615 af 2 hrs, Volume= 0.593 af, Atten= 1%, Lag= 1.5 min 0 hrs, Volume= 0.075 af 0 hrs, Volume= 0.153 af NT #1 2 hrs, Volume= 0.365 af NT #1 the Span= 0.00-36.00 hrs, dt= 0.05 hrs Area= 0.026 ac Storage= 0.054 af alculated for 0.592 af (96% of inflow) 908.7 - 843.1) 5 Storage Description 7.67'W x 12.50'L x 3.50'H Field A 0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids Shea Dry Well 1000gal Inside #1 Inside= 62.0''W x 30.0''H => 12.86 sf x 10.00'L = 128.6 cf	
Area mu Inflow A Inflow Outflow Discarde Primary Routi Seconda Routing Primary Peak Ele Plug-Flo Center-o Volume #1A	multiplyer add Itiplyer adjust rea = 3. = 6.1 = 6.1 = 0.1 ed = 0.1 ed to Link SP ² ary = 6.2 ed to Link SP ² by Dyn-Stor-I area = Inflow ev= 3.50' @ 1 by detention tip of-Mass det. tip Invert 0.00'	ded to account ed to the account 168 ac, 17.984 75 cfs @ 12.1 35 cfs @ 12.2 04 cfs @ 11.9 19 cfs @ 11.9 19 cfs @ 12.2 1 : STUDY POI 43 cfs @ 12.2 1 : STUDY POI and method, Tin area x 0.142 1.90 hrs Surf me= 84.6 min c me= 65.6 min (Avail.Storage 0.002 a 0.003 a	nt for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 2.33" for 10-year event 9 hrs, Volume= 0.615 af 2 hrs, Volume= 0.593 af, Atten= 1%, Lag= 1.5 min 0 hrs, Volume= 0.075 af 0 hrs, Volume= 0.153 af NT #1 2 hrs, Volume= 0.365 af NT #1 the Span= 0.00-36.00 hrs, dt= 0.05 hrs Area= 0.026 ac Storage= 0.054 af alculated for 0.592 af (96% of inflow) 908.7 - 843.1) Storage Description 7.67'W x 12.50'L x 3.50'H Field A 0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids Shea Dry Well 1000gal Inside #1 Inside= 62.0''W x 30.0''H => 12.86 sf x 10.00'L = 128.6 cf Outside= 68.0''W x 34.0''H => 15.80 sf x 10.50'L = 165.9 cf	
Area mu Inflow A Inflow Outflow Discarde Primary Routi Seconda Routing Primary Peak Ele Plug-Flo Center-o Volume #1A #2A	multiplyer add Itiplyer adjusta rea = 3. = 6.1 = 6.1 = 0.1 ed = 0.1 ed to Link SP ² ary = 6.2 ed to Link SP ² by Dyn-Stor-I area = Inflow ev= 3.50' @ 1 by detention ti of-Mass det. ti <u>Invert</u> 0.00' 0.67'	ded to account ed to the account 168 ac, 17.984 75 cfs @ 12.1 35 cfs @ 12.2 04 cfs @ 11.9 19 cfs @ 11.9 19 cfs @ 12.2 1 : STUDY POI 43 cfs @ 12.2 1 : STUDY POI 43 cfs @ 12.2 1 : STUDY POI and method, Tin area x 0.142 1.90 hrs Surf me= 84.6 min c me= 65.6 min (Avail.Storage 0.002 a 0.003 a 0.005 a	nt for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 2.33" for 10-year event 9 hrs, Volume= 0.615 af 2 hrs, Volume= 0.593 af, Atten= 1%, Lag= 1.5 min 0 hrs, Volume= 0.075 af 0 hrs, Volume= 0.153 af NT #1 2 hrs, Volume= 0.365 af NT #1 the Span= 0.00-36.00 hrs, dt= 0.05 hrs Area= 0.026 ac Storage= 0.054 af alculated for 0.592 af (96% of inflow) 908.7 - 843.1) Storage Description 7.67'W x 12.50'L x 3.50'H Field A 0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids Shea Dry Well 1000gal Inside #1 Inside= 62.0''W x 30.0''H => 12.86 sf x 10.00'L = 128.6 cf Outside= 68.0''W x 34.0''H => 15.80 sf x 10.50'L = 165.9 cf x 12.00 = 0.054 af Total Available Storage	
Area mu Inflow A Inflow Outflow Discarde Primary Routi Seconda Routing Primary Peak Ele Plug-Flo Center-o Volume #1A #2A	multiplyer add Itiplyer adjusta rea = 3. = 6.1 = 6.1 = 0.1 ed = 0.1 ed to Link SP ² ary = 6.2 ed to Link SP ² by Dyn-Stor-I area = Inflow ev= 3.50' @ 1 by detention ti of-Mass det. ti <u>Invert</u> 0.00' 0.67'	ded to account ed to the account 168 ac, 17.984 75 cfs @ 12.1 35 cfs @ 12.2 04 cfs @ 11.9 19 cfs @ 11.9 19 cfs @ 12.2 1 : STUDY POI 43 cfs @ 12.2 1 : STUDY POI and method, Tin area x 0.142 1.90 hrs Surf me= 84.6 min c me= 65.6 min (Avail.Storage 0.002 a 0.003 a	nt for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 2.33" for 10-year event 9 hrs, Volume= 0.615 af 2 hrs, Volume= 0.593 af, Atten= 1%, Lag= 1.5 min 0 hrs, Volume= 0.075 af 0 hrs, Volume= 0.153 af NT #1 2 hrs, Volume= 0.365 af NT #1 the Span= 0.00-36.00 hrs, dt= 0.05 hrs Area= 0.026 ac Storage= 0.054 af alculated for 0.592 af (96% of inflow) 908.7 - 843.1) Storage Description 7.67'W x 12.50'L x 3.50'H Field A 0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids Shea Dry Well 1000gal Inside #1 Inside= 62.0''W x 30.0''H => 12.86 sf x 10.00'L = 128.6 cf Outside= 68.0''W x 34.0''H => 15.80 sf x 10.50'L = 165.9 cf x 12.00 = 0.054 af Total Available Storage	
Area mu Inflow A Inflow Outflow Discarde Primary Routi Seconda Routing Primary Peak Ele Plug-Flo Center-o Volume #1A #2A Stora Device	multiplyer add Itiplyer adjusta rea = 3. = 6.1 = 6.1 = 0.1 ed = 0.1 ed to Link SP ² adjustation SP ² by Dyn-Stor-I area = Inflow ev= 3.50' @ 1 bw detention tiple for Mass det. tiple Invert 0.00' 0.67' age Group A construction Routing	ded to account ed to the account 168 ac, 17.98 75 cfs @ 12.1 35 cfs @ 12.2 04 cfs @ 11.9 19 cfs @ 11.9 19 cfs @ 11.9 1 : STUDY POI 43 cfs @ 12.2 1 : STUDY POI 44 cfs @ 12.2 1 : STUDY POI 43 cfs @ 12.2 1 : STUDY POI 40 cfs @ 12	nt for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 2.33" for 10-year event 9 hrs, Volume= 0.615 af 2 hrs, Volume= 0.593 af, Atten= 1%, Lag= 1.5 min 0 hrs, Volume= 0.075 af 0 hrs, Volume= 0.153 af NT #1 2 hrs, Volume= 0.365 af NT #1 he Span= 0.00-36.00 hrs, dt= 0.05 hrs Area= 0.026 ac Storage= 0.054 af alculated for 0.592 af (96% of inflow) 908.7 - 843.1) Storage Description 7.67'W x 12.50'L x 3.50'H Field A 0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids Shea Dry Well 1000gal Inside #1 Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf x 12.00 = 0.054 af Total Available Storage amber Wizard utlet Devices	
Area mu Inflow A Inflow A Inflow Discarde Primary Route Seconda Routing Primary Peak Ele Plug-Flo Center-o #1A #2A Stora Device #0	multiplyer add Itiplyer adjusta rea = 3. = 6.1 = 6.1 = 0.1 ed = 0.1 ed to Link SP ² ary = 6.2 ed to Link SP ² by Dyn-Stor-I area = Inflow ev= 3.50' @ 1 bw detention ti of-Mass det. ti <u>Invert</u> 0.00' 0.67' age Group A c <u>Routing</u> Secondary	ded to account ed to the account and to the account and to the account and the account and the account and the account and the account and the account and method, Tin area x 0.142 1.90 hrs Surf me= 84.6 min cont and method, Tin area x 0.142 1.90 hrs Surf me= 84.6 min cont and method, Tin area x 0.142 1.90 hrs Surf me= 84.6 min cont and the account and the	nt for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 2.33" for 10-year event 9 hrs, Volume= 0.615 af 2 hrs, Volume= 0.593 af, Atten= 1%, Lag= 1.5 min 0 hrs, Volume= 0.075 af 0 hrs, Volume= 0.153 af NT #1 2 hrs, Volume= 0.365 af NT #1 ne Span= 0.00-36.00 hrs, dt= 0.05 hrs Area= 0.026 ac Storage= 0.054 af alculated for 0.592 af (96% of inflow) 908.7 - 843.1) 5 Storage Description 7.67'W x 12.50'L x 3.50'H Field A 0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids Shea Dry Well 1000gal Inside #1 Inside= 62.0"W x 34.0"H => 12.86 sf x 10.00'L = 128.6 cf Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf x 12.00 = 0.054 af Total Available Storage amber Wizard utlet Devices utomatic Storage Overflow (Discharged without head)	
Area mu nflow A nflow A nflow Discarde Primary Route Seconda Routing Primary Peak Ele Plug-Flo Center-o #1A #2A Stora Device #0 #1	multiplyer add Itiplyer adjusta rea = 3. = 6.1 = 6.1 = 0.1 ed = 0.1 ed to Link SP ² by Dyn-Stor-I area = Inflow ev= 3.50' @ 1 bw detention ti of-Mass det. ti <u>Invert</u> 0.00' 0.67' age Group A c <u>Routing</u> Secondary Discarded	ded to account ed to the account and to the account and to the account and the account and the account and the account and the account and the account and method, Tin area x 0.142 1.90 hrs Surf me= 84.6 min cont and method, Tin area x 0.142 1.90 hrs Surf me= 84.6 min cont and method, Tin area x 0.142 1.90 hrs Surf me= 84.6 min cont and the account and the	nt for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 2.33" for 10-year event 9 hrs, Volume= 0.615 af 2 hrs, Volume= 0.593 af, Atten= 1%, Lag= 1.5 min 0 hrs, Volume= 0.153 af NT #1 2 hrs, Volume= 0.365 af NT #1 the Span= 0.00-36.00 hrs, dt= 0.05 hrs Area= 0.026 ac Storage= 0.054 af alculated for 0.592 af (96% of inflow) 908.7 - 843.1) 5 Storage Description 7.67'W x 12.50'L x 3.50'H Field A 0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids 5 Shea Dry Well 1000gal Inside #1 Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf 5 x 12.00 = 0.054 af Total Available Storage amber Wizard utlet Devices utomatic Storage Overflow (Discharged without head) 600 in/hr Exfiltration over Wetted area	
Area mu Inflow A Inflow Outflow Outflow Discarde Primary Routi Seconda Routing Primary Peak Ele Plug-Flo Center-o Volume #1A #2A Stora Device #0	multiplyer add Itiplyer adjusta rea = 3. = 6.1 = 6.1 = 0.1 ed = 0.1 ed to Link SP ² ary = 6.2 ed to Link SP ² by Dyn-Stor-I area = Inflow ev= 3.50' @ 1 bw detention ti of-Mass det. ti <u>Invert</u> 0.00' 0.67' age Group A c <u>Routing</u> Secondary	ded to account ed to the account and to the account and to the account and the	nt for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 2.33" for 10-year event 9 hrs, Volume= 0.615 af 2 hrs, Volume= 0.593 af, Atten= 1%, Lag= 1.5 min 0 hrs, Volume= 0.153 af NT #1 2 hrs, Volume= 0.153 af NT #1 the Span= 0.00-36.00 hrs, dt= 0.05 hrs Area= 0.026 ac Storage= 0.054 af alculated for 0.592 af (96% of inflow) 908.7 - 843.1) 5 Storage Description 7.67'W x 12.50'L x 3.50'H Field A 0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids 5 Shea Dry Well 1000gal Inside #1 Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf x 12.00 = 0.054 af Total Available Storage amber Wizard utlet Devices utomatic Storage Overflow (Discharged without head) 600 in/hr Exfiltration over Wetted area 0" Round Culvert L= 10.0' Ke= 0.500	
Area mu Inflow A Inflow A Inflow Discarde Primary Route Seconda Routing Primary Peak Ele Plug-Flo Center-o #1A #2A Stora Device #0 #1	multiplyer add Itiplyer adjusta rea = 3. = 6.1 = 6.1 = 0.1 ed = 0.1 ed to Link SP ² by Dyn-Stor-I area = Inflow ev= 3.50' @ 1 bw detention ti of-Mass det. ti <u>Invert</u> 0.00' 0.67' age Group A c <u>Routing</u> Secondary Discarded	ded to account ed to the account ed to the account 168 ac, 17.984 75 cfs @ 12.1 65 cfs @ 12.2 04 cfs @ 11.9 19 cfs @ 11.9 11. STUDY POI 43 cfs @ 12.2 1. STUDY POI 43 cfs @ 12.2 1. STUDY POI 43 cfs @ 12.2 1. STUDY POI 43 cfs @ 12.2 1.90 hrs Surf me= 84.6 min c me= 65.6 min (Avail.Storage 0.002 at 0.003 at 0.005 at reated with Char Invert C 3.50' A 0.00' 0 3.00' 4	nt for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 2.33" for 10-year event 9 hrs, Volume= 0.615 af 2 hrs, Volume= 0.593 af, Atten= 1%, Lag= 1.5 min 0 hrs, Volume= 0.153 af NT #1 2 hrs, Volume= 0.365 af NT #1 the Span= 0.00-36.00 hrs, dt= 0.05 hrs Area= 0.026 ac Storage= 0.054 af alculated for 0.592 af (96% of inflow) 908.7 - 843.1) 5 Storage Description 7.67'W x 12.50'L x 3.50'H Field A 0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids 5 Shea Dry Well 1000gal Inside #1 Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf 5 x 12.00 = 0.054 af Total Available Storage amber Wizard utlet Devices utomatic Storage Overflow (Discharged without head) 600 in/hr Exfiltration over Wetted area	

Discarded OutFlow Max=0.04 cfs @ 11.90 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=0.19 cfs @ 11.90 hrs HW=3.50' TW=0.00' (Dynamic Tailwater) 2=Culvert (Barrel Controls 0.19 cfs @ 2.14 fps)

Secondary OutFlow Max=0.00 cfs @ 12.22 hrs HW=3.50' TW=0.00' (Dynamic Tailwater)

Summary for Pond DW-11: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	2.577 ac, 15.70% Impervious, Inflow D	epth = 2.41" for 10-year event
Inflow =	7.13 cfs @ 12.09 hrs, Volume=	0.518 af
Outflow =	6.83 cfs @ 12.12 hrs, Volume=	0.503 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.03 cfs @_ 11.70 hrs, Volume=	0.051 af
Primary =	6.81 cfs @ 12.12 hrs, Volume=	0.451 af
Routed to Pond	d DS-2b : detention	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 11.70 hrs Surf.Area= 0.018 ac Storage= 0.036 af

Plug-Flow detention time= 70.0 min calculated for 0.503 af (97% of inflow) Center-of-Mass det. time= 53.1 min (886.9 - 833.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 8.00 = 0.036 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
			Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.03 cfs @ 11.70 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 12.12 hrs HW=3.50' TW=863.70' (Dynamic Tailwater) 2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-12: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	2.217 ac,	8.54% Impervious, Inflow D	epth = 2.33" for 10-year event
Inflow =	5.91 cfs @	12.09 hrs, Volume=	0.430 af
Outflow =	5.66 cfs @	12.12 hrs, Volume=	0.415 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.03 cfs @	11.80 hrs, Volume=	0.051 af
Primary =	5.64 cfs @	12.12 hrs, Volume=	0.364 af
Routed to Rea	ch R-02 · Ro	uting through wetland/swale	

Routed to Reach R-02 : Routing through wetland/swale

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Peak Elev= 3.50' @ 11.80 hrs Surf.Area= 0.018 ac Storage= 0.036 af

Plug-Flow detention time= 81.9 min calculated for 0.414 af (96% of inflow) Center-of-Mass det. time= 63.0 min (899.4 - 836.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 8.00 = 0.036 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
			Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.03 cfs @ 11.80 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 12.12 hrs HW=3.50' TW=878.08' (Dynamic Tailwater) 2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-2: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	0.715 ac, 12.26% Impervious, Inflow I	Depth = 2.33" for 10-year event
Inflow =	1.91 cfs @ 12.09 hrs, Volume=	0.139 af
Outflow =	1.83 cfs @12.12 hrs, Volume=	0.135 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.01 cfs @ 11.70 hrs, Volume=	0.013 af
Primary =	1.82 cfs @12.12 hrs, Volume=	0.122 af
Routed to Rea	ch SW-1 : swale	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 11.70 hrs Surf.Area= 0.004 ac Storage= 0.009 af

Plug-Flow detention time= 64.2 min calculated for 0.135 af (97% of inflow) Center-of-Mass det. time= 49.5 min (885.8 - 836.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 2.00 = 0.009 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
			Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.01 cfs @ 11.70 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 12.12 hrs HW=3.50' TW=884.19' (Dynamic Tailwater) 2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-3: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	1.714 ac, 23.07% Impervious, Inflow De	epth = 2.76" for 10-year event
Inflow =	5.44 cfs @ 12.09 hrs, Volume=	0.395 af
Outflow =	5.22 cfs @ 12.12 hrs, Volume=	0.377 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.03 cfs @ 11.75 hrs, Volume=	0.059 af
Primary =	5.19 cfs @ 12.12 hrs, Volume=	0.319 af
Routed to Pond dmh55 : dmh		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 11.75 hrs Surf.Area= 0.020 ac Storage= 0.041 af

Plug-Flow detention time= 103.0 min calculated for 0.377 af (96% of inflow) Center-of-Mass det. time= 78.7 min (901.8 - 823.1)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 9.00 = 0.041 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
			Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.03 cfs @ 11.75 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 12.12 hrs HW=3.50' TW=904.07' (Dynamic Tailwater) -2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-4: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	1.519 ac, 41.32% Impervious, Inflow D	epth = 3.13" for 10-year event
Inflow =	5.43 cfs @ 12.09 hrs, Volume=	0.397 af
Outflow =	5.21 cfs @ 12.11 hrs, Volume=	0.376 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.04 cfs @_ 11.75 hrs, Volume=	0.073 af
Primary =	5.18 cfs @ 12.11 hrs, Volume=	0.302 af
Routed to Pon	d dmh53 : dmh	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 11.75 hrs Surf.Area= 0.024 ac Storage= 0.050 af

Plug-Flow detention time= 124.9 min calculated for 0.375 af (95% of inflow)

2889-01 - Proposed HydroCAD_rev3

Prepared by Allen & Major Associates, Inc HydroCAD® 10.20-2f s/n 02881 © 2022 HydroCAD Software Solutions LLC

Center-of-Mass det. time= 97.0 min (908.7 - 811.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 11.00 = 0.050 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
	-		Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf
Discarded OutFlow Max=0.04 cfs @ 11.75 hrs HW=3.50' (Free Discharge)			

1=Exfiltration (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=3.50' TW=917.94' (Dynamic Tailwater) 2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-5: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	1.509 ac, 38.02% Impervious, Inflow De	epth = 3.04" for 10-year event
Inflow =	5.24 cfs @ 12.09 hrs, Volume=	0.382 af
Outflow =	5.03 cfs @ 12.11 hrs, Volume=	0.367 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.03 cfs @ 11.55 hrs, Volume=	0.053 af
Primary =	5.01 cfs @ 12.11 hrs, Volume=	0.313 af
Routed to Pond dmh20 : dmh		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 11.55 hrs Surf.Area= 0.018 ac Storage= 0.036 af

Plug-Flow detention time= 96.8 min calculated for 0.367 af (96% of inflow) Center-of-Mass det. time= 74.1 min (888.8 - 814.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 8.00 = 0.036 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500 Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900 n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.03 cfs @ 11.55 hrs HW=3.50' (Free Discharge) -1=Exfiltration (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=3.50' TW=904.05' (Dynamic Tailwater) 2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-6: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area = 1.339 ac, 47.44% Impervious, Inflow Depth = 3.23" for 10-year event 4.92 cfs @ 12.09 hrs, Volume= 4.72 cfs @ 12.11 hrs, Volume= Inflow 0.360 af = Outflow = 0.345 af, Atten= 4%, Lag= 1.4 min 0.03 cfs @ 11.50 hrs, Volume= Discarded = 0.054 af 4.70 cfs @ 12.11 hrs, Volume= Primary = 0.291 af Routed to Pond dmh50 : dmh Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 11.50 hrs Surf.Area= 0.018 ac Storage= 0.036 af

Plug-Flow detention time= 103.4 min calculated for 0.345 af (96% of inflow) Center-of-Mass det. time= 79.5 min (888.2 - 808.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 8.00 = 0.036 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
			Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.03 cfs @ 11.50 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=3.50' TW=928.87' (Dynamic Tailwater) -2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-7: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	2.368 ac, 52.59% Impervious, Inflow De	epth = 3.43" for 10-year event
Inflow =	9.15 cfs @ 12.09 hrs, Volume=	0.676 af
Outflow =	8.79 cfs @ 12.11 hrs, Volume=	0.657 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.03 cfs @ 10.70 hrs, Volume=	0.070 af
Primary =	8.76 cfs @ 12.11 hrs, Volume=	0.587 af
Routed to Pond	d dmh21 : dmh	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 10.70 hrs Surf.Area= 0.022 ac Storage= 0.045 af

Plug-Flow detention time= 71.7 min calculated for 0.656 af (97% of inflow) Center-of-Mass det. time= 56.0 min (858.4 - 802.4)

2889-01 - Proposed HydroCAD_rev3 Prepared by Allen & Major Associates, Inc

			HydroCAD Software Solutions LLC	
1yuloCAD®	10.20-21 5/1	102001 @ 2022	Hydrocad Soliware Solutions ELC	Page
/olume	Invert	Avail.Storage	e Storage Description	
#1A	0.00'	0.002 a	f 7.67'W x 12.50'L x 3.50'H Field A	
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids	
#2A	0.67'	0.003 a	f Shea Dry Well 1000gal Inside #1	
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf	
		0.005 a	Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf	
		0.005 a	f x 10.00 = 0.045 af Total Available Storage	
Storage (Group A cr	eated with Ch	amber Wizard	
Device Ro	outing		Dutlet Devices	
	imary		utomatic Storage Overflow (Discharged without head)	
	scarded		.600 in/hr Exfiltration over Wetted area	
#2 Pri	imary		.0" Round Culvert L= 10.0' Ke= 0.500	
			nlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900 = 0.010 PVC, smooth interior, Flow Area= 0.09 sf	
Discarded (OutFlow M	lax=0.03 cfs @	0 10.70 hrs HW=3.50' (Free Discharge)	
-1=Exfiltr	r ation (Exfi	Itration Contro	ls 0.03 cfs)	
			0.44 km 1.11 0.60 1.11 0.04 0.61 (D_{1}) (D_{2}) T_{2} (D_{2})	
Primary Ou			2.11 hrs HW=3.50' TW=901.35' (Dynamic Tailwater)	
			2.11 hrs HW=3.50' TW=901.35' (Dynamic Tailwater)	
Primary Ou				
Primary Ou			2.11 hrs HW=3.50' TW=901.35' (Dynamic Tailwater) Summary for Pond DW-8: House Drywell	
Primary Ou 2=Culve	r t (Control	ls 0.00 cfs)	Summary for Pond DW-8: House Drywell	
Primary Ou 2=Culver	ert(Control	s 0.00 cfs)	Summary for Pond DW-8: House Drywell	
Primary Ou 2=Culver System size Storage mul	rt(Control ed based or ltiplyer add	s 0.00 cfs) n standard 1,0 ed to account	Summary for Pond DW-8: House Drywell	
Primary Ou 2=Culver System size Storage mul Area multiply	rt(Control ed based or ltiplyer add lyer adjuste	n standard 1,0 ed to account d to the accou	Summary for Pond DW-8: House Drywell 00g drywell at each dwelling unit. for number of dwelling units with subcatchment. Int for the percentage of roof area within subcatchment.	
Primary Ou 2=Culver System size Storage mul Area multiply nflow Area	rt (Control ed based or ltiplyer add lyer adjuste = 0.5	n standard 1,0 ed to account d to the accou	Summary for Pond DW-8: House Drywell 00g drywell at each dwelling unit. for number of dwelling units with subcatchment. Int for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 3.33" for 10-year event	
Primary Ou 2=Culver System size Storage mul Area multiply nflow Area nflow =	rt (Control ed based or ltiplyer add lyer adjuste = 0.5 = 2.0	n standard 1,0 ed to account d to the accou 555 ac, 49.64 9 cfs @ 12.0	Summary for Pond DW-8: House Drywell 00g drywell at each dwelling unit. for number of dwelling units with subcatchment. Int for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 3.33" for 10-year event 9 hrs, Volume= 0.154 af	
Crimary Ou 2=Culver System size Storage mul Area multiply nflow Area nflow = Dutflow =	rt (Control ed based or ltiplyer add lyer adjuste = 0.5 = 2.0 = 2.0	n standard 1,0 ed to account d to the accou 555 ac, 49.64 9 cfs @ 12.0 1 cfs @ 12.1	Summary for Pond DW-8: House Drywell 00g drywell at each dwelling unit. for number of dwelling units with subcatchment. Int for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 3.33" for 10-year event 9 hrs, Volume= 0.154 af 1 hrs, Volume= 0.150 af, Atten= 4%, Lag= 1.4 min	
Crimary Ou 2=Culver System size Storage mul Area multiply nflow Area nflow = Dutflow = Discarded =	rt (Control ed based or ltiplyer add lyer adjuste = 0.5 = 2.0 = 2.0 = 0.0	Is 0.00 cfs) In standard 1,0 ed to account d to the account 555 ac, 49.64 9 cfs @ 12.0 1 cfs @ 12.1 1 cfs @ 10.6	Summary for Pond DW-8: House Drywell 00g drywell at each dwelling unit. for number of dwelling units with subcatchment. Int for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 3.33" for 10-year event 9 hrs, Volume= 0.154 af 1 hrs, Volume= 0.150 af, Atten= 4%, Lag= 1.4 min 5 hrs, Volume= 0.014 af	
Primary Ou 2=Culver System size Storage mul Area multiply nflow Area nflow = Dutflow = Discarded = Primary =	rt (Control ed based or ltiplyer add lyer adjuste = 0.5 = 2.0 = 2.0 = 0.0	Is 0.00 cfs) In standard 1,0 ed to account d to the account 555 ac, 49.64 9 cfs @ 12.0 1 cfs @ 12.1 1 cfs @ 10.6 0 cfs @ 12.1	Summary for Pond DW-8: House Drywell 00g drywell at each dwelling unit. for number of dwelling units with subcatchment. int for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 3.33" for 10-year event 9 hrs, Volume= 0.154 af 1 hrs, Volume= 0.150 af, Atten= 4%, Lag= 1.4 min 5 hrs, Volume= 0.014 af	
Primary Ou 2=Culver System size Storage mul Area multiply nflow Area nflow = Discarded = Primary = Routed to	ed based or ltiplyer add lyer adjuste = 0.5 = 2.0 = 2.0 = 0.0 = 2.0 to Pond dm	Is 0.00 cfs) In standard 1,0 ed to account d to the account 555 ac, 49.64 9 cfs @ 12.0 1 cfs @ 12.1 1 cfs @ 10.6 0 cfs @ 12.1 h25 : dmh	Summary for Pond DW-8: House Drywell 00g drywell at each dwelling unit. for number of dwelling units with subcatchment. Int for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 3.33" for 10-year event 9 hrs, Volume= 0.154 af 1 hrs, Volume= 0.150 af, Atten= 4%, Lag= 1.4 min 5 hrs, Volume= 0.136 af	
Primary Ou 2=Culver System size Storage mul Area multiply nflow Area nflow = Discarded = Primary = Routed to Routing by [rt (Control ed based or ltiplyer add lyer adjuste = 0.5 = 2.0 = 2.0 = 0.0 = 2.0 to Pond dm Dyn-Stor-In	standard 1,0 ed to account d to the accou 555 ac, 49.64' 9 cfs @ 12.0 1 cfs @ 12.1 1 cfs @ 10.6 0 cfs @ 12.1 h25 : dmh d method, Tin	Summary for Pond DW-8: House Drywell 00g drywell at each dwelling unit. for number of dwelling units with subcatchment. Int for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 3.33" for 10-year event 9 hrs, Volume= 0.154 af 1 hrs, Volume= 0.150 af, Atten= 4%, Lag= 1.4 min 5 hrs, Volume= 0.136 af thrs, Volume= 0.136 af	
Primary Ou 2=Culver System size Storage mul Area multiply nflow Area nflow = Discarded = Primary = Routed to Routing by [rt (Control ed based or ltiplyer add lyer adjuste = 0.5 = 2.0 = 2.0 = 0.0 = 2.0 to Pond dm Dyn-Stor-In	standard 1,0 ed to account d to the accou 555 ac, 49.64' 9 cfs @ 12.0 1 cfs @ 12.1 1 cfs @ 10.6 0 cfs @ 12.1 h25 : dmh d method, Tin	Summary for Pond DW-8: House Drywell 00g drywell at each dwelling unit. for number of dwelling units with subcatchment. Int for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 3.33" for 10-year event 9 hrs, Volume= 0.154 af 1 hrs, Volume= 0.150 af, Atten= 4%, Lag= 1.4 min 5 hrs, Volume= 0.136 af	
Primary Ou 2=Culver System size Storage mul Area multiply nflow Area nflow = Discarded = Primary = Routed to Routing by I Peak Elev=	rt (Control ed based or ltiplyer add lyer adjuste = 0.5 = 2.0 = 2.0 = 0.0 = 0.0 = 2.0 to Pond dm Dyn-Stor-In 3.50' @ 10	s 0.00 cfs) standard 1,0 ed to account d to the account 555 ac, 49.64 9 cfs @ 12.0 1 cfs @ 12.1 1 cfs @ 10.6 0 cfs @ 12.1 h25 : dmh d method, Tin 0.65 hrs Surf.	Summary for Pond DW-8: House Drywell 00g drywell at each dwelling unit. for number of dwelling units with subcatchment. int for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 3.33" for 10-year event 9 hrs, Volume= 0.154 af 1 hrs, Volume= 0.150 af, Atten= 4%, Lag= 1.4 min 5 hrs, Volume= 0.136 af the Span= 0.00-36.00 hrs, dt= 0.05 hrs Area= 0.004 ac Storage= 0.009 af	
Primary Ou 2=Culver System size Storage mul Area multiply nflow Area nflow = Discarded = Primary = Routed to Routing by I Peak Elev=	rt (Control ed based or ltiplyer addu yer adjuste = 0.5 = 2.0 = 2.0 = 0.0 = 2.0 co Pond dm Dyn-Stor-In 3.50' @ 10 letention tin	s 0.00 cfs) a standard 1,0 ed to account d to the account 555 ac, 49.64 9 cfs @ 12.0 1 cfs @ 12.1 1 cfs @ 12.1 1 cfs @ 12.1 h25 : dmh ad method, Tin 0.65 hrs Surf. me= 64.1 min c	Summary for Pond DW-8: House Drywell 00g drywell at each dwelling unit. for number of dwelling units with subcatchment. int for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 3.33" for 10-year event 9 hrs, Volume= 0.154 af 1 hrs, Volume= 0.150 af, Atten= 4%, Lag= 1.4 min 5 hrs, Volume= 0.136 af he Span= 0.00-36.00 hrs, dt= 0.05 hrs Area= 0.004 ac Storage= 0.009 af calculated for 0.150 af (98% of inflow)	
Primary Ou 2=Culver System size Storage mul Area multiply nflow Area nflow = Discarded = Primary = Routed to Routing by I Peak Elev=	rt (Control ed based or ltiplyer addu yer adjuste = 0.5 = 2.0 = 2.0 = 0.0 = 2.0 co Pond dm Dyn-Stor-In 3.50' @ 10 letention tin	s 0.00 cfs) a standard 1,0 ed to account d to the account 555 ac, 49.64 9 cfs @ 12.0 1 cfs @ 12.1 1 cfs @ 12.1 1 cfs @ 12.1 h25 : dmh ad method, Tin 0.65 hrs Surf. me= 64.1 min c	Summary for Pond DW-8: House Drywell 00g drywell at each dwelling unit. for number of dwelling units with subcatchment. int for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 3.33" for 10-year event 9 hrs, Volume= 0.154 af 1 hrs, Volume= 0.150 af, Atten= 4%, Lag= 1.4 min 5 hrs, Volume= 0.136 af the Span= 0.00-36.00 hrs, dt= 0.05 hrs Area= 0.004 ac Storage= 0.009 af	
Primary Ou 2=Culver System size Storage mul Area multiply nflow Area nflow = Dutflow = Discarded = Primary = Routed to Routing by I Peak Elev= Plug-Flow do Center-of-M	rt (Control ed based or ltiplyer addu yer adjuste = 0.5 = 2.0 = 2.0 = 0.0 = 2.0 co Pond dm Dyn-Stor-In 3.50' @ 10 letention tin	a standard 1,0 ed to account d to the account 555 ac, 49.64 9 cfs @ 12.0 1 cfs @ 12.1 1 cfs @ 10.6 0 cfs @ 12.1 h25 : dmh d method, Tin 0.65 hrs Surf ne= 64.1 min c ne= 49.3 min (Summary for Pond DW-8: House Drywell 00g drywell at each dwelling unit. for number of dwelling units with subcatchment. int for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 3.33" for 10-year event 9 hrs, Volume= 0.154 af 1 hrs, Volume= 0.150 af, Atten= 4%, Lag= 1.4 min 5 hrs, Volume= 0.136 af he Span= 0.00-36.00 hrs, dt= 0.05 hrs Area= 0.004 ac Storage= 0.009 af calculated for 0.150 af (98% of inflow)	
Primary Ou 2=Culver System size Storage mul Area multiply nflow Area nflow = Discarded = Primary = Routed to Routing by I Peak Elev=	rt (Control ed based or ltiplyer addu lyer adjuste = 0.5 = 2.0 = 2.0 = 0.0 = 2.0 co Pond dm Dyn-Stor-In 3.50' @ 10 letention tin lass det. tin	a standard 1,0 ed to account d to the account 555 ac, 49.64 9 cfs @ 12.0 1 cfs @ 12.1 1 cfs @ 12.1 1 cfs @ 12.1 h25 : dmh d method, Tin 0.65 hrs Surf. ne= 64.1 min c ne= 49.3 min (<u>Avail.Storage</u>	Summary for Pond DW-8: House Drywell 00g drywell at each dwelling unit. for number of dwelling units with subcatchment. int for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 3.33" for 10-year event 9 hrs, Volume= 0.154 af 1 hrs, Volume= 0.150 af, Atten= 4%, Lag= 1.4 min 5 hrs, Volume= 0.136 af he Span= 0.00-36.00 hrs, dt= 0.05 hrs Area= 0.004 ac Storage= 0.009 af calculated for 0.150 af (98% of inflow) 854.9 - 805.6 j	
Primary Ou 2=Culver System size Storage mul Area multiply nflow Area nflow = Dutflow = Discarded = Primary = Routed to Routing by I Peak Elev= Plug-Flow do Center-of-M /olume #1A	rt (Control ed based or ltiplyer add lyer adjuste = 0.5 = 2.0 = 2.0 = 0.0 = 2.0 o Pond dm Dyn-Stor-In 3.50' @ 10 letention tin lass det. tin <u>Invert</u> 0.00'	a standard 1,0 ed to account d to the account 555 ac, 49.64 9 cfs @ 12.0 1 cfs @ 12.1 1 cfs @ 10.6 0 cfs @ 12.1 h25 : dmh d method, Tin 0.65 hrs Surf ne= 64.1 min c ne= 49.3 min (<u>Avail.Storage</u> 0.002 a	Summary for Pond DW-8: House Drywell 00g drywell at each dwelling unit. for number of dwelling units with subcatchment. int for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 3.33" for 10-year event 9 hrs, Volume= 0.154 af 1 hrs, Volume= 0.150 af, Atten= 4%, Lag= 1.4 min 5 hrs, Volume= 0.136 af he Span= 0.00-36.00 hrs, dt= 0.05 hrs Area= 0.004 ac Storage= 0.009 af calculated for 0.150 af (98% of inflow) 854.9 - 805.6) e Storage Description f 7.67'W x 12.50'L x 3.50'H Field A 0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids	
Primary Ou 2=Culver System size Storage mul Area multiply nflow Area nflow = Discarded = Primary = Routed to Routing by I Peak Elev= Plug-Flow do Center-of-M /olume	rt (Control ed based or ltiplyer addu lyer adjuste = 0.5 = 2.0 = 2.0 = 0.0 = 0.0 = 2.0 to Pond dm Dyn-Stor-In 3.50' @ 10 letention tin lass det. tin	a standard 1,0 ed to account d to the account 555 ac, 49.64 9 cfs @ 12.0 1 cfs @ 12.1 1 cfs @ 10.6 0 cfs @ 12.1 h25 : dmh d method, Tin 0.65 hrs Surf ne= 64.1 min c ne= 49.3 min (<u>Avail.Storage</u> 0.002 a	Summary for Pond DW-8: House Drywell 00g drywell at each dwelling unit. for number of dwelling units with subcatchment. int for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 3.33" for 10-year event 9 hrs, Volume= 0.154 af 1 hrs, Volume= 0.150 af, Atten= 4%, Lag= 1.4 min 5 hrs, Volume= 0.136 af he Span= 0.00-36.00 hrs, dt= 0.05 hrs Area= 0.004 ac Storage= 0.009 af calculated for 0.150 af (98% of inflow) 854.9 - 805.6) e Storage Description f 7.67'W x 12.50'L x 3.50'H Field A 0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids f Shea Dry Well 1000gal Inside #1	
Primary Ou 2=Culver System size Storage mul Area multiply nflow Area nflow = Dutflow = Discarded = Primary = Routed to Routing by I Peak Elev= Plug-Flow do Center-of-M /olume #1A	rt (Control ed based or ltiplyer add lyer adjuste = 0.5 = 2.0 = 2.0 = 0.0 = 2.0 o Pond dm Dyn-Stor-In 3.50' @ 10 letention tin lass det. tin <u>Invert</u> 0.00'	a standard 1,0 ed to account d to the account 555 ac, 49.64 9 cfs @ 12.0 1 cfs @ 12.1 1 cfs @ 10.6 0 cfs @ 12.1 h25 : dmh d method, Tin 0.65 hrs Surf ne= 64.1 min c ne= 49.3 min (<u>Avail.Storage</u> 0.002 a	Summary for Pond DW-8: House Drywell 00g drywell at each dwelling unit. for number of dwelling units with subcatchment. Int for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 3.33" for 10-year event 9 hrs, Volume= 0.154 af 1 hrs, Volume= 0.150 af, Atten= 4%, Lag= 1.4 min 5 hrs, Volume= 0.136 af hrs, Volume= 0.136 af he Span= 0.00-36.00 hrs, dt= 0.05 hrs Area= 0.004 ac Storage= 0.009 af calculated for 0.150 af (98% of inflow) 854.9 - 805.6) 5 Storage Description f 7.67'W x 12.50'L x 3.50'H Field A 0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids f Shea Dry Well 1000gal Inside #1 Inside= 62.0''W x 30.0''H => 12.86 sf x 10.00'L = 128.6 cf	
Primary Ou 2=Culver System size Storage mul Area multiply nflow Area nflow = Dutflow = Discarded = Primary = Routed to Routing by I Peak Elev= Plug-Flow do Center-of-M /olume #1A	rt (Control ed based or ltiplyer add lyer adjuste = 0.5 = 2.0 = 2.0 = 0.0 = 2.0 o Pond dm Dyn-Stor-In 3.50' @ 10 letention tin lass det. tin <u>Invert</u> 0.00'	a standard 1,0 ed to account d to the account 555 ac, 49.64 9 cfs @ 12.0 1 cfs @ 12.1 1 cfs @ 12.1 1 cfs @ 12.1 1 cfs @ 12.1 h25 : dmh d method, Tin 0.65 hrs Surf ne= 64.1 min cone = 49.3 min (<u>Avail.Storage</u> 0.002 a 0.003 a	Summary for Pond DW-8: House Drywell 00g drywell at each dwelling unit. for number of dwelling units with subcatchment. int for the percentage of roof area within subcatchment. % Impervious, Inflow Depth = 3.33" for 10-year event 9 hrs, Volume= 0.154 af 1 hrs, Volume= 0.150 af, Atten= 4%, Lag= 1.4 min 5 hrs, Volume= 0.136 af he Span= 0.00-36.00 hrs, dt= 0.05 hrs Area= 0.004 ac Storage= 0.009 af calculated for 0.150 af (98% of inflow) 854.9 - 805.6) e Storage Description f 7.67'W x 12.50'L x 3.50'H Field A 0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids f Shea Dry Well 1000gal Inside #1	

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
			Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900 n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.01 cfs @ 10.65 hrs HW=3.50' (Free Discharge) **—1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=3.50' TW=923.37' (Dynamic Tailwater) -2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-9: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area = 1.045 ac, 52.81% Impervious, Inflow Depth = 3.43" for 10-year event 4.04 cfs @ 12.09 hrs, Volume= 3.88 cfs @ 12.11 hrs, Volume= Inflow 0.298 af = Outflow = 0.287 af, Atten= 4%, Lag= 1.4 min 0.02 cfs @ 11.20 hrs, Volume= Discarded = 0.041 af 3.86 cfs @ 12.11 hrs, Volume= 0.246 af Primary = Routed to Pond dmh23 : dmh Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 11.20 hrs Surf.Area= 0.013 ac Storage= 0.027 af Plug-Flow detention time= 94.9 min calculated for 0.287 af (96% of inflow) Center-of-Mass det. time= 73.9 min (876.2 - 802.4) Volumo Invort Avail Storage Storage Description

Volume		Avail.Storage	Storage Description	
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A	
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids	
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1	
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf	
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf	
		0.005 af	x 6.00 = 0.027 af Total Available Storage	

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
			Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.02 cfs @ 11.20 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=3.50' TW=899.54' (Dynamic Tailwater) -2=Culvert (Controls 0.00 cfs)

Summary for Pond G1: gabion

[92] Warning: Device #3 is above defined storage[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=14)

Inflow Area =	5.477 ac, 48.32% Impervious, Inflow D	epth > 2.80" for 10-year event		
Inflow =	3.95 cfs @ 12.56 hrs, Volume=	1.280 af		
Outflow =	3.95 cfs @ 12.56 hrs, Volume=	1.279 af, Atten= 0%, Lag= 0.0 min		
Primary =	3.95 cfs @ 12.56 hrs, Volume=	1.279 af		
Routed to Reach R-02 : Routing through wetland/swale				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 878.40' @ 12.96 hrs Surf.Area= 368 sf Storage= 275 cf Flood Elev= 880.00' Surf.Area= 2 sf Storage= 444 cf

Plug-Flow detention time= 2.8 min calculated for 1.279 af (100% of inflow) Center-of-Mass det. time= 2.0 min (941.7 - 939.6)

Volume	Invert	Avail.Storage	Storage Description
#1	877.50'	442 cf	18.0" Round Pipe Storage
			L= 250.0'
#2	879.00'	2 cf	1.50'D x 1.00'H Vertical Cone/Cylinder
		444 cf	Total Available Storage

2889-01 - Proposed HydroCAD_rev3

Prepared by Allen & Major Associates, Inc HydroCAD® 10.20-2f s/n 02881 © 2022 HydroCAD Software Solutions LLC

Device Routing Invert Outlet Devices
#1 Primary 877.50' 2.0" Horiz. invert orifices X 125.00 C= 0.600 Limited to weir flow at low heads
#2 Primary 878.25' 2.0" Vert. spring line orifices X 125.00 C= 0.600 Limited to weir flow at low heads
#3 Primary 880.00' 18.0" Horiz. overflow grates X 2.00 C= 0.600 Limited to weir flow at low heads
Primary OutFlow Max=3.05 cfs @ 12.56 hrs HW=878.36' TW=878.34' (Dynamic Tailwater) 1=invert orifices (Orifice Controls 1.78 cfs @ 0.65 fps) 2=spring line orifices (Orifice Controls 1.27 cfs @ 0.65 fps) 3=overflow grates (Controls 0.00 cfs)
Summary for Pond G2: gabion
[92] Warning: Device #3 is above defined storage
Inflow Area = 9.959 ac, 17.21% Impervious, Inflow Depth > 2.14" for 10-year event
Inflow = 7.69 cfs @ 12.55 hrs, Volume= 1.778 af
Outflow = 7.68 cfs @ 12.56 hrs, Volume= 1.778 af, Atten= 0%, Lag= 0.2 min Primary = 7.68 cfs @ 12.56 hrs, Volume= 1.778 af
Routed to Link SP3 : STUDY POINT #3
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 811.09' @ 12.56 hrs Surf.Area= 120 sf Storage= 75 cf
Flood Elev= 811.80' Storage= 141 cf
Plug-Flow detention time= 0.1 min calculated for 1.778 af (100% of inflow)
Center-of-Mass det. time= 0.1 min(930.7 - 930.7)
Volume Invert Avail.Storage Storage Description
#1 810.30' 141 cf 18.0" Round Pipe Storage
L= 80.0'
Device Routing Invert Outlet Devices
#1 Primary 810.30' 2.0" Horiz. invert orifices X 80.00 C= 0.600 Limited to weir flow at low heads
#2 Primary 811.05' 2.0" Vert. spring line orifices X 80.00 C= 0.600 Limited to weir flow at low heads
#3 Primary 811.80' 18.0" Horiz. overflow grates X 2.00 C= 0.600 Limited to weir flow at low heads
Primary OutFlow Max=7.67 cfs @ 12.56 hrs HW=811.09' TW=0.00' (Dynamic Tailwater)

Primary OutFlow Max=7.67 cfs @ 12.56 hrs HW=811.09' TW=0.00' (Dynamic Tailwater) 1=invert orifices (Orifice Controls 7.46 cfs @ 4.28 fps)

-2=spring line orifices (Orifice Controls 0.21 cfs @ 0.67 fps)

-3=overflow grates (Controls 0.00 cfs)

Summary for Link SP1: STUDY POINT #1

Inflow Area	=	6.871 ac, 28.86% Impervious, Inflow	/ Depth = 2.32"	for 10-year event
Inflow =	=	9.80 cfs @ 12.23 hrs, Volume=	1.327 af	
Primary =	=	9.80 cfs @ 12.23 hrs, Volume=	1.327 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP2: STUDY POINT #2

Inflow Area =	10.270 ac, 31.55% Impervious,	Inflow Depth > 2.44" for 10-year event
Inflow =	6.84 cfs @ 12.38 hrs, Volume	e= 2.089 af
Primary =	6.84 cfs @ 12.38 hrs, Volume	e= 2.089 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP3: STUDY POINT #3

Inflow Area	a =	1.281 ac, 15.19% Impervious, Inflow Depth > 2.14" for 10-year event	
Inflow	=	8.82 cfs @ 12.53 hrs, Volume= 2.007 af	
Primary	=	8.82 cfs @ 12.53 hrs, Volume= 2.007 af, Atten= 0%, Lag= 0.0 min	

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP4: STUDY POINT #4

Inflow Area =	0.605 ac, 10.67% Impervious,	Inflow Depth = 2.33" for 10-year event
Inflow =	1.62 cfs @ 12.09 hrs, Volume	= 0.117 af
Primary =	1.62 cfs @ 12.09 hrs, Volume	= 0.117 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP5: STUDY POINT #5

Inflow Area =	0.158 ac,	0.00% Impervious, Inflow	Depth = 2.16"	for 10-year event
Inflow =	0.39 cfs @	12.10 hrs, Volume=	0.028 af	-
Primary =	0.39 cfs @	12.10 hrs, Volume=	0.028 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentP-1A: Subcat P-1A	Runoff Area=3.168 ac 17.98% Impervious Runoff Depth=3.38" Flow Length=782' Tc=13.3 min CN=75 Runoff=9.86 cfs 0.894 af
SubcatchmentP-1B: Subcat P-1B	Runoff Area=24,871 sf 23.27% Impervious Runoff Depth=3.69" Flow Length=315' Tc=8.2 min CN=78 Runoff=2.25 cfs 0.175 af
SubcatchmentP-1C: Subcat P-1C	Runoff Area=0.337 ac 20.77% Impervious Runoff Depth=3.38" Tc=6.0 min CN=75 Runoff=1.31 cfs 0.095 af
SubcatchmentP-1D: Subcat P-1D	Runoff Area=0.715 ac 12.26% Impervious Runoff Depth=3.38" Tc=6.0 min CN=75 Runoff=2.78 cfs 0.202 af
SubcatchmentP-1E: Subcat P-1E	Runoff Area=0.382 ac 53.49% Impervious Runoff Depth=4.42" Tc=6.0 min CN=85 Runoff=1.90 cfs 0.141 af
SubcatchmentP-1F: Subcat P-1F	Runoff Area=1.697 ac 54.12% Impervious Runoff Depth=4.63" Tc=6.0 min CN=87 Runoff=8.75 cfs 0.655 af
SubcatchmentP-2A: Subcat P-2A	Runoff Area=2.217 ac 8.54% Impervious Runoff Depth=3.38" Tc=6.0 min CN=75 Runoff=8.62 cfs 0.625 af
SubcatchmentP-2B: Subcat P-2B	Runoff Area=2.577 ac 15.70% Impervious Runoff Depth=3.48" Tc=6.0 min CN=76 Runoff=10.31 cfs 0.748 af
SubcatchmentP-2E: Subcat P-2E	Runoff Area=2.368 ac 52.59% Impervious Runoff Depth=4.63" Tc=6.0 min CN=87 Runoff=12.20 cfs 0.914 af
SubcatchmentP-2F: Subcat P-2F	Runoff Area=1.509 ac 38.02% Impervious Runoff Depth=4.20" Tc=6.0 min CN=83 Runoff=7.18 cfs 0.528 af
SubcatchmentP-2G: Subcat P-2G	Runoff Area=1.045 ac 52.81% Impervious Runoff Depth=4.63" Tc=6.0 min CN=87 Runoff=5.39 cfs 0.403 af
SubcatchmentP-2H: Subcat P-2H	Runoff Area=0.555 ac 49.64% Impervious Runoff Depth=4.52" Tc=6.0 min CN=86 Runoff=2.81 cfs 0.209 af
SubcatchmentP-3A: Subcat P-3A	Runoff Area=5.016 ac 0.00% Impervious Runoff Depth=2.90" Flow Length=644' Tc=16.1 min CN=70 Runoff=12.38 cfs 1.213 af
SubcatchmentP-3B: Subcat P-3B	Runoff Area=1.323 ac 0.00% Impervious Runoff Depth=3.09" Tc=6.0 min CN=72 Runoff=4.70 cfs 0.341 af
SubcatchmentP-3C: Subcat P-3C	Runoff Area=0.370 ac 14.94% Impervious Runoff Depth=3.69" Tc=6.0 min CN=78 Runoff=1.57 cfs 0.114 af
SubcatchmentP-3D: Subcat P-3D	Runoff Area=1.714 ac 23.07% Impervious Runoff Depth=3.89" Tc=6.0 min CN=80 Runoff=7.62 cfs 0.556 af
SubcatchmentP-3E: Subcat P-3E	Runoff Area=1.519 ac 41.32% Impervious Runoff Depth=4.31" Tc=6.0 min CN=84 Runoff=7.39 cfs 0.545 af
SubcatchmentP-3F: Subcat P-3F	Runoff Area=1.339 ac 47.44% Impervious Runoff Depth=4.42" Tc=6.0 min CN=85 Runoff=6.64 cfs 0.493 af
SubcatchmentP-4: Subcat P-4	Runoff Area=26,375 sf 10.67% Impervious Runoff Depth=3.38" Tc=6.0 min CN=75 Runoff=2.36 cfs 0.171 af
SubcatchmentP-5: Subcat P-5	Runoff Area=6,874 sf 0.00% Impervious Runoff Depth=3.19" Tc=6.0 min CN=73 Runoff=0.58 cfs 0.042 af
Reach R-01: Routing to wetlands	Avg. Flow Depth=0.28' Max Vel=0.37 fps Inflow=4.70 cfs 0.341 af n=0.400 L=722.0' S=0.1087 '/' Capacity=43.77 cfs Outflow=1.98 cfs 0.341 af

2889-01 - Proposed HydroCAD_rev3 Prepared by Allen & Major Associates, Inc HydroCAD® 10.20-2f s/n 02881 © 2022 HydroCAD Software Solutions LLC

Reach R-02: Routing through wetland/swale	Avg. Flow Depth=0.86' Max Vel=0.34 fps Inflow=11.66 cfs 2.374 af n=0.400 L=735.0' S=0.0189 '/' Capacity=24.55 cfs Outflow=7.13 cfs 2.371 af
Reach SW-1: swale	Avg. Flow Depth=0.24' Max Vel=3.70 fps Inflow=2.66 cfs 0.185 af n=0.041 L=252.0' S=0.1052 '/' Capacity=49.36 cfs Outflow=2.62 cfs 0.185 af
Reach SW-2: swale	Avg. Flow Depth=0.20' Max Vel=3.43 fps Inflow=1.90 cfs 0.141 af n=0.041 L=228.0' S=0.1110 '/' Capacity=50.70 cfs Outflow=1.88 cfs 0.141 af
Pond DB-1: detention	Peak Elev=813.37' Storage=41,727 cf Inflow=31.51 cfs 2.674 af Primary=10.81 cfs 2.654 af Secondary=0.00 cfs 0.000 af Outflow=10.81 cfs 2.654 af
Pond dmh01: dmh	Peak Elev=850.88' Inflow=1.88 cfs 0.141 af 12.0" Round Culvert n=0.013 L=12.0' S=0.0100 '/' Outflow=1.88 cfs 0.141 af
Pond dmh05: dmh	Peak Elev=871.15' Inflow=8.38 cfs 0.565 af 15.0" Round Culvert n=0.013 L=97.0' S=0.0351 '/' Outflow=8.38 cfs 0.565 af
Pond dmh20: dmh	Peak Elev=904.75' Inflow=6.87 cfs 0.458 af 15.0" Round Culvert n=0.013 L=205.0' S=0.0119 '/' Outflow=6.87 cfs 0.458 af
Pond dmh21: dmh	Peak Elev=902.06' Inflow=18.57 cfs 1.280 af 24.0" Round Culvert n=0.013 L=190.0' S=0.0100 '/' Outflow=18.57 cfs 1.280 af
Pond dmh23: dmh	Peak Elev=900.03' Inflow=23.73 cfs 1.629 af 30.0" Round Culvert n=0.013 L=27.0' S=0.0130 '/' Outflow=23.73 cfs 1.629 af
Pond dmh25: dmh	Peak Elev=923.60' Inflow=2.69 cfs 0.191 af 12.0" Round Culvert n=0.013 L=97.0' S=0.0697 '/' Outflow=2.69 cfs 0.191 af
Pond dmh50: dmh	Peak Elev=929.43' Inflow=6.36 cfs 0.421 af 15.0" Round Culvert n=0.013 L=102.0' S=0.0799 '/' Outflow=6.36 cfs 0.421 af
Pond dmh51: dmh	Peak Elev=921.18' Inflow=6.36 cfs 0.421 af 15.0" Round Culvert n=0.013 L=127.0' S=0.0780 '/' Outflow=6.36 cfs 0.421 af
Pond dmh52: dmh	Peak Elev=894.30' Inflow=6.36 cfs 0.421 af 15.0" Round Culvert n=0.013 L=62.0' S=0.0802 '/' Outflow=6.36 cfs 0.421 af
Pond dmh53: dmh	Peak Elev=918.25' Inflow=7.06 cfs 0.449 af 18.0" Round Culvert n=0.013 L=31.0' S=0.0465 '/' Outflow=7.06 cfs 0.449 af
Pond dmh55: dmh	Peak Elev=904.49' Inflow=14.35 cfs 0.926 af 24.0" Round Culvert n=0.013 L=72.0' S=0.0374 '/' Outflow=14.35 cfs 0.926 af
Pond dmh56: dmh	Peak Elev=898.86' Inflow=15.87 cfs 1.040 af 30.0" Round Culvert n=0.013 L=20.0' S=0.0100 '/' Outflow=15.87 cfs 1.040 af
Pond dmh57: dmh	Peak Elev=898.35' Inflow=15.87 cfs 1.040 af 30.0" Round Culvert n=0.013 L=103.0' S=0.0080 '/' Outflow=15.87 cfs 1.040 af
Pond dmh58: dmh	Peak Elev=897.30' Inflow=15.87 cfs 1.040 af 30.0" Round Culvert n=0.013 L=278.0' S=0.0080 '/' Outflow=15.87 cfs 1.040 af
Pond dmh59: dmh	Peak Elev=895.09' Inflow=15.87 cfs 1.040 af 30.0" Round Culvert n=0.013 L=82.0' S=0.0091 '/' Outflow=15.87 cfs 1.040 af
Pond dmh60: dmh	Peak Elev=894.11' Inflow=15.87 cfs 1.040 af 30.0" Round Culvert n=0.013 L=258.0' S=0.0115 '/' Outflow=15.87 cfs 1.040 af
Pond dmh61: dmh	Peak Elev=891.04' Inflow=15.87 cfs 1.040 af 30.0" Round Culvert n=0.013 L=278.0' S=0.0100 '/' Outflow=15.87 cfs 1.040 af
Pond dmh62: dmh	Peak Elev=888.59' Inflow=22.23 cfs 1.461 af 30.0" Round Culvert n=0.013 L=62.0' S=0.0248 '/' Outflow=22.23 cfs 1.461 af

Pond dmh69: dmh	 Peak Elev=814.62' Inflow=22.23 cfs 1.461 af 30.0" Round Culvert n=0.013 L=29.0' S=0.0338 '/' Outflow=22.23 cfs 1.461 af
Pond DS-1a: detention	Peak Elev=850.86' Storage=13,948 cf Inflow=12.82 cfs 0.890 af Outflow=5.03 cfs 0.890 af
Pond DS-1b: detention	Peak Elev=861.13' Storage=2,587 cf Inflow=2.25 cfs 0.175 af Outflow=0.56 cfs 0.175 af
Pond DS-2a: detention	Peak Elev=899.14' Storage=34,385 cf Inflow=26.43 cfs 1.820 af Outflow=6.64 cfs 1.818 af
Pond DS-2b: detention	Peak Elev=864.17' Storage=5,659 cf Inflow=9.87 cfs 0.679 af Outflow=6.83 cfs 0.678 af
Pond DW-1: House Drywell	Peak Elev=3.50' Storage=1,963 cf Inflow=8.75 cfs 0.655 af Discarded=0.03 cfs 0.072 af Primary=8.38 cfs 0.565 af Outflow=8.41 cfs 0.636 af
Pond DW-10: House Drywell	Peak Elev=3.50' Storage=0.054 af Inflow=9.86 cfs 0.894 af Discarded=0.04 cfs 0.078 af Primary=0.19 cfs 0.183 af Secondary=9.50 cfs 0.611 af Outflow=9.73 cfs 0.872 af
Pond DW-11: House Drywell	Peak Elev=3.50' Storage=0.036 af Inflow=10.31 cfs 0.748 af Discarded=0.03 cfs 0.053 af Primary=9.87 cfs 0.679 af Outflow=9.89 cfs 0.733 af
Pond DW-12: House Drywell	Peak Elev=3.50' Storage=0.036 af Inflow=8.62 cfs 0.625 af Discarded=0.03 cfs 0.053 af Primary=8.24 cfs 0.557 af Outflow=8.27 cfs 0.610 af
Pond DW-2: House Drywell	Peak Elev=3.50' Storage=0.009 af Inflow=2.78 cfs 0.202 af Discarded=0.01 cfs 0.013 af Primary=2.66 cfs 0.185 af Outflow=2.67 cfs 0.198 af
Pond DW-3: House Drywell	Peak Elev=3.50' Storage=0.041 af Inflow=7.62 cfs 0.556 af Discarded=0.03 cfs 0.061 af Primary=7.28 cfs 0.478 af Outflow=7.31 cfs 0.538 af
Pond DW-4: House Drywell	Peak Elev=3.50' Storage=0.050 af Inflow=7.39 cfs 0.545 af Discarded=0.04 cfs 0.076 af Primary=7.06 cfs 0.449 af Outflow=7.10 cfs 0.524 af
Pond DW-5: House Drywell	Peak Elev=3.50' Storage=0.036 af Inflow=7.18 cfs 0.528 af Discarded=0.03 cfs 0.055 af Primary=6.87 cfs 0.458 af Outflow=6.90 cfs 0.513 af
Pond DW-6: House Drywell	Peak Elev=3.50' Storage=0.036 af Inflow=6.64 cfs 0.493 af Discarded=0.03 cfs 0.056 af Primary=6.36 cfs 0.421 af Outflow=6.39 cfs 0.477 af
Pond DW-7: House Drywell	Peak Elev=3.50' Storage=0.045 af Inflow=12.20 cfs 0.914 af Discarded=0.03 cfs 0.073 af Primary=11.70 cfs 0.822 af Outflow=11.73 cfs 0.895 af
Pond DW-8: House Drywell	Peak Elev=3.50' Storage=0.009 af Inflow=2.81 cfs 0.209 af Discarded=0.01 cfs 0.014 af Primary=2.69 cfs 0.191 af Outflow=2.70 cfs 0.205 af
Pond DW-9: House Drywell	Peak Elev=3.50' Storage=0.027 af Inflow=5.39 cfs 0.403 af Discarded=0.02 cfs 0.043 af Primary=5.16 cfs 0.349 af Outflow=5.18 cfs 0.392 af
Pond G1: gabion	Peak Elev=878.61' Storage=352 cf Inflow=6.64 cfs 1.818 af Outflow=6.60 cfs 1.817 af
Pond G2: gabion	Peak Elev=811.24' Storage=93 cf Inflow=10.81 cfs 2.654 af Outflow=10.81 cfs 2.654 af
Link SP1: STUDY POINT #1	Inflow=15.47 cfs 1.953 af Primary=15.47 cfs 1.953 af
Link SP2: STUDY POINT #2	Inflow=11.53 cfs 3.048 af Primary=11.53 cfs 3.048 af
Link SP3: STUDY POINT #3	Inflow=12.65 cfs 2.995 af Primary=12.65 cfs 2.995 af

Link SP4: STUDY POINT #4

Link SP5: STUDY POINT #5

Inflow=2.36 cfs 0.171 af Primary=2.36 cfs 0.171 af

Inflow=0.58 cfs 0.042 af Primary=0.58 cfs 0.042 af

Total Runoff Area = 29.185 acRunoff Volume = 9.063 afAverage Runoff Depth = 3.73"76.01% Pervious = 22.184 ac23.99% Impervious = 7.001 ac

Summary for Subcatchment P-1A: Subcat P-1A

[47] Hint: Peak is 240% of capacity of segment #3

Runoff = 9.86 cfs @ 12.19 hrs, Volume= 0.894 af, Depth= 3.38" Routed to Pond DW-10 : House Drywell

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.12"

	Area	(ac) (CN I	Descriptio	n		
0.168 55 Woods, Good, HSG B						HSG B	
	0.	059	98 I	Roofs, HS	GΒ		
0.085 98 Paved parking, HSG B							
	0.	183	61 🔅	>75% Ġra	ss co	over, Good	, HSG B
	1.	282	74 >	>75% Gra	ss co	over, Good	, HSG C
	0.	966	70 V	Noods, G	ood,	HSG C	
	0.	046		Paved par			
_	0.	379	<u>98 I</u>	Roofs, HS	GC		
	3.	168	75 \	Neighted	Aver	age	
	2.	599	8	32.02% P	ervio	us Area	
	0.569			17.98% In	nper\	∕ious Area	
	Тс	Length		ope Velo		Capacity	Description
_	(min)	(feet)	(f	t/ft) (ft/s	ec)	(cfs)	
	9.8	55	0.16	670 C	.09		Sheet Flow,
							Woods: Dense underbrush n= 0.800 P2= 3.28"
	1.1	105	0.05	500 1	.57		Shallow Concentrated Flow,
							Short Grass Pasture Kv= 7.0 fps
	2.4	622	0.02	280 4	.24	4.11	
							Bot.W=1.00' D=0.25' Z= 3.0 & 20.0 '/' Top.W=6.75'
_							n= 0.016 Asphalt, rough
	12 2	782	Tot	N			

13.3 782 Total

Summary for Subcatchment P-1B: Subcat P-1B

Runoff = 2.25 cfs @ 12.12 hrs, Volume= 0.175 af, Depth= 3.69" Routed to Pond DS-1b : detention

A	Area (sf)	CN	Description						
	4,342	98	Paved park	Paved parking, HSG C					
	1,445			Paved parking, HSG B					
	3,282	61	>75% Gras	75% Grass cover, Good, HSG B					
	13,797	74	>75% Gras	s cover, Go	bod, HSG C				
	2,004	70	Woods, Go	od, HSG C					
	24,871	78	Weighted A	verage					
	19,083		76.73% Pe	rvious Area					
	5,787		23.27% Imp	pervious Ar	ea				
Тс	Length	Slope	e Velocity	Capacity	Description				
(min)	(feet)	(ft/ft	,	(cfs)	Beschpiton				
6.6	. ,	0.0960	/ (/ /	(/	Sheet Flow, A-B				
0.0		0.000			Grass: Bermuda $n= 0.410$ P2= 3.28"				
1.4	183	0.0960) 2.17		Shallow Concentrated Flow, B-C				
					Short Grass Pasture Kv= 7.0 fps				
0.2	82	0.0840	5.88		Shallow Concentrated Flow, C-D				
					Paved Kv= 20.3 fps				
8.2	315	Total							

Summary for Subcatchment P-1C: Subcat P-1C

Runoff = 1.31 cfs @ 12.09 hrs, Volume= 0.095 af, Depth= 3.38" Routed to Link SP1 : STUDY POINT #1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.12"

Area (ac) CN Description					
0.002 98 Paved parking, HSG C					
0.068 98 Paved parking, HSG B					
0.111 61 >75% Grass cover, Good, HSG B					
0.156 74 >75% Grass cover, Good, HSG C					
0.337 75 Weighted Average					
0.267 79.23% Pervious Area					
0.070 20.77% Impervious Area					
Tc Length Slope Velocity Capacity Description					
(min) (feet) (ft/ft) (ft/sec) (cfs)					
6.0 Direct Entry, TR-55 MIN					
Summary for Subcatchment P-1D: Subcat P-1D					
Runoff = 2.78 cfs @ 12.09 hrs, Volume= 0.202 af, Dept	ו = 3.38"				
Routed to Pond DW-2 : House Drywell					

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.12"

Area (ac)	CN	escription			
0.105	61	>75% Grass cover, Good, HSG B			
0.060	98	Paved parking, HSG B			
0.027	98	Paved parking, HSG C			
0.523	74	>75% Grass cover, Good, HSG C			
0.715	75	Weighted Average			
0.628	0.628 87.74% Pervious Area				
0.088 12.26% Impervious Area					
Tc Leng (min) (fe		Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)			
6.0		Direct Entry,			

Summary for Subcatchment P-1E: Subcat P-1E

Runoff = 1.90 cfs @ 12.09 hrs, Volume= 0.141 af, Depth= 4.42" Routed to Reach SW-2 : swale

Area (ac)	CN	escription				
0.040	61	>75% Grass cover, Good, HSG B				
0.037	98	Paved parking, HSG B				
0.168	98	Paved parking, HSG C				
0.138	74	75% Grass cover, Good, HSG C				
0.382	85	Weighted Average				
0.178	0.178 46.51% Pervious Area					
0.204		53.49% Impervious Area				
Tc Leng (min) (fee	,	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)				
6.0		Direct Entry, tr55 min				

Summary for Subcatchment P-1F: Subcat P-1F

Runoff = 8.75 cfs @ 12.09 hrs, Volume= 0.655 af, Depth= 4.63" Routed to Pond DW-1 : House Drywell

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.12"

Area (ac)	CN	Description	escription				
0.779	74	>75% Grass cover, Go	od, HSG C				
0.457	98	Roofs, HSG C					
0.461	98	Paved parking, HSG C	aved parking, HSG C				
1.697	87	Weighted Average					
0.779		45.88% Pervious Area					
0.919		54.12% Impervious Are	a				
Tc Leng (min) (fe	,	Slope Velocity Capaci (ft/ft) (ft/sec) (cfs					
6.0			Direct Entry, tr55 min				

Summary for Subcatchment P-2A: Subcat P-2A

Runoff = 8.62 cfs @ 12.09 hrs, Volume= 0.62 Routed to Pond DW-12 : House Drywell

0.625 af, Depth= 3.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.12"

	Area (ac)	CN	escription				
	0.188	98	Roofs, HSG C				
	0.001	98	Paved parking, HSG C				
	0.636	70	Woods, Good, HSG C				
	1.391	74	>75% Grass cover, Good, HSG C				
	2.217	75	Weighted Average				
	2.027		91.46% Pervious Area				
	0.189 8.54% Impervious Area						
		5	Slope Velocity Capacity Description				
((min) (fe	eet)	(ft/ft) (ft/sec) (cfs)				

6.0

Direct Entry,

Summary for Subcatchment P-2B: Subcat P-2B

Runoff = 10.31 cfs @ 12.09 hrs, Volume= 0.748 af, Depth= 3.48" Routed to Pond DW-11 : House Drywell

Area (ac)	CN	Description	Description			
1.178	74	>75% Grass cover, Good	75% Grass cover, Good, HSG C			
0.687	70	Woods, Good, HSG C				
0.307	65	Brush, Good, HSG C	rush, Good, HSG C			
0.021	98	Paved parking, HSG C				
0.384	98	Roofs, HSG C				
2.577	76	Weighted Average				
2.172		84.30% Pervious Area	84.30% Pervious Area			
0.405		15.70% Impervious Area				
Tc Leng (min) (fee	,	Slope Velocity Capacity (ft/ft) (ft/sec) (cfs)	Description			
6.0			Direct Entry,			

Summary for Subcatchment P-2E: Subcat P-2E

Runoff = 12.20 cfs @ 12.09 hrs, Volume= 0.914 af, Depth= 4.63" Routed to Pond DW-7 : House Drywell

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.12"

Area (ac) CN Description
1.123 74 >75% Grass cover, Good, HSG C
0.668 98 Roofs, HSG C
0.577 98 Paved parking, HSG C
2.368 87 Weighted Average
1.123 47.41% Pervious Area
1.245 52.59% Impervious Area
Tc Length Slope Velocity Capacity Description
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry,
Summary for Subcatchment P-2F: Subcat P-2F
Runoff = 7.18 cfs @ 12.09 hrs, Volume= 0.528 af, Depth= 4.20"
Routed to Pond DW-5 : House Drywell
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.12"
Area (ac) CN Description
0.935 74 >75% Grass cover, Good, HSG C
0.289 98 Roofs, HSG C
0.284 98 Paved parking, HSG C
1.509 83 Weighted Average
0.935 61.98% Pervious Area
0.574 38.02% Impervious Area
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 Direct Entry, tr55 min
Summary for Subcatchment P-2G: Subcat P-2G
Runoff = 5.39 cfs @ 12.09 hrs, Volume= 0.403 af, Depth= 4.63" Routed to Pond DW-9 : House Drywell
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.12"
Area (ac) CN Description
0.493 74 >75% Grass cover, Good, HSG C
0.206 98 Roofs, HSG C
0.346 98 Paved parking, HSG C
1.045 87 Weighted Average
0.493 47.19% Pervious Area
0.552 52.81% Impervious Area
Tc Length Slope Velocity Capacity Description

				Direct Entry	, tr55 min
(feet)	(ft/ft)	(ft/sec)	(cfs)		
.ength	Slope	Velocity	Capacity	Description	

<u>(min)</u> 6.0

Summary for Subcatchment P-2H: Subcat P-2H

Runoff = 2.81 cfs @ 12.09 hrs, Volume= 0.209 af, Depth= 4.52" Routed to Pond DW-8 : House Drywell

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.12"

Area (ac)	CN	Description	escription			
0.280	74	>75% Grass cov	ver, Good,	HSG C		
0.058	98	Roofs, HSG C				
0.217	98	Paved parking, H	aved parking, HSG C			
0.555	86	Weighted Average	ge			
0.280		50.36% Pervious	s Area			
0.276		49.64% Impervio	ous Area			
Tc Ler	ath	Slope Velocity C	Capacity	Description		
	et)	(ft/ft) (ft/sec)	(cfs)	Description		
6.0	,	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Direct Entry, tr55 min		

Summary for Subcatchment P-3A: Subcat P-3A

Runoff = 12.38 cfs @ 12.23 hrs, Volume= Routed to Pond DB-1 : detention 1.213 af, Depth= 2.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.12"

Are	a (ac)	С	N Des	cription		
	2.591	7	′4 >75°	% Grass c	over, Good	, HSG C
	0.847	7	0 Woo	ds, Good,	HSG C	
	1.578	6	5 Brus	sh, Good, H	ISG C	
	5.016	7	0 Wei	ahted Aver	ade	
	5.016			00% Pervi		
То	c Lei	ngth	Slope	Velocity	Capacity	Description
(min) (f	feet)	(ft/ft)	(ft/sec)	(cfs)	
12.7	7	50	0.0180	0.07		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.28"
1.()	91	0.0850	1.46		Shallow Concentrated Flow, B-C
						Woodland Kv= 5.0 fps
1.1	1	204	0.1800	2.97		Shallow Concentrated Flow, C-D
						Short Grass Pasture Kv= 7.0 fps
1.3	3	299	0.3000	3.83		Shallow Concentrated Flow, D-E
						Short Grass Pasture Kv= 7.0 fps
16.1	1	644	Total			

Summary for Subcatchment P-3B: Subcat P-3B

Runoff = 4.70 cfs @ 12.09 hrs, Volume= Routed to Reach R-01 : Routing to wetlands 0.341 af, Depth= 3.09"

Area	a (ac)	CN	Description
0	0.000	98	Roofs, HSG C
C).172	65	Brush, Good, HSG C
C).273	70	Woods, Good, HSG C
C).878	74	>75% Grass cover, Good, HSG C
1	1.323	72	Weighted Average
1	1.323		100.00% Pervious Area
C	0.000		0.00% Impervious Area

Prepared by Allen & Major	Associates, Inc
HydroCAD® 10.20-2f s/n 02881	© 2022 HydroCAD Software Solutions LLC

Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)					
6.0 Direct Entry,					
Summary for Subcatchment P-3C: Subcat P-3C					
Runoff = 1.57 cfs @ 12.09 hrs, Volume= 0.114 af, Depth= 3.69" Routed to Pond dmh56 : dmh					
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.12"					
Area (ac) CN Description					
0.315 74 >75% Grass cover, Good, HSG C 0.055 98 Paved parking, HSG C					
0.37078Weighted Average0.31585.06% Pervious Area0.05514.94% Impervious Area					
Tc Length Slope Velocity Capacity Description					
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, tr55 min					
Summary for Subcatchment P-3D: Subcat P-3D					
Runoff = 7.62 cfs @ 12.09 hrs, Volume= 0.556 af, Depth= 3.89" Routed to Pond DW-3 : House Drywell					
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.12"					
Area (ac) CN Description					
1.319 74 >75% Grass cover, Good, HSG C 0.136 98 Roofs, HSG C					
0.260 98 Paved parking, HSG C					
1.714 80 Weighted Average 1.319 76.93% Pervious Area					
0.395 23.07% Impervious Area					
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)					
6.0 Direct Entry, tr-55 min					
Summary for Subcatchment P-3E: Subcat P-3E					
Runoff = 7.39 cfs @ 12.09 hrs, Volume= 0.545 af, Depth= 4.31" Routed to Pond DW-4 : House Drywell					
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr_25-year Rainfall=6.12"					
Area (ac) CN Description					
0.891 74 >75% Grass cover, Good, HSG C 0.301 98 Roofs, HSG C 0.327 98 Paved parking, HSG C					
1.519 84 Weighted Average 0.891 58.68% Pervious Area 0.628 41.32% Impervious Area					
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)					
6.0 Direct Entry, TR-55 MIN					

Summary for Subcatchment P-3F: Subcat P-3F

0.493 af, Depth= 4.42" Runoff = 6.64 cfs @ 12.09 hrs, Volume= Routed to Pond DW-6 : House Drywell

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.12"

A	rea (ac)	CN	Desc	Description					
	0.7	'04	74	>75%	6 Grass co	over, Good	HSG C			
	0.2	290	98	Roof	s, HSG C					
	0.3	345	98	Pave	ed parking	, HSG C				
	1.3	339	85	Weighted Average						
	0.704 52.56% Pervious Area				6% Pervio	us Area				
	0.6	635		47.44	4% Imperv	vious Area				
	_									
		Length		Slope	Velocity	Capacity	Description			
(m	in)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
6	5.0						Direct Entry, TR-55 MIN			

Summary for Subcatchment P-4: Subcat P-4

2.36 cfs @ 12.09 hrs, Volume= 0.171 af, Depth= 3.38" Runoff = Routed to Link SP4 : STUDY POINT #4

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.12"

Area (sf)	CN	Description						
56	61	>75% Grass cover, Good, HSG B						
14,249	74	>75% Grass cover, Good, HSG C						
9,257	70	Woods, Good, HSG C						
2,814	98	Paved parking, HSG C						
26,375	75	Weighted Average						
23,561		89.33% Pervious Area						
2,814		10.67% Impervious Area						
Tc Length (min) (feet)	Slop (ft/							

6.0

Direct Entry, tr55 min

Summary for Subcatchment P-5: Subcat P-5

Runoff 0.58 cfs @ 12.09 hrs, Volume= 0.042 af, Depth= 3.19" = Routed to Link SP5 : STUDY POINT #5

A	Area (sf)	CN	Description					
	2,401	70	Woods, Go	od, HSG C				
	4,473	74	>75% Gras	s cover, Go	od, HSG C			
	6,874	73	Weighted A	verage				
	6,874		100.00% Pe	ervious Area	a			
Tc (min)	Length (feet)	Slop (ft/f	,	Capacity (cfs)	Description	۱ 		
5.0					Direct Entry,	ry, TR-55 Min.		
5.0	0	Total,	Increased t	o minimum	Tc = 6.0 min	n		

Summary for Reach R-01: Routing to wetlands

A subcatchment performs runoff calculations, including the associated Tc anc CN determinations. It does not have any facility for routing an inflow hydrograph from another source. However, a reach may be used to perform this type of specialized routing.

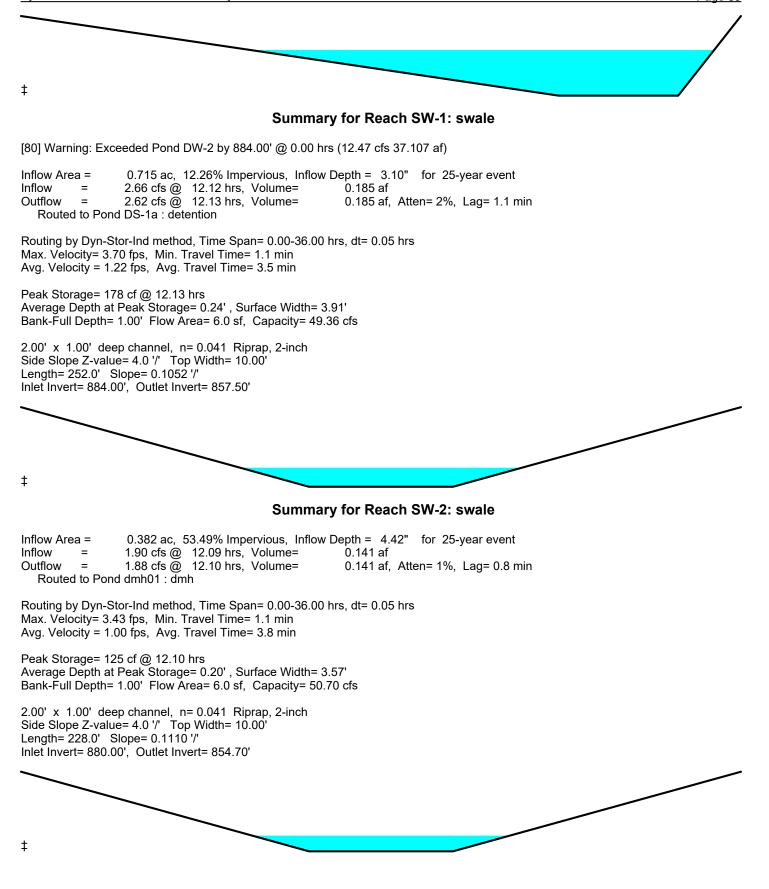
This reach demonstrates a procedure for performing a shallow concetrated flow routing through woods. In this case, the "reach" is defined as a channel with very low side slopes. The Manning's value of 0.40 is selected from the table of sheet flow roughness coefficients, which is comparable to the Manning's value for "woods with light underbrush".

0.00% Impervious, Inflow Depth = 3.09" for 25-year event Inflow Area = 1.323 ac, 4.70 cfs @ 12.09 hrs, Volume= 0.341 af Inflow = 1.98 cfs @ 12.33 hrs, Volume= Outflow = 0.341 af, Atten= 58%, Lag= 14.4 min Routed to Link SP3 : STUDY POINT #3 Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 0.37 fps, Min. Travel Time= 32.9 min Avg. Velocity = 0.13 fps, Avg. Travel Time= 90.3 min Peak Storage= 3,919 cf @ 12.33 hrs Average Depth at Peak Storage= 0.28', Surface Width= 33.32' Bank-Full Depth= 1.00' Flow Area= 55.0 sf. Capacity= 43.77 cfs 5.00' x 1.00' deep channel, n= 0.400 Sheet flow: Woods+light brush Side Slope Z-value = 50.0 '/' Top Width = 105.00' Length= 722.0' Slope= 0.1087 '/' Inlet Invert= 889.50', Outlet Invert= 811.00' ‡

Summary for Reach R-02: Routing through wetland/swale

A subcatchment performs runoff calculations, including the associated Tc anc CN determinations. It does not have any facility for routing an inflow hydrograph from another source. However, a reach may be used to perform this type of specialized routing.

This reach demonstrates a procedure for performing a shallow concetrated flow routing through the wooded wetland/swale adjacent to the stone wall. In this case, the "reach" is defined as a channel with low side slopes. The Manning's value of 0.40 is selected from the table of sheet flow roughness coefficients, which is comparable to the Manning's value for "woods with light underbrush".


[80] Warning: Exceeded Pond DW-12 by 877.70' @ 0.00 hrs (12.43 cfs 36.977 af) [80] Warning: Exceeded Pond G1 by 0.20' @ 0.00 hrs (5.87 cfs 5.657 af)

Inflow Area = 7.693 ac, 36.86% Impervious, Inflow Depth > 3.70" for 25-year event Inflow = 11.66 cfs @ 12.14 hrs, Volume= 2.374 af Outflow = 7.13 cfs @ 12.73 hrs, Volume= 2.371 af, Atten= 39%, Lag= 35.5 min Routed to Link SP2 : STUDY POINT #2 Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 0.34 fps, Min. Travel Time= 36.2 min Avg. Velocity = 0.15 fps, Avg. Travel Time= 81.4 min

Peak Storage= 15,466 cf @ 12.73 hrs Average Depth at Peak Storage= 0.86', Surface Width= 38.86' Bank-Full Depth= 1.50' Flow Area= 52.7 sf, Capacity= 24.55 cfs

10.00' x 1.50' deep channel, n= 0.400 Sheet flow: Woods+light brush Side Slope Z-value= 30.0 3.5 '/' Top Width= 60.25' Length= 735.0' Slope= 0.0189 '/' Inlet Invert= 877.70', Outlet Invert= 863.80'

2889-01 - Proposed HydroCAD_rev3 Prepared by Allen & Major Associates, Inc HydroCAD® 10.20-2f s/n 02881 © 2022 HydroCAD Software Solutions LLC

Summary for Pond DB-1: detention

Sui	Summary for Pond DB-1: detention					
Inflow Area = 9.959 ac, 17.21% Impervious	Inflow Depth = 3.22" for	25-vear event				
Inflow = 31.51 cfs @ 12.14 hrs, Volum						
Outflow = 10.81 cfs @ 12.55 hrs , Volume		66%, Lag= 25.0 min				
Primary = 10.81 cfs @ 12.55 hrs, Volum		, 5				
Routed to Pond G2 : gabion						
Secondary = 0.00 cfs @ 0.00 hrs, Volum	e= 0.000 af					
Routed to Link SP3 : STUDY POINT #3						
Routing by Dyn-Stor-Ind method, Time Span= 0.00	0-36.00 hrs, dt= 0.05 hrs					
Peak Elev= 813.37' @ 12.55 hrs Surf.Area= 19,7	88 sf Storage= 41,727 cf					
Flood Elev= 816.00' Surf.Area= 24,900 sf Storag	ge= 100,504 cf					
Plug-Flow detention time= 88.4 min calculated for	2.654 af (99% of inflow)					
Center-of-Mass det. time= 84.0 min (912.2 - 828.2	2)					
Volume Invert Avail.Storage Storage I						
#1 811.00' 100,504 cf Custom	Stage Data (Irregular)Listed	below (Recalc)				
	c.Store Cum.Store	Wet.Area				
	ic-feet) (cubic-feet)	<u>(sq-ft)</u>				
811.00 15,556 576.0	0 0	15,556				
	16,422 16,422	17,331				
	18,201 34,623	19,253				
	20,042 54,665	21,236				
	21,940 76,605	23,279				
816.00 24,900 670.0	23,898 100,504	25,383				
Device Routing Invert Outlet Devices		<u></u>				
	Culvert L= 32.0' Ke= 0.500					
	vert= 811.00' / 810.30' S= 0					
	ugated PE, smooth interior,					
		.600 Limited to weir flow at low heads				
		= 0.600 Limited to weir flow at low heads				
		C= 0.600 Limited to weir flow at low heads				
)' breadth Broad-Crested R	20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50				
5.00 5.50	20 0.40 0.00 0.80 1.00 1.2	20 1.40 1.00 1.00 2.00 2.30 3.00 3.30 4.00 4.30				
	2 13 2 51 2 70 2 69 2 68	2.68 2.66 2.64 2.64 2.64 2.65 2.65 2.66 2.66 2.68				
2.70 2.74	2.43 2.34 2.70 2.03 2.00	2.00 2.00 2.04 2.04 2.04 2.03 2.03 2.00 2.00 2.00				
2.10 2.14						
Primary OutFlow Max=10.81 cfs @ 12.55 hrs HV	W=813.36' TW=811.23' (Dv	(namic Tailwater)				
1=Culvert (Inlet Controls 10.81 cfs @ 6.12 fps)						
2=(2) 8" Orifice (2yr) (Passes < 4.79 cfs po	, tential flow)					
-3=(2) 12" Orifice (10yr) (Passes < 7.43 cfs	potential flow)					
-4=24" Top of Structure (Passes < 1.75 cfs						
	. ,					
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs H		amic Tailwater)				
5=Broad-Crested Rectangular Weir(Controls	s 0.00 cfs)					
- · ·						
S	ummary for Pond dmh	01: dmh				
	-					
Inflow Area = 0.382 ac, 53.49% Impervious	, Inflow Depth = 4.42" for	25-year event				
Inflow = 1.88 cfs @ 12.10 hrs, Volum						
Outflow = 1.88 cfs @ 12.10 hrs, Volum		0%, Lag= 0.0 min				
Primary = 1.88 cfs @ 12.10 hrs, Volum						
Routed to Pond DS-1a : detention						

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 850.88' @ 12.42 hrs Flood Elev= 855.31'

Device	Routing	Invert	Outlet Devices
#1	Primary	849.34'	12.0" Round Culvert L= 12.0' Ke= 0.500
	-		Inlet / Outlet Invert= 849.34' / 849.22' S= 0.0100 '/' Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.87 cfs @ 12.10 hrs HW=850.21' TW=849.65' (Dynamic Tailwater) -1=Culvert (Barrel Controls 1.87 cfs @ 3.46 fps)

Summary for Pond dmh05: dmh

[80] Warning: Exceeded Pond DW-1 by 868.52' @ 0.00 hrs (12.36 cfs 36.781 af)

 Inflow Area =
 1.697 ac, 54.12% Impervious, Inflow Depth = 3.99" for 25-year event

 Inflow =
 8.38 cfs @
 12.11 hrs, Volume=
 0.565 af

 Outflow =
 8.38 cfs @
 12.11 hrs, Volume=
 0.565 af

 Primary =
 8.38 cfs @
 12.11 hrs, Volume=
 0.565 af

 Routed to Pond DS-1a : detention
 0.565 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 871.15' @ 12.11 hrs Flood Elev= 883.10'

Device	Routing	Invert	Outlet Devices
#1	Primary	868.52'	15.0" Round Culvert L= 97.0' Ke= 0.500 Inlet / Outlet Invert= 868.52' / 865.12' S= 0.0351 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=8.18 cfs @ 12.11 hrs HW=871.06' TW=849.74' (Dynamic Tailwater) 1=Culvert (Inlet Controls 8.18 cfs @ 6.67 fps)

Summary for Pond dmh20: dmh

[80] Warning: Exceeded Pond DW-5 by 902.74' @ 0.00 hrs (12.61 cfs 37.501 af)

Inflow Are	a =	1.509 ac, 3	8.02% Impervi	ous, Inflow De	epth = 3.64"	for 25-year event
Inflow	=	6.87 cfs @	12.11 hrs, Vol	lume=	0.458 af	-
Outflow	=	6.87 cfs @	12.11 hrs, Vo	lume=	0.458 af, Atte	en= 0%, Lag= 0.0 min
Primary	=	6.87 cfs @	12.11 hrs, Vo	lume=	0.458 af	
Routed to Pond dmh21 : dmh						

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 904.75' @ 12.12 hrs Flood Elev= 907.61'

Device F	Routing	Invert	Outlet Devices
#1 F	Primary	902.74'	15.0" Round Culvert L= 205.0' Ke= 0.500 Inlet / Outlet Invert= 902.74' / 900.30' S= 0.0119 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=6.47 cfs @ 12.11 hrs HW=904.69' TW=901.99' (Dynamic Tailwater) -1=Culvert (Outlet Controls 6.47 cfs @ 5.27 fps)

Summary for Pond dmh21: dmh

[80] Warning: Exceeded Pond DW-7 by 899.55' @ 0.00 hrs (12.58 cfs 37.435 af)

Inflow Area =	3.876 ac, 46.92% Impervious, Inflov	w Depth = 3.96" for 25-year event
Inflow =	18.57 cfs @ 12.11 hrs, Volume=	1.280 af
Outflow =	18.57 cfs @ 12.11 hrs, Volume=	1.280 af, Atten= 0%, Lag= 0.0 min
Primary =	18.57 cfs @ 12.11 hrs, Volume=	1.280 af
Routed to Po	ond dmh23 : dmh	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 902.06' @ 12.11 hrs Flood Elev= 905.24'

Device	Routing	Invert	Outlet Devices
#1	Primary	899.55'	24.0" Round Culvert L= 190.0' Ke= 0.500
	-		Inlet / Outlet Invert= 899.55' / 897.65' S= 0.0100 '/' Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=18.15 cfs @ 12.11 hrs HW=901.99' TW=899.98' (Dynamic Tailwater) -1=Culvert (Inlet Controls 18.15 cfs @ 5.78 fps)

Summary for Pond dmh23: dmh

[80] Warning: Exceeded Pond DW-9 by 897.55' @ 0.00 hrs (12.57 cfs 37.394 af)

 Inflow Area =
 4.921 ac, 48.17% Impervious, Inflow Depth = 3.97" for 25-year event

 Inflow =
 23.73 cfs @
 12.11 hrs, Volume=
 1.629 af

 Outflow =
 23.73 cfs @
 12.11 hrs, Volume=
 1.629 af

 Primary =
 23.73 cfs @
 12.11 hrs, Volume=
 1.629 af

 Routed to Pond DS-2a : detention
 12.11 hrs, Volume=
 1.629 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 900.03' @ 12.11 hrs Flood Elev= 910.71'

Device	Routing	Invert	Outlet Devices
#1	Primary	897.55'	30.0" Round Culvert L= 27.0' Ke= 0.500 Inlet / Outlet Invert= 897.55' / 897.20' S= 0.0130 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf

Primary OutFlow Max=23.17 cfs @ 12.11 hrs HW=899.98' TW=896.64' (Dynamic Tailwater) -1=Culvert (Barrel Controls 23.17 cfs @ 6.03 fps)

Summary for Pond dmh25: dmh

[80] Warning: Exceeded Pond DW-8 by 922.60' @ 0.00 hrs (12.74 cfs 37.911 af)

Inflow Are	a =	0.555 ac, 49.6	64% Imperv	ious, Inflow I	Depth = 4.13"	for 25-year event
Inflow	=	2.69 cfs @ 12	2.11 hrs, V	olume=	0.191 af	-
Outflow	=	2.69 cfs @ 12	2.11 hrs, V	olume=	0.191 af, Att	en= 0%, Lag= 0.0 min
Primary	=	2.69 cfs @ 12	2.11 hrs, V	olume=	0.191 af	-
Routed	l to Pond	DS-2a : detenti	ion			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 923.60' @ 12.11 hrs Flood Elev= 930.54'

Device	Routing	Invert	Outlet Devices
#1	Primary	922.60'	12.0" Round Culvert L= 97.0' Ke= 0.500 Inlet / Outlet Invert= 922.60' / 915.84' S= 0.0697 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.64 cfs @ 12.11 hrs HW=923.58' TW=896.64' (Dynamic Tailwater) -1=Culvert (Inlet Controls 2.64 cfs @ 3.37 fps)

Summary for Pond dmh50: dmh

[80] Warning: Exceeded Pond DW-6 by 927.65' @ 0.00 hrs (12.78 cfs 38.016 af)

Inflow Area =	1.339 ac, 47.44% Impervious, Inflow	Depth = 3.78" for 25-year event
Inflow =	6.36 cfs @ 12.11 hrs, Volume=	0.421 af
Outflow =	6.36 cfs @ 12.11 hrs, Volume=	0.421 af, Atten= 0%, Lag= 0.0 min
Primary =	6.36 cfs @ 12.11 hrs, Volume=	0.421 af
Routed to Pon	d dmh51 : dmh	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 929.43' @ 12.11 hrs Flood Elev= 933.94'

Device	Routing	Invert	Outlet Devices
#1	Primary	927.65'	15.0" Round Culvert L= 102.0' Ke= 0.500
	-		Inlet / Outlet Invert= 927.65' / 919.50' S= 0.0799 '/' Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=6.21 cfs @ 12.11 hrs HW=929.38' TW=921.13' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 6.21 cfs @ 5.06 fps)

Summary for Pond dmh51: dmh

 Inflow Area =
 1.339 ac, 47.44% Impervious, Inflow Depth =
 3.78" for 25-year event

 Inflow =
 6.36 cfs @
 12.11 hrs, Volume=
 0.421 af

 Outflow =
 6.36 cfs @
 12.11 hrs, Volume=
 0.421 af

 Primary =
 6.36 cfs @
 12.11 hrs, Volume=
 0.421 af

 Routed to Pond dmh52 : dmh
 0.421 af
 0.421 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 921.18' @ 12.11 hrs Flood Elev= 924.04'

Device	Routing	Invert	Outlet Devices
#1	Primary	919.40'	15.0" Round Culvert L= 127.0' Ke= 0.500 Inlet / Outlet Invert= 919.40' / 909.50' S= 0.0780 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=6.21 cfs @ 12.11 hrs HW=921.13' TW=894.25' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 6.21 cfs @ 5.06 fps)

Summary for Pond dmh52: dmh

 Inflow Area =
 1.339 ac, 47.44% Impervious, Inflow Depth =
 3.78" for 25-year event

 Inflow =
 6.36 cfs @
 12.11 hrs, Volume=
 0.421 af

 Outflow =
 6.36 cfs @
 12.11 hrs, Volume=
 0.421 af, Atten= 0%, Lag= 0.0 min

 Primary =
 6.36 cfs @
 12.11 hrs, Volume=
 0.421 af

 Routed to Pond dmh62 : dmh
 0.421 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 894.30' @ 12.11 hrs Flood Elev= 914.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	892.52'	15.0" Round Culvert L= 62.0' Ke= 0.500
			Inlet / Outlet Invert= 892.52' / 887.55' S= 0.0802 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=6.21 cfs @ 12.11 hrs HW=894.25' TW=888.55' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 6.21 cfs @ 5.06 fps)

Summary for Pond dmh53: dmh

[80] Warning: Exceeded Pond DW-4 by 916.83' @ 0.00 hrs (12.70 cfs 37.793 af)

Inflow Are	a =	1.519 ac, 41.32% Impervious, Inflow Dept	h = 3.54" for 25-year event
Inflow	=	7.06 cfs @ 12.11 hrs, Volume= 0.4	449 af
Outflow	=	7.06 cfs @ 12.11 hrs, Volume= 0.4	449 af, Atten= 0%, Lag= 0.0 min
Primary	=	7.06 cfs @ 12.11 hrs, Volume= 0.4	449 af
Routed	I to Pond	dmh55 : dmh	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 918.25' @ 12.11 hrs Flood Elev= 921.46'

Device	Routing	Invert	Outlet Devices
#1	Primary	916.83'	18.0" Round Culvert L= 31.0' Ke= 0.500
			Inlet / Outlet Invert= 916.83' / 915.39' S= 0.0465 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=6.89 cfs @ 12.11 hrs HW=918.23' TW=904.45' (Dynamic Tailwater) -1=Culvert (Inlet Controls 6.89 cfs @ 4.02 fps)

Summary for Pond dmh55: dmh

[80] Warning: Exceeded Pond DW-3 by 902.61' @ 0.00 hrs (12.61 cfs 37.498 af)

Inflow Area =				
Inflow = Outflow = Primary = Routed to Por	14.35 cfs @ 12 14.35 cfs @ 12	64% Impervious, Inflow 2.11 hrs, Volume= 2.11 hrs, Volume= 2.11 hrs, Volume=		
Routing by Dyn-S Peak Elev= 904. Flood Elev= 911.	49' @ 12.11 hrs	Fime Span= 0.00-36.00 I	hrs, dt= 0.05 hrs	
Device Routing #1 Primary			L= 72.0' Ke= 0.500 2.61' / 899.92' S= 0.0374 '/' Cc= 0.900 PE, smooth interior, Flow Area= 3.14 sf	
	w Max=13.99 cfs llet Controls 13.99		5' TW=898.80' (Dynamic Tailwater)	
		Summai	ry for Pond dmh56: dmh	
Inflow Area = Inflow = Outflow = Primary = Routed to Por	15.87 cfs @ 12 15.87 cfs @ 12	03% Impervious, Inflow 2.11 hrs, Volume= 2.11 hrs, Volume= 2.11 hrs, Volume=	Depth = 3.46" for 25-year event 1.040 af 1.040 af, Atten= 0%, Lag= 0.0 min 1.040 af	
Routing by Dyn-9 Peak Elev= 898.4 Flood Elev= 908.4	86' @ 12.14 hrs	ا ime Span= 0.00-36.00	hrs, dt= 0.05 hrs	
		Outlet Devices		
	g Invert		L= 20.0' Ke= 0.500 6.80' / 896.60' S= 0.0100 '/' Cc= 0.900 PE, smooth interior, Flow Area= 4.91 sf	
Device Routing #1 Primary Primary OutFlow	y Invert / 896.80' w Max=13.26 cfs	30.0" Round Culvert Inlet / Outlet Invert= 89 n= 0.013 Corrugated F	6.80' / 896.60' S= 0.0100 '/' Cc= 0.900	
Device Routing #1 Primary Primary OutFlow	y Invert / 896.80' w Max=13.26 cfs	30.0" Round Culvert Inlet / Outlet Invert= 89 n= 0.013 Corrugated F @ 12.11 hrs HW=898.8 26 cfs @ 4.32 fps)	6.80' / 896.60' S= 0.0100 '/' Cc= 0.900 PE, smooth interior, Flow Area= 4.91 sf	
Device Routing #1 Primary Primary OutFlow -1=Culvert (O Inflow Area = Inflow = Outflow = Primary =	y Invert / 896.80' w Max=13.26 cfs utlet Controls 13.2 3.604 ac, 29.9 15.87 cfs @ 12 15.87 cfs @ 12	30.0" Round Culvert Inlet / Outlet Invert= 89 n= 0.013 Corrugated F @ 12.11 hrs HW=898.8 26 cfs @ 4.32 fps) Summa	6.80' / 896.60' S= 0.0100 '/' Cc= 0.900 PE, smooth interior, Flow Area= 4.91 sf O' TW=898.32' (Dynamic Tailwater) ry for Pond dmh57: dmh Depth = 3.46" for 25-year event	
Device Routing #1 Primary Primary OutFlow Primary OutFlow 1=Culvert (O Inflow Area = Inflow Inflow = Outflow = Primary = Routed to Por	Max=13.26 cfs w Max=13.26 cfs utlet Controls 13.2 15.87 cfs @ 12 15.87 cfs @ 12	30.0" Round Culvert Inlet / Outlet Invert= 89 n= 0.013 Corrugated F @ 12.11 hrs HW=898.8 26 cfs @ 4.32 fps) Summan 03% Impervious, Inflow 2.11 hrs, Volume= 2.11 hrs, Volume=	6.80' / 896.60' S= 0.0100 '/' Cc= 0.900 PE, smooth interior, Flow Area= 4.91 sf 0' TW=898.32' (Dynamic Tailwater) ry for Pond dmh57: dmh Depth = 3.46" for 25-year event 1.040 af 1.040 af, Atten= 0%, Lag= 0.0 min 1.040 af	
Device Routing #1 Primary #1 Primary Primary OutFlow OutFlow 1=Culvert (O Inflow Area = Inflow Inflow Area = Outflow Outflow Primary Routed to Por Routing by Dyn-S Peak Elev= 898.3	Max=13.26 cfs w Max=13.26 cfs utlet Controls 13.2 3.604 ac, 29.9 15.87 cfs @ 12 15.87 cfs @ 12 15.87 cfs @ 12 15.87 cfs @ 12 15.87 cfs @ 12 5.87 cfs @ 12 15.87 cfs @ 12 15 15 15 15 15 15 15 15 15 15 15 15 15	30.0" Round Culvert Inlet / Outlet Invert= 89 n= 0.013 Corrugated F @ 12.11 hrs HW=898.8 26 cfs @ 4.32 fps) Summar 03% Impervious, Inflow 2.11 hrs, Volume= 2.11 hrs, Volume= 2.11 hrs, Volume=	6.80' / 896.60' S= 0.0100 '/' Cc= 0.900 PE, smooth interior, Flow Area= 4.91 sf 0' TW=898.32' (Dynamic Tailwater) ry for Pond dmh57: dmh Depth = 3.46" for 25-year event 1.040 af 1.040 af, Atten= 0%, Lag= 0.0 min 1.040 af	

1=Culvert (Outlet Controls 14.51 cfs @ 5.30 fps)

Summary for Pond dmh58: dmh

Inflow Area = 3.604 ac, 29.93% Impervious, Inflow Depth = 3.46" for 25-year event Inflow = 15.87 cfs @ 12.11 hrs, Volume= 1.040 af Outflow = 15.87 cfs @ 12.11 hrs, Volume= 1.040 af, Atten= 0%, Lag= 0.0 min Primary = 15.87 cfs @ 12.11 hrs, Volume= 1.040 af Routed to Pond dmh59 : dmh
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 897.30' @ 12.12 hrs Flood Elev= 901.46'
Device Routing Invert Outlet Devices
#1 Primary 895.58' 30.0" Round Culvert L= 278.0' Ke= 0.500 Inlet / Outlet Invert= 895.58' / 893.35' S= 0.0080 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=14.90 cfs @ 12.11 hrs HW=897.27' TW=895.06' (Dynamic Tailwater) —1=Culvert (Outlet Controls 14.90 cfs @ 5.94 fps)
Summary for Pond dmh59: dmh
Inflow Area = 3.604 ac, 29.93% Impervious, Inflow Depth = 3.46" for 25-year event Inflow = 15.87 cfs @ 12.11 hrs, Volume= 1.040 af Outflow = 15.87 cfs @ 12.11 hrs, Volume= 1.040 af, Atten= 0%, Lag= 0.0 min Primary = 15.87 cfs @ 12.11 hrs, Volume= 1.040 af Routed to Pond dmh60 : dmh
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 895.09' @ 12.13 hrs Flood Elev= 909.31'
Device Routing Invert Outlet Devices
#1 Primary 893.25' 30.0" Round Culvert L= 82.0' Ke= 0.500 Inlet / Outlet Invert= 893.25' / 892.50' S= 0.0091 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=14.53 cfs @ 12.11 hrs HW=895.06' TW=894.08' (Dynamic Tailwater) [●] 1=Culvert (Outlet Controls 14.53 cfs @ 5.34 fps)
Summary for Pond dmh60: dmh
Inflow Area = 3.604 ac, 29.93% Impervious, Inflow Depth = 3.46" for 25-year event Inflow = 15.87 cfs @ 12.11 hrs, Volume= 1.040 af Outflow = 15.87 cfs @ 12.11 hrs, Volume= 1.040 af, Atten= 0%, Lag= 0.0 min Primary = 15.87 cfs @ 12.11 hrs, Volume= 1.040 af Routed to Pond dmh61 : dmh
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 894.11' @ 12.11 hrs Flood Elev= 901.96'
Device Routing Invert Outlet Devices
#1 Primary 892.40' 30.0" Round Culvert L= 258.0' Ke= 0.500 Inlet / Outlet Invert= 892.40' / 889.43' S= 0.0115 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=15.51 cfs @ 12.11 hrs HW=894.08' TW=891.01' (Dynamic Tailwater) 1=Culvert (Inlet Controls 15.51 cfs @ 4.42 fps)

Summary for Pond dmh61: dmh

Inflow Area = 3.604 ac, 29.93% Impervious, Inflow Depth = 3.46" for 25-year event Inflow = 15.87 cfs @ 12.11 hrs, Volume= 1.040 af Outflow = 15.87 cfs @ 12.11 hrs, Volume= 1.040 af, Atten= 0%, Lag= 0.0 min Primary = 15.87 cfs @ 12.11 hrs, Volume= 1.040 af Routed to Pond dmh62 : dmh
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 891.04' @ 12.11 hrs Flood Elev= 898.16'
Device Routing Invert Outlet Devices
#1 Primary 889.33' 30.0" Round Culvert L= 278.0' Ke= 0.500 Inlet / Outlet Invert= 889.33' / 886.55' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=15.55 cfs @ 12.11 hrs HW=891.01' TW=888.55' (Dynamic Tailwater) 1=Culvert (Inlet Controls 15.55 cfs @ 4.42 fps)
Summary for Pond dmh62: dmh
Inflow Area = 4.942 ac, 34.67% Impervious, Inflow Depth = 3.55" for 25-year event Inflow = 22.23 cfs @ 12.11 hrs, Volume= 1.461 af Outflow = 22.23 cfs @ 12.11 hrs, Volume= 1.461 af, Atten= 0%, Lag= 0.0 min Primary = 22.23 cfs @ 12.11 hrs, Volume= 1.461 af Routed to Pond dmh69 : dmh
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 888.59' @ 12.11 hrs Flood Elev= 902.00'
Device Routing Invert Outlet Devices
#1 Primary 886.45' 30.0" Round Culvert L= 62.0' Ke= 0.500 Inlet / Outlet Invert= 886.45' / 884.91' S= 0.0248 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=21.72 cfs @ 12.11 hrs HW=888.55' TW=814.58' (Dynamic Tailwater) [●] 1=Culvert (Inlet Controls 21.72 cfs @ 4.93 fps)
Summary for Pond dmh69: dmh
Inflow Area = 4.942 ac, 34.67% Impervious, Inflow Depth = 3.55" for 25-year event Inflow = 22.23 cfs @ 12.11 hrs, Volume= 1.461 af Outflow = 22.23 cfs @ 12.11 hrs, Volume= 1.461 af, Atten= 0%, Lag= 0.0 min Primary = 22.23 cfs @ 12.11 hrs, Volume= 1.461 af Routed to Pond DB-1 : detention
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 814.62' @ 12.11 hrs Flood Elev= 818.02'
Device Routing Invert Outlet Devices
#1 Primary 812.48' 30.0" Round Culvert L= 29.0' Ke= 0.500 Inlet / Outlet Invert= 812.48' / 811.50' S= 0.0338 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=21.72 cfs @ 12.11 hrs HW=814.58' TW=812.42' (Dynamic Tailwater) 1=Culvert (Inlet Controls 21.72 cfs @ 4.93 fps)

Summary for Pond DS-1a: detention

[44] Hint: Outlet device #2 is below defined storage[80] Warning: Exceeded Pond dmh01 by 0.24' @ 12.20 hrs (1.85 cfs 0.019 af)

Inflow Are	a =	2.795 ac, 4	13.32% Impervious, Inflow	Depth = 3.82 " for	25-year event
Inflow	=	12.82 cfs @	12.11 hrs, Volume=	0.890 af	
Outflow	=	5.03 cfs @	12.37 hrs, Volume=	0.890 af, Atten= 6	61%, Lag= 15.6 min
Primary	=	5.03 cfs @	12.37 hrs, Volume=	0.890 af	-
Routed	to I inl	<pre>sp1 : STUDY</pre>	Y POINT #1		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 850.86' @ 12.37 hrs Surf.Area= 3,584 sf Storage= 13,948 cf Flood Elev= 853.00' Surf.Area= 7,168 sf Storage= 20,434 cf

Plug-Flow detention time= 126.3 min calculated for 0.889 af (100% of inflow) Center-of-Mass det. time= 126.7 min (936.1 - 809.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	846.50'	0 cf	64.00'W x 56.00'L x 5.67'H Field A
			20,309 cf Overall - 20,309 cf Embedded = 0 cf
#2A	846.50'	16,000 cf	retain_it retain_it 5.0' x 56 Inside #1
			Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf
			Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf
			8 Rows adjusted for 311.7 cf perimeter wall
#3B	851.50'	0 cf	64.00'W x 56.00'L x 2.17'H Field B
			7,765 cf Overall - 7,765 cf Embedded = 0 cf x 40.0% Voids
#4B	851.50'	4,434 cf	retain_it retain_it 1.5' x 56 Inside #3
			Inside= 84.0"W x 18.0"H => 9.90 sf x 8.00'L = 79.2 cf
			Outside= 96.0"W x 26.0"H => 17.33 sf x 8.00'L = 138.7 cf
			56 Chambers in 8 Rows
		20,434 cf	Total Available Storage

Storage Group A created with Chamber Wizard Storage Group B created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	846.40'	15.0" Round Culvert L= 129.0' Ke= 0.500
			Inlet / Outlet Invert= 846.40' / 845.62' S= 0.0060 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf
#2	Device 1	846.40'	2.0" Vert. 2" Orifice (2yr) X 2.00 C= 0.600 Limited to weir flow at low heads
#3	Device 1	848.10'	6.0" Vert. 6" Orifice (10yr) X 2.00 C= 0.600 Limited to weir flow at low heads
#4	Device 1	849.40'	5.0" Vert. 5" Orifice (25yr) X 2.00 C= 0.600 Limited to weir flow at low heads
#5	Device 1	850.70'	5.0" Vert. 5" Orifice (50yr) X 2.00 C= 0.600 Limited to weir flow at low heads
#6	Device 1	852.80'	4.0' long Overflow Weir 2 End Contraction(s) 4.0' Crest Height

Primary OutFlow Max=5.02 cfs @ 12.37 hrs HW=850.85' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Passes 5.02 cfs of 9.26 cfs potential flow)

-2=2" Orifice (2yr) (Orifice Controls 0.44 cfs @ 10.07 fps)

-3=6" Orifice (10yr) (Orifice Controls 2.99 cfs @ 7.62 fps)

-4=5" Orifice (25yr) (Orifice Controls 1.47 cfs @ 5.37 fps)

—5=5" Orifice (50yr) (Orifice Controls 0.12 cfs @ 1.33 fps)

-6=Overflow Weir (Controls 0.00 cfs)

Summary for Pond DS-1b: detention

Inflow Area =	0.571 ac, 2	23.27% Impervious, Inflow	Depth = 3.69" for 25-year event
Inflow =	2.25 cfs @	12.12 hrs, Volume=	0.175 af
Outflow =	0.56 cfs @	12.54 hrs, Volume=	0.175 af, Atten= 75%, Lag= 25.4 min
Primary =	0.56 cfs @	12.54 hrs, Volume=	0.175 af
Routed to Li	nk SP1 : STUD	Y POINT #1	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 861.13' @ 12.54 hrs Surf.Area= 1,536 sf Storage= 2,587 cf Flood Elev= 862.70' Surf.Area= 1,536 sf Storage= 4,684 cf Plug-Flow detention time= 63.7 min calculated for 0.175 af (100% of inflow) Center-of-Mass det. time= 62.4 min (882.8 - 820.4)

Invert	Avail.Storage	Storage Description
859.20'	0 cf	64.00'W x 24.00'L x 4.17'H Field A
		6,400 cf Overall - 6,400 cf Embedded = 0 cf x 40.0% Voids
859.20'	4,684 cf	retain_it retain_it 3.5' x 24 Inside #1
		Inside= 84.0"W x 42.0"H => 25.10 sf x 8.00'L = 200.8 cf
		Outside= 96.0"W x 50.0"H => 33.33 sf x 8.00'L = 266.7 cf
		8 Rows adjusted for 135.1 cf perimeter wall
	4,684 cf	Total Available Storage
	859.20'	859.20' 0 cf 859.20' 4,684 cf

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	859.20'	12.0" Round Culvert L= 100.0' Ke= 0.500
	·		Inlet / Outlet Invert= 859.20' / 858.10' S= 0.0110 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	859.20'	4.0" Vert. 4" Orifice C= 0.600 Limited to weir flow at low heads
#3	Device 1	862.50'	12.0" Vert. Overflow C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=0.56 cfs @ 12.54 hrs HW=861.13' TW=0.00' (Dynamic Tailwater)

-**1=Culvert** (Passes 0.56 cfs of 4.17 cfs potential flow)

2=4" Orifice (Orifice Controls 0.56 cfs @ 6.40 fps)

-3=Overflow (Controls 0.00 cfs)

Summary for Pond DS-2a: detention

[92] Warning: Device #4 is above defined storage

[92] Warning: Device #5 is above defined storage

[92] Warning: Device #6 is above defined storage

[93] Warning: Storage range exceeded by 2.14'

Inflow Are	ea =	5.477 ac, 4	18.32% Impervious, In	nflow Depth = 3.99" for 25-year event
Inflow	=	26.43 cfs @	12.11 hrs, Volume=	1.820 af
Outflow	=	6.64 cfs @	12.51 hrs, Volume=	1.818 af, Atten= 75%, Lag= 23.6 min
Primary	=	6.64 cfs @	12.51 hrs, Volume=	1.818 af
Routed	d to Por	nd G1 : gabion		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Peak Elev= 899.14' @ 12.51 hrs Surf.Area= 4,704 sf Storage= 34,385 cf Flood Elev= 902.66' Storage= 48,125 cf

Plug-Flow detention time= 118.9 min calculated for 1.818 af (100% of inflow) Center-of-Mass det. time= 118.0 min (923.9 - 805.9)

Volume	Invert	Avail.Storage	Storage Description		
#1	892.00'	24,073 cf	24,073 cf retain_it retain_it 5.0' x 84		
			Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf		
			Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf		
<i>#</i> 2	007.001	04.050 of	7 Rows adjusted for 394.8 cf perimeter wall		
#2	897.00'	24,052 cf	retain_it retain_it 5.0' x 84 Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf		
			Outside= 96.0 W x 68.0 H => 45.33 sf x 8.00 L = 362.7 cf		
			6 Rows adjusted for 415.6 cf perimeter wall		
		48,125 cf			
		,			
Device	Routing	Invert Out	let Devices		
#1	Primary	892.00' 24.0)" Round Culvert L= 46.0' Ke= 0.500		
			t / Outlet Invert= 892.00' / 890.75' S= 0.0272 '/' Cc= 0.900		
			0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf		
#2	Device 1		' Vert. Orifice (2yr) X 2.00 C= 0.600 Limited to weir flow at low heads		
#3	Device 1		'Vert. Orifice (10yr) C= 0.600 Limited to weir flow at low heads		
#4	Device 1		Vert. Orifice (25yr) C= 0.600 Limited to weir flow at low heads		
#5	Device 1		Vert. Orifice (50yr) C= 0.600 Limited to weir flow at low heads		
#6	Device 1	901.60' 4.0'	long Sharp-Crested Weir Overflow (100yr) 2 End Contraction(s)		

Primary OutFlow Max=6.63 cfs @ 12.51 hrs HW=899.14' TW=878.58' (Dynamic Tailwater) 1=Culvert (Passes 6.63 cfs of 37.49 cfs potential flow) -2=Orifice (2yr) (Orifice Controls 2.22 cfs @ 12.72 fps) -3=Orifice (10yr) (Orifice Controls 3.10 cfs @ 8.89 fps) -4=Orifice (25yr) (Orifice Controls 1.31 cfs @ 3.76 fps)

-5=Orifice (50yr) (Controls 0.00 cfs)

-6=Sharp-Crested Weir Overflow (100yr) (Controls 0.00 cfs)

Summary for Pond DS-2b: detention

[80] Warning: Exceeded Pond DW-11 by 863.00' @ 0.00 hrs (12.32 cfs 36.664 af)

Inflow Area =	2.577 ac, 15.70% Impervious, Inflov	w Depth = 3.16" for 25-year event
Inflow =	9.87 cfs @ 12.12 hrs, Volume=	0.679 af
Outflow =	6.83 cfs @ 12.22 hrs, Volume=	0.678 af, Atten= 31%, Lag= 6.5 min
Primary =	6.83 cfs @ 12.22 hrs, Volume=	0.678 af
Routed to Link	SP2 : STUDY POINT #2	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 864.17' @ 12.22 hrs Surf.Area= 5,568 sf Storage= 5,659 cf Flood Elev= 866.00' Surf.Area= 5,568 sf Storage= 14,541 cf

Plug-Flow detention time= 36.4 min calculated for 0.678 af (100% of inflow) Center-of-Mass det. time= 34.8 min (862.4 - 827.6)

Volume	Invert	Avail.Storage	Storage Description
#1A	863.00'	0 cf	232.00'W x 24.00'L x 3.67'H Field A
			20,416 cf Overall - 20,416 cf Embedded = 0 cf x 40.0% Voids
#2A	863.00'	14,541 cf	retain_it retain_it 3.0' x 87 Inside #1
			Inside= 84.0"W x 36.0"H => 21.33 sf x 8.00'L = 170.6 cf
			Outside= 96.0"W x 44.0"H => 29.33 sf x 8.00'L = 234.7 cf
			29 Rows adjusted for 302.1 cf perimeter wall
		14,541 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	860.45'	12.0" Round Culvert L= 45.0' Ke= 0.500
	•		Inlet / Outlet Invert= 860.45' / 858.44' S= 0.0447 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	863.00'	24.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=6.77 cfs @ 12.22 hrs HW=864.16' TW=0.00' (Dynamic Tailwater) 1=Culvert (Inlet Controls 6.77 cfs @ 8.62 fps) 2=Orifice/Grate (Passes 6.77 cfs of 6.91 cfs potential flow)

Summary for Pond DW-1: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	1.697 ac, 54.12% Impervious, Inflow D	epth = 4.63" for 25-year event
Inflow =	8.75 cfs @ 12.09 hrs, Volume=	0.655 af
Outflow =	8.41 cfs @ 12.11 hrs, Volume=	0.636 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.03 cfs @ 10.45 hrs, Volume=	0.072 af
Primary =	8.38 cfs @ 12.11 hrs, Volume=	0.565 af
Routed to Pond	d dmh05 : dmh	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 10.45 hrs Surf.Area= 958 sf Storage= 1,963 cf

Plug-Flow detention time= 76.6 min calculated for 0.636 af (97% of inflow) Center-of-Mass det. time= 59.3 min (853.2 - 794.0)

2889-01 - Proposed HydroCAD_rev3 Prepared by Allen & Major Associates, Inc

HydroCA	D® 10.20-2f s/r	02881 © 2022 H	vdroCAD Software Solutions LLC	Page 9
Volume	Invert	Avail.Storage	Storage Description	
#1A	0.00'		7.67'W x 12.50'L x 3.50'H Field A	
			335 cf Overall - 166 cf Embedded = 169 cf x 40.0% Voids	
#2A	0.67'	129 cf	Shea Dry Well 1000gal Inside #1	
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf	
		196 cf	x 10.00 = 1,963 cf Total Available Storage	
Stora	ge Group A cr	eated with Charr	ber Wizard	
Device	Routing	Invert Out	et Devices	
#0	Primary		omatic Storage Overflow (Discharged without head)	
#1	Discarded		0 in/hr Exfiltration over Wetted area	
#2	Primary		Round Culvert L= 10.0' Ke= 0.500	
			/ Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900 .010 PVC, smooth interior, Flow Area= 0.09 sf	
		1ax=0.03 cfs @ 1 Itration Controls	0.45 hrs HW=3.50' (Free Discharge) 0.03 cfs)	
	, ,		,	
	Ivert (Control		11 hrs HW=3.50' TW=871.06' (Dynamic Tailwater)	
			Summary for Pond DW-10: House Drywell	
Storage I	multiplyer add	ed to account for	g drywell at each dwelling unit. number of dwelling units with subcatchment. for the percentage of roof area within subcatchment.	
Inflow Ar			mpervious, Inflow Depth = 3.38" for 25-year event	
nflow	= 9.8	6 cfs @ 12.19 h	rs, Volume= 0.894 af	
Dutflow		3 cfs @ 12.21 h		
Discarde		4 cfs @ 11.50 h 9 cfs @ 11.50 h		
Primary Route		: STUDY POINT		
Seconda		0 cfs @ 12.21 h		
Route	ed to Link SP1	: STUDY POINT	#1	
Routing I	by Dyn-Stor-Ir	id method, Time	Span= 0.00-36.00 hrs, dt= 0.05 hrs	
	area = Inflow a		0.000 s.s. Otanana 0.054 sf	
Peak Ele	ev= 3.50' @ 11	.50 hrs Surf.Are	ea= 0.026 ac Storage= 0.054 af	
Plug-Flov Center-o	w detention tin f-Mass det. tin	ne= 61.9 min cal ne= 47.5 min (8	culated for 0.872 af (98% of inflow) ′9.8 - 832.3)	
/olume	Invert	Avail.Storage	Storage Description	
#1A	0.00'		7.67'W x 12.50'L x 3.50'H Field A	
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids	
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1	
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf	
		0.005 af	x 12.00 = 0.054 af Total Available Storage	
Stora	ge Group A cr	eated with Charr	ber Wizard	
Device	Routing	Invert Out	et Devices	
#0	Secondary		omatic Storage Overflow (Discharged without head)	
#1	Discarded	0 00' 0 60	0 in/br Exfiltration over Wetted area	

			*
#0	Secondary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	3.00'	4.0" Round Culvert L= 10.0' Ke= 0.500
			Inlet / Outlet Invert= 3.00' / 3.00' S= 0.0000 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf
	#1	···· ,	#1 Discarded 0.00'

Discarded OutFlow Max=0.04 cfs @ 11.50 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=0.19 cfs @ 11.50 hrs HW=3.50' TW=0.00' (Dynamic Tailwater) 2=Culvert (Barrel Controls 0.19 cfs @ 2.14 fps)

Secondary OutFlow Max=0.00 cfs @ 12.21 hrs HW=3.50' TW=0.00' (Dynamic Tailwater)

Summary for Pond DW-11: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	2.577 ac, 15.70% Impervious, Inflow D	Depth = 3.48" for 25-year event		
Inflow =	10.31 cfs @ 12.09 hrs, Volume=	0.748 af		
Outflow =	9.89 cfs @_ 12.12 hrs, Volume=	0.733 af, Atten= 4%, Lag= 1.4 min		
Discarded =	0.03 cfs @_ 11.05 hrs, Volume=	0.053 af		
Primary =	9.87 cfs @_12.12 hrs, Volume=	0.679 af		
Routed to Pond DS-2b : detention				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 11.05 hrs Surf.Area= 0.018 ac Storage= 0.036 af

Plug-Flow detention time= 50.1 min calculated for 0.732 af (98% of inflow) Center-of-Mass det. time= 39.0 min (862.2 - 823.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 8.00 = 0.036 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
	-		Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.03 cfs @ 11.05 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 12.12 hrs HW=3.50' TW=864.00' (Dynamic Tailwater) -2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-12: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	2.217 ac,	8.54% Impervious, Inflow D	epth = 3.38" for 25-year event
Inflow =	8.62 cfs @	12.09 hrs, Volume=	0.625 af
Outflow =	8.27 cfs @	12.12 hrs, Volume=	0.610 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.03 cfs @	11.30 hrs, Volume=	0.053 af
Primary =	8.24 cfs @	12.12 hrs, Volume=	0.557 af
Routed to Rea	ch R-02 · Ro	uting through wetland/swale	

Routed to Reach R-02 : Routing through wetland/swale

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Peak Elev= 3.50' @ 11.30 hrs Surf.Area= 0.018 ac Storage= 0.036 af

Plug-Flow detention time= 59.9 min calculated for 0.610 af (98% of inflow) Center-of-Mass det. time= 45.6 min (871.2 - 825.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 8.00 = 0.036 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500 Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900 n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.03 cfs @ 11.30 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 12.12 hrs HW=3.50' TW=878.26' (Dynamic Tailwater) 2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-2: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	0.715 ac, 12.26% Impervious, Inflow	Depth = 3.38" for 25-year event
Inflow =	2.78 cfs @ 12.09 hrs, Volume=	0.202 af
Outflow =	2.67 cfs @ 12.12 hrs, Volume=	0.198 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.01 cfs @ 11.05 hrs, Volume=	0.013 af
Primary =	2.66 cfs @ 12.12 hrs, Volume=	0.185 af
Routed to Rea	ch SW-1 : swale	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 11.05 hrs Surf.Area= 0.004 ac Storage= 0.009 af

Plug-Flow detention time= 47.4 min calculated for 0.198 af (98% of inflow) Center-of-Mass det. time= 36.1 min (861.7 - 825.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 2.00 = 0.009 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
			Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.01 cfs @ 11.05 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 12.12 hrs HW=3.50' TW=884.23' (Dynamic Tailwater) -2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-3: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	1.714 ac, 23.07% Impervious, Inflow De	epth = 3.89" for 25-year event
Inflow =	7.62 cfs @ 12.09 hrs, Volume=	0.556 af
Outflow =	7.31 cfs @ 12.11 hrs, Volume=	0.538 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.03 cfs @ 11.20 hrs, Volume=	0.061 af
Primary =	7.28 cfs @ 12.11 hrs, Volume=	0.478 af
Routed to Pond	d dmh55 : dmh	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 11.20 hrs Surf.Area= 0.020 ac Storage= 0.041 af

Plug-Flow detention time= 75.7 min calculated for 0.538 af (97% of inflow) Center-of-Mass det. time= 58.8 min (872.1 - 813.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 9.00 = 0.041 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
			Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.03 cfs @ 11.20 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=3.50' TW=904.45' (Dynamic Tailwater) -2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-4: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	1.519 ac, 41.32% Impervious, Inflow D	epth = 4.31" for 25-year event
Inflow =	7.39 cfs @ 12.09 hrs, Volume=	0.545 af
Outflow =	7.10 cfs @ 12.11 hrs, Volume=	0.524 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.04 cfs @_ 11.20 hrs, Volume=	0.076 af
Primary =	7.06 cfs @ 12.11 hrs, Volume=	0.449 af
Routed to Pon	d dmh53 : dmh	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 11.20 hrs Surf.Area= 0.024 ac Storage= 0.050 af

Plug-Flow detention time= 96.1 min calculated for 0.524 af (96% of inflow)

2889-01 - Proposed HydroCAD_rev3

Prepared by Allen & Major Associates, Inc HydroCAD® 10.20-2f s/n 02881 © 2022 HydroCAD Software Solutions LLC

Center-of-Mass det. time= 74.0 min (876.7 - 802.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 11.00 = 0.050 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices	
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)	
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area	
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500	
	•		Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900	
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf	
Discarded OutFlow Max=0.04 cfs @ 11.20 hrs HW=3.50' (Free Discharge)				

1=Exfiltration (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=3.50' TW=918.23' (Dynamic Tailwater) 2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-5: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	1.509 ac, 38.02% Impervious, Inflow D	epth = 4.20" for 25-year event
Inflow =	7.18 cfs @ 12.09 hrs, Volume=	0.528 af
Outflow =	6.90 cfs @ 12.11 hrs, Volume=	0.513 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.03 cfs @ 10.85 hrs, Volume=	0.055 af
Primary =	6.87 cfs @ 12.11 hrs, Volume=	0.458 af
Routed to Pond	d dmh20 : dmh	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 10.85 hrs Surf.Area= 0.018 ac Storage= 0.036 af

Plug-Flow detention time= 73.7 min calculated for 0.513 af (97% of inflow) Center-of-Mass det. time= 56.6 min (862.1 - 805.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 8.00 = 0.036 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500 Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900 n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.03 cfs @ 10.85 hrs HW=3.50' (Free Discharge) -1=Exfiltration (Exfiltration Controls 0.03 cfs)

Summary for Pond DW-6: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area = 1.339 ac, 47.44% Impervious, Inflow Depth = 4.42" for 25-year event 6.64 cfs @ 12.09 hrs, Volume= 6.39 cfs @ 12.11 hrs, Volume= Inflow = 0.493 af Outflow = 0.477 af, Atten= 4%, Lag= 1.4 min 0.03 cfs @ 10.75 hrs, Volume= Discarded = 0.056 af 6.36 cfs @ 12.11 hrs, Volume= Primary = 0.421 af Routed to Pond dmh50 : dmh Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 10.75 hrs Surf.Area= 0.018 ac Storage= 0.036 af

Plug-Flow detention time= 79.7 min calculated for 0.477 af (97% of inflow) Center-of-Mass det. time= 61.4 min (861.3 - 799.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 8.00 = 0.036 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
			Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900 n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.03 cfs @ 10.75 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=3.50' TW=929.38' (Dynamic Tailwater) -2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-7: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	2.368 ac, 52.59% Impervious, Inflow D	Depth = 4.63" for 25-year event
Inflow =	12.20 cfs @ 12.09 hrs, Volume=	0.914 af
Outflow =	11.73 cfs @_ 12.11 hrs, Volume=	0.895 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.03 cfs @ 9.85 hrs, Volume=	0.073 af
Primary =	11.70 cfs @_ 12.11 hrs, Volume=	0.822 af
Routed to Por	nd dmh21 : dmh	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 9.85 hrs Surf.Area= 0.022 ac Storage= 0.045 af

Plug-Flow detention time= 56.9 min calculated for 0.895 af (98% of inflow) Center-of-Mass det. time= 44.1 min (838.1 - 794.0)

2889-01 - Proposed HydroCAD_rev3

Prepared by Allen & Major Associates, Inc HydroCAD® 10.20-2f s/n 02881 @ 2022 HydroCAD Software Solutions LLC

HydroCA	D® 10.20-2f s/	n 02881 © 2022	HydroCAD Software Solutions LLC	Page 100
Volume	Invert	Avail.Storage	Storage Description	
#1A	0.00'		7.67'W x 12.50'L x 3.50'H Field A	
	0.07	0.000	0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids	
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1	
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf	
		0.005 af	x = 10.00 = 0.045 af Total Available Storage	
Stora	ige Group A c	reated with Cha	amber Wizard	
Device	Routing	Invert Ou	utlet Devices	
#0	Primary	3.50' A ı	utomatic Storage Overflow (Discharged without head)	
#1	Discarded		600 in/hr Exfiltration over Wetted area	
#2	Primary		0" Round Culvert L= 10.0' Ke= 0.500	
			let / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900 = 0.010 PVC, smooth interior, Flow Area= 0.09 sf	
[€] —1=Ex	filtration (Ex	filtration Control	,	
	OutFlow Ma Ilvert (Contro		2.11 hrs HW=3.50' TW=901.99' (Dynamic Tailwater)	
			Summary for Pond DW-8: House Drywell	
System	sized based o	on standard 1.00	0g drywell at each dwelling unit.	
Storage	multiplyer add	ded to account fo	or number of dwelling units with subcatchment.	
Area mu	Iltiplyer adjust	ed to the accour	nt for the percentage of roof area within subcatchment.	
Inflow A			6 Impervious, Inflow Depth = 4.52" for 25-year event	
Inflow		81 cfs @ 12.09		
Outflow		70 cfs @ 12.11		
Discarde Primary	ea = 0. = 2.	01 cfs @ 9.75 69 cfs @ 12.11	5 hrs, Volume= 0.014 af I hrs, Volume= 0.191 af	
	ed to Pond dr			
Routina	bv Dvn-Stor-I	nd method. Time	e Span= 0.00-36.00 hrs, dt= 0.05 hrs	
			rea= 0.004 ac Storage= 0.009 af	
Plug-Flo		me= 49.9 min ca	alculated for 0.205 af (98% of inflow)	

Center-of-Mass det. time= 38.7 min (835.7 - 797.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 2.00 = 0.009 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
			Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.01 cfs @ 9.75 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=3.50' TW=923.58' (Dynamic Tailwater) -2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-9: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Outflow Discarded Primary	= 5. = 5. = 0. = 5.	.045 ac, 52.81% .39 cfs @ 12.09 .18 cfs @ 12.11 .02 cfs @ 10.40 .16 cfs @ 12.11 mh23 : dmh	hrs, Volume= 0.392 af, Atten= 4%, Lag= 1.4 min hrs, Volume= 0.043 af		
0,	Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 10.40 hrs Surf.Area= 0.013 ac Storage= 0.027 af				
Plug-Flow detention time= 73.8 min calculated for 0.391 af (97% of inflow) Center-of-Mass det. time= 57.9 min (851.9 - 794.0)					
Volume	Invert	Avail.Storage	Storage Description		
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A 0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids		

#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 of	y 6.00 - 0.027 of Total Available Starson

 $0.005 \text{ af } \times 6.00 = 0.027 \text{ af } \text{Total Available Storage}$

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
			Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.02 cfs @ 10.40 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=3.50' TW=899.98' (Dynamic Tailwater) -2=Culvert (Controls 0.00 cfs)

Summary for Pond G1: gabion

[92] Warning: Device #3 is above defined storage

Inflow Area =	5.477 ac, 48.32% Impervious, Inflow D	epth > 3.98" for 25-year event
Inflow =	6.64 cfs @ 12.51 hrs, Volume=	1.818 af
Outflow =	6.60 cfs @ 12.52 hrs, Volume=	1.817 af, Atten= 1%, Lag= 0.6 min
Primary =	6.60 cfs @ 12.52 hrs, Volume=	1.817 af
Routed to Rea	ch R-02 : Routing through wetland/swale	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 878.61' @ 12.70 hrs Surf.Area= 328 sf Storage= 352 cf Flood Elev= 880.00' Surf.Area= 2 sf Storage= 444 cf

Plug-Flow detention time= 2.3 min calculated for 1.817 af (100% of inflow) Center-of-Mass det. time= 1.7 min (925.7 - 923.9)

Volume	Invert	Avail.Storage	Storage Description
#1	877.50'	442 cf	18.0" Round Pipe Storage
			L= 250.0'
#2	879.00'	2 cf	1.50'D x 1.00'H Vertical Cone/Cylinder
		444 cf	Total Available Storage

2889-01 - Proposed HydroCAD_rev3

Prepared by Allen & Major Associates, Inc HydroCAD® 10.20-2f s/n 02881 © 2022 HydroCAD Software Solutions LLC

Device Routing Invert Outlet Devices				
#1 Primary 877.50' 2.0" Horiz. invert orifices X 125.00 C= 0.600 Limited to weir flow at low heads				
#2Primary878.25'2.0" Vert. spring line orifices X 125.00C= 0.600Limited to weir flow at low heads#3Primary880.00'18.0" Horiz. overflow grates X 2.00C= 0.600Limited to weir flow at low heads				
Primary OutFlow Max=5.73 cfs @ 12.52 hrs HW=878.58' TW=878.54' (Dynamic Tailwater)				
-1=invert orifices (Orifice Controls 2.87 cfs @ 1.05 fps)				
2=spring line orifices (Orifice Controls 2.87 cfs @ 1.05 fps) 3=overflow grates (Controls 0.00 cfs)				
Summary for Pond G2: gabion				
[02] Warning: Davids #2 is shows defined storage				
[92] Warning: Device #3 is above defined storage				
Inflow Area = 9.959 ac, 17.21% Impervious, Inflow Depth > 3.20" for 25-year event				
Inflow = 10.81 cfs @ 12.55 hrs, Volume= 2.654 af Outflow = 10.81 cfs @ 12.60 hrs, Volume= 2.654 af, Atten= 0%, Lag= 2.9 min				
Primary = 10.81 cfs @ 12.60 hrs, Volume= 2.654 af				
Routed to Link SP3 : STUDY POINT #3				
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs				
Peak Elev= 811.24'@ 12.60 hrs Surf.Area= 116 sf Storage= 93 cf				
Flood Elev= 811.80' Storage= 141 cf				
Plug-Flow detention time= 0.1 min calculated for 2.650 af (100% of inflow)				
Center-of-Mass det. time= 0.1 min (912.3 - 912.2)				
Volume Invert Avail.Storage Storage Description				
#1 810.30' 141 cf 18.0" Round Pipe Storage				
L= 80.0'				
Device Routing Invert Outlet Devices				
#1 Primary 810.30' 2.0" Horiz. invert orifices X 80.00 C= 0.600 Limited to weir flow at low heads				
#2 Primary 811.05' 2.0" Vert. spring line orifices X 80.00 C= 0.600 Limited to weir flow at low heads				
#3 Primary 811.80' 18.0" Horiz. overflow grates X 2.00 C= 0.600 Limited to weir flow at low heads				
Primary OutFlow Max=10.81 cfs @ 12.60 hrs HW=811.24' TW=0.00' (Dynamic Tailwater)				

rimary OutFlow Max=10.81 cfs @ 12.60 hrs HW=811.24' TW=0.00' (Dynamic Tailwater) -**1=invert orifices** (Orifice Controls 8.13 cfs @ 4.66 fps)

-2=spring line orifices (Orifice Controls 2.69 cfs @ 1.54 fps)

-3=overflow grates (Controls 0.00 cfs)

Summary for Link SP1: STUDY POINT #1

Inflow Are	a =	6.871 ac, 28.86% Impervious, Inflow Depth = 3.41" for 25-year event	
Inflow	=	15.47 cfs @ 12.22 hrs, Volume= 1.953 af	
Primary	=	15.47 cfs @ 12.22 hrs, Volume= 1.953 af, Atten= 0%, Lag= 0.0 mir	n

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP2: STUDY POINT #2

Inflow Are	ea =	10.270 ac, 31.55% Impervious,	Inflow Depth > 3.56"	for 25-year event
Inflow	=	11.53 cfs @ 12.30 hrs, Volume	e= 3.048 af	
Primary	=	11.53 cfs @ 12.30 hrs, Volume	e= 3.048 af, Att	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP3: STUDY POINT #3

Inflow Area =	11.281 ac, 15.19% Impervious, Inflow Depth > 3.19" for 25-year event
Inflow =	12.65 cfs @ 12.50 hrs, Volume= 2.995 af
Primary =	12.65 cfs @ 12.50 hrs, Volume= 2.995 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP4: STUDY POINT #4

Inflow Area =	0.605 ac,	10.67% Impervious	, Inflow Depth = 3.3	38" for 25-year event
Inflow =	2.36 cfs @) 12.09 hrs, Volum	ie= 0.171 af	-
Primary =	2.36 cfs @) 12.09 hrs, Volum	e= 0.171 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP5: STUDY POINT #5

Inflow Area =	0.158 ac,	0.00% Impervious, Inflow [Depth = 3.19"	for 25-year event
Inflow =	0.58 cfs @	12.09 hrs, Volume=	0.042 af	-
Primary =	0.58 cfs @	12.09 hrs, Volume=	0.042 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentP-1A: Subcat P-1A	Runoff Area=3.168 ac 17.98% Impervious Runoff Depth=4.41" Flow Length=782' Tc=13.3 min CN=75 Runoff=12.85 cfs 1.166 af
SubcatchmentP-1B: Subcat P-1B	Runoff Area=24,871 sf 23.27% Impervious Runoff Depth=4.75" Flow Length=315' Tc=8.2 min CN=78 Runoff=2.89 cfs 0.226 af
SubcatchmentP-1C: Subcat P-1C	Runoff Area=0.337 ac 20.77% Impervious Runoff Depth=4.41" Tc=6.0 min CN=75 Runoff=1.71 cfs 0.124 af
SubcatchmentP-1D: Subcat P-1D	Runoff Area=0.715 ac 12.26% Impervious Runoff Depth=4.41" Tc=6.0 min CN=75 Runoff=3.62 cfs 0.263 af
SubcatchmentP-1E: Subcat P-1E	Runoff Area=0.382 ac 53.49% Impervious Runoff Depth=5.54" Tc=6.0 min CN=85 Runoff=2.35 cfs 0.176 af
SubcatchmentP-1F: Subcat P-1F	Runoff Area=1.697 ac 54.12% Impervious Runoff Depth=5.77" Tc=6.0 min CN=87 Runoff=10.77 cfs 0.816 af
SubcatchmentP-2A: Subcat P-2A	Runoff Area=2.217 ac 8.54% Impervious Runoff Depth=4.41" Tc=6.0 min CN=75 Runoff=11.22 cfs 0.815 af
SubcatchmentP-2B: Subcat P-2B	Runoff Area=2.577 ac 15.70% Impervious Runoff Depth=4.53" Tc=6.0 min CN=76 Runoff=13.35 cfs 0.972 af
SubcatchmentP-2E: Subcat P-2E	Runoff Area=2.368 ac 52.59% Impervious Runoff Depth=5.77" Tc=6.0 min CN=87 Runoff=15.02 cfs 1.138 af
SubcatchmentP-2F: Subcat P-2F	Runoff Area=1.509 ac 38.02% Impervious Runoff Depth=5.31" Tc=6.0 min CN=83 Runoff=8.99 cfs 0.668 af
SubcatchmentP-2G: Subcat P-2G	Runoff Area=1.045 ac 52.81% Impervious Runoff Depth=5.77" Tc=6.0 min CN=87 Runoff=6.63 cfs 0.503 af
SubcatchmentP-2H: Subcat P-2H	Runoff Area=0.555 ac 49.64% Impervious Runoff Depth=5.65" Tc=6.0 min CN=86 Runoff=3.47 cfs 0.262 af
SubcatchmentP-3A: Subcat P-3A	Runoff Area=5.016 ac 0.00% Impervious Runoff Depth=3.87" Flow Length=644' Tc=16.1 min CN=70 Runoff=16.68 cfs 1.617 af
SubcatchmentP-3B: Subcat P-3B	Runoff Area=1.323 ac 0.00% Impervious Runoff Depth=4.09" Tc=6.0 min CN=72 Runoff=6.21 cfs 0.450 af
SubcatchmentP-3C: Subcat P-3C	Runoff Area=0.370 ac 14.94% Impervious Runoff Depth=4.75" Tc=6.0 min CN=78 Runoff=2.01 cfs 0.147 af
SubcatchmentP-3D: Subcat P-3D	Runoff Area=1.714 ac 23.07% Impervious Runoff Depth=4.97" Tc=6.0 min CN=80 Runoff=9.66 cfs 0.710 af
SubcatchmentP-3E: Subcat P-3E	Runoff Area=1.519 ac 41.32% Impervious Runoff Depth=5.43" Tc=6.0 min CN=84 Runoff=9.21 cfs 0.687 af
SubcatchmentP-3F: Subcat P-3F	Runoff Area=1.339 ac 47.44% Impervious Runoff Depth=5.54" Tc=6.0 min CN=85 Runoff=8.25 cfs 0.618 af
SubcatchmentP-4: Subcat P-4	Runoff Area=26,375 sf 10.67% Impervious Runoff Depth=4.41" Tc=6.0 min CN=75 Runoff=3.06 cfs 0.223 af
SubcatchmentP-5: Subcat P-5	Runoff Area=6,874 sf 0.00% Impervious Runoff Depth=4.20" Tc=6.0 min CN=73 Runoff=0.76 cfs 0.055 af
Reach R-01: Routing to wetlands	Avg. Flow Depth=0.33' Max Vel=0.40 fps Inflow=6.21 cfs 0.450 af n=0.400 L=722.0' S=0.1087 '/' Capacity=43.77 cfs Outflow=2.76 cfs 0.450 af

Reach R-02: Routing through wetland/swale	Avg. Flow Depth=1.01' Max Vel=0.37 fps Inflow=15.85 cfs 3.073 af n=0.400 L=735.0' S=0.0189 '/' Capacity=24.55 cfs Outflow=10.17 cfs 3.069 af
Reach SW-1: swale	Avg. Flow Depth=0.27' Max Vel=4.00 fps Inflow=3.47 cfs 0.246 af n=0.041 L=252.0' S=0.1052 '/' Capacity=49.36 cfs Outflow=3.41 cfs 0.246 af
Reach SW-2: swale	Avg. Flow Depth=0.22' Max Vel=3.66 fps Inflow=2.35 cfs 0.176 af n=0.041 L=228.0' S=0.1110 '/' Capacity=50.70 cfs Outflow=2.34 cfs 0.176 af
Pond DB-1: detention	Peak Elev=814.07' Storage=56,039 cf Inflow=40.59 cfs 3.527 af Primary=12.95 cfs 3.507 af Secondary=0.00 cfs 0.000 af Outflow=12.95 cfs 3.507 af
Pond dmh01: dmh	Peak Elev=851.82' Inflow=2.34 cfs 0.176 af 12.0" Round Culvert n=0.013 L=12.0' S=0.0100 '/' Outflow=2.34 cfs 0.176 af
Pond dmh05: dmh	Peak Elev=872.19' Inflow=10.33 cfs 0.724 af 15.0" Round Culvert n=0.013 L=97.0' S=0.0351 '/' Outflow=10.33 cfs 0.724 af
Pond dmh20: dmh	Peak Elev=907.42' Inflow=8.62 cfs 0.596 af 15.0" Round Culvert n=0.013 L=205.0' S=0.0119 '/' Outflow=8.62 cfs 0.596 af
Pond dmh21: dmh	Peak Elev=903.39' Inflow=23.03 cfs 1.640 af 24.0" Round Culvert n=0.013 L=190.0' S=0.0100 '/' Outflow=23.03 cfs 1.640 af
Pond dmh23: dmh	Peak Elev=900.86' Inflow=29.39 cfs 2.087 af 30.0" Round Culvert n=0.013 L=27.0' S=0.0130 '/' Outflow=29.39 cfs 2.087 af
Pond dmh25: dmh	Peak Elev=923.87' Inflow=3.33 cfs 0.243 af 12.0" Round Culvert n=0.013 L=97.0' S=0.0697 '/' Outflow=3.33 cfs 0.243 af
Pond dmh50: dmh	Peak Elev=930.06' Inflow=7.90 cfs 0.545 af 15.0" Round Culvert n=0.013 L=102.0' S=0.0799 '/' Outflow=7.90 cfs 0.545 af
Pond dmh51: dmh	Peak Elev=921.81' Inflow=7.90 cfs 0.545 af 15.0" Round Culvert n=0.013 L=127.0' S=0.0780 '/' Outflow=7.90 cfs 0.545 af
Pond dmh52: dmh	Peak Elev=894.93' Inflow=7.90 cfs 0.545 af 15.0" Round Culvert n=0.013 L=62.0' S=0.0802 '/' Outflow=7.90 cfs 0.545 af
Pond dmh53: dmh	Peak Elev=918.65' Inflow=8.82 cfs 0.588 af 18.0" Round Culvert n=0.013 L=31.0' S=0.0465 '/' Outflow=8.82 cfs 0.588 af
Pond dmh55: dmh	Peak Elev=905.03' Inflow=18.07 cfs 1.218 af 24.0" Round Culvert n=0.013 L=72.0' S=0.0374 '/' Outflow=18.07 cfs 1.218 af
Pond dmh56: dmh	Peak Elev=899.23' Inflow=20.03 cfs 1.365 af 30.0" Round Culvert n=0.013 L=20.0' S=0.0100 '/' Outflow=20.03 cfs 1.365 af
Pond dmh57: dmh	Peak Elev=898.67' Inflow=20.03 cfs 1.365 af 30.0" Round Culvert n=0.013 L=103.0' S=0.0080 '/' Outflow=20.03 cfs 1.365 af
Pond dmh58: dmh	Peak Elev=897.59' Inflow=20.03 cfs 1.365 af 30.0" Round Culvert n=0.013 L=278.0' S=0.0080 '/' Outflow=20.03 cfs 1.365 af
Pond dmh59: dmh	Peak Elev=895.41' Inflow=20.03 cfs 1.365 af 30.0" Round Culvert n=0.013 L=82.0' S=0.0091 '/' Outflow=20.03 cfs 1.365 af
Pond dmh60: dmh	Peak Elev=894.38' Inflow=20.03 cfs 1.365 af 30.0" Round Culvert n=0.013 L=258.0' S=0.0115 '/' Outflow=20.03 cfs 1.365 af
Pond dmh61: dmh	Peak Elev=891.33' Inflow=20.03 cfs 1.365 af 30.0" Round Culvert n=0.013 L=278.0' S=0.0100 '/' Outflow=20.03 cfs 1.365 af
Pond dmh62: dmh	Peak Elev=889.09' Inflow=27.93 cfs 1.910 af 30.0" Round Culvert n=0.013 L=62.0' S=0.0248 '/' Outflow=27.93 cfs 1.910 af

Pond dmh69: dmh	Peak Elev=815.12' Inflow=27.93 cfs 1.910 af 30.0" Round Culvert n=0.013 L=29.0' S=0.0338 '/' Outflow=27.93 cfs 1.910 af
Pond DS-1a: detention	Peak Elev=851.77' Storage=16,790 cf Inflow=16.01 cfs 1.146 af Outflow=7.12 cfs 1.146 af
Pond DS-1b: detention	Peak Elev=861.78' Storage=3,453 cf Inflow=2.89 cfs 0.226 af Outflow=0.65 cfs 0.226 af
Pond DS-2a: detention	Peak Elev=900.77' Storage=42,216 cf Inflow=32.72 cfs 2.330 af Outflow=9.11 cfs 2.328 af
Pond DS-2b: detention	Peak Elev=864.55' Storage=7,535 cf Inflow=12.78 cfs 0.902 af Outflow=7.18 cfs 0.900 af
Pond DW-1: House Drywell	Peak Elev=3.50' Storage=1,963 cf Inflow=10.77 cfs 0.816 af Discarded=0.03 cfs 0.073 af Primary=10.33 cfs 0.724 af Outflow=10.36 cfs 0.797 af
Pond DW-10: House Drywell Discarded=0.04 cfs 0.080 af	Peak Elev=3.50' Storage=0.054 af Inflow=12.85 cfs 1.166 af Primary=0.19 cfs 0.203 af Secondary=12.45 cfs 0.860 af Outflow=12.68 cfs 1.143 af
Pond DW-11: House Drywell	Peak Elev=3.50' Storage=0.036 af Inflow=13.35 cfs 0.972 af Discarded=0.03 cfs 0.055 af Primary=12.78 cfs 0.902 af Outflow=12.81 cfs 0.956 af
Pond DW-12: House Drywell	Peak Elev=3.50' Storage=0.036 af Inflow=11.22 cfs 0.815 af Discarded=0.03 cfs 0.054 af Primary=10.74 cfs 0.746 af Outflow=10.76 cfs 0.800 af
Pond DW-2: House Drywell	Peak Elev=3.50' Storage=0.009 af Inflow=3.62 cfs 0.263 af Discarded=0.01 cfs 0.014 af Primary=3.47 cfs 0.246 af Outflow=3.47 cfs 0.259 af
Pond DW-3: House Drywell	Peak Elev=3.50' Storage=0.041 af Inflow=9.66 cfs 0.710 af Discarded=0.03 cfs 0.063 af Primary=9.26 cfs 0.630 af Outflow=9.28 cfs 0.693 af
Pond DW-4: House Drywell	Peak Elev=3.50' Storage=0.050 af Inflow=9.21 cfs 0.687 af Discarded=0.04 cfs 0.078 af Primary=8.82 cfs 0.588 af Outflow=8.85 cfs 0.666 af
Pond DW-5: House Drywell	Peak Elev=3.50' Storage=0.036 af Inflow=8.99 cfs 0.668 af Discarded=0.03 cfs 0.057 af Primary=8.62 cfs 0.596 af Outflow=8.64 cfs 0.652 af
Pond DW-6: House Drywell	Peak Elev=3.50' Storage=0.036 af Inflow=8.25 cfs 0.618 af Discarded=0.03 cfs 0.058 af Primary=7.90 cfs 0.545 af Outflow=7.93 cfs 0.603 af
Pond DW-7: House Drywell	Peak Elev=3.50' Storage=0.045 af Inflow=15.02 cfs 1.138 af Discarded=0.03 cfs 0.074 af Primary=14.42 cfs 1.045 af Outflow=14.45 cfs 1.119 af
Pond DW-8: House Drywell	Peak Elev=3.50' Storage=0.009 af Inflow=3.47 cfs 0.262 af Discarded=0.01 cfs 0.015 af Primary=3.33 cfs 0.243 af Outflow=3.34 cfs 0.258 af
Pond DW-9: House Drywell	Peak Elev=3.50' Storage=0.027 af Inflow=6.63 cfs 0.503 af Discarded=0.02 cfs 0.044 af Primary=6.36 cfs 0.447 af Outflow=6.38 cfs 0.491 af
Pond G1: gabion	Peak Elev=878.82' Storage=412 cf Inflow=9.11 cfs 2.328 af Outflow=9.08 cfs 2.327 af
Pond G2: gabion	Peak Elev=811.39' Storage=110 cf Inflow=12.95 cfs 3.507 af Outflow=12.97 cfs 3.507 af
Link SP1: STUDY POINT #1	Inflow=20.93 cfs 2.558 af Primary=20.93 cfs 2.558 af
Link SP2: STUDY POINT #2	Inflow=16.61 cfs 3.969 af Primary=16.61 cfs 3.969 af
Link SP3: STUDY POINT #3	Inflow=15.41 cfs 3.957 af Primary=15.41 cfs 3.957 af

Link SP4: STUDY POINT #4

Link SP5: STUDY POINT #5

Inflow=3.06 cfs 0.223 af Primary=3.06 cfs 0.223 af

Inflow=0.76 cfs 0.055 af Primary=0.76 cfs 0.055 af

Total Runoff Area = 29.185 ac Runoff Volume = 11.636 af Average Runoff Depth = 4.78" 76.01% Pervious = 22.184 ac 23.99% Impervious = 7.001 ac

Summary for Subcatchment P-1A: Subcat P-1A

[47] Hint: Peak is 313% of capacity of segment #3

Runoff = 12.85 cfs @ 12.19 hrs, Volume= 1.166 af, Depth= 4.41" Routed to Pond DW-10 : House Drywell

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-year Rainfall=7.30"

_	Area	(ac) (N De	scription		
	0.	168	55 Wo	ods, Good,	, HSG B	
	0.	059	98 Ro	ofs, HSG B		
	0.	085	98 Pa	ved parking	I. HSG B	
	0.				over, Good	. HSG B
					over, Good	
		-		ods, Good.	,	,
				ved parking	,	
				ofs, HSG C		
-	-			ighted Ave		
		599		02% Pervic		
		599 569				
	0.	509	17.	98% Imper	vious Area	
	Та	Longth	Clan	Valacity	Consoity	Description
	Tc (main)	Length				Description
_	(min)	(feet)	(ft/ft	/ (/	(cfs)	
	9.8	55	0.1670	0.09		Sheet Flow,
						Woods: Dense underbrush n= 0.800 P2= 3.28"
	1.1	105	0.0500) 1.57		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	2.4	622	0.0280) 4.24	4.11	Trap/Vee/Rect Channel Flow,
						Bot.W=1.00' D=0.25' Z= 3.0 & 20.0 '/' Top.W=6.75'
						n= 0.016 Asphalt, rough
_	13.3	782	Total			· · · · · · · · · · · · · · · · · · ·

13.3 782 Total

Summary for Subcatchment P-1B: Subcat P-1B

Runoff = 2.89 cfs @ 12.12 hrs, Volume= 0.226 af, Depth= 4.75" Routed to Pond DS-1b : detention

A	Area (sf)	CN	Description					
	4,342	98	Paved park	Paved parking, HSG C				
	1,445	98	Paved park	ing, HSG B	3			
	3,282	61	>75% Ġras	s cover, Go	bod, HSG B			
	13,797	74	>75% Gras	s cover, Go	bod, HSG C			
	2,004	70	Woods, Go	od, HSG C				
	24,871	78	Weighted A	verage				
	19,083		76.73% Pe	rvious Area				
	5,787		23.27% Im	pervious Ar	ea			
_		<u>.</u>		• •				
Tc	5	Slope			Description			
(min)	(feet)	(ft/ft		(cfs)				
6.6	50	0.0960	0.13		Sheet Flow, A-B			
					Grass: Bermuda n= 0.410 P2= 3.28"			
1.4	183	0.0960) 2.17		Shallow Concentrated Flow, B-C			
					Short Grass Pasture Kv= 7.0 fps			
0.2	82	0.0840) 5.88		Shallow Concentrated Flow, C-D			
					Paved Kv= 20.3 fps			
8.2	315	Total						

Summary for Subcatchment P-1C: Subcat P-1C

Runoff = 1.71 cfs @ 12.09 hrs, Volume= 0.124 af, Depth= 4.41" Routed to Link SP1 : STUDY POINT #1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-year Rainfall=7.30"

Area (ac)	CN	Description
0.002	98	Paved parking, HSG C
0.068	98	Paved parking, HSG B
0.111	61	>75% Grass cover, Good, HSG B
0.156	74	>75% Grass cover, Good, HSG C
0.337	75	Weighted Average
0.267		79.23% Pervious Area
0.070		20.77% Impervious Area
Tc Leng (min) (fee	•	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)
6.0		Direct Entry, TR-55 MIN
		Summary for Subcatchment P-1D: Subcat P-1D

0.263 af, Depth= 4.41"

Runoff = 3.62 cfs @ 12.09 hrs, Volume= Routed to Pond DW-2 : House Drywell

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-year Rainfall=7.30"

Area (ac)	CN	scription					
0.105	61	>75% Grass cover, Good, HSG B					
0.060	98	Paved parking, HSG B					
0.027	98	Paved parking, HSG C					
0.523	74	>75% Grass cover, Good, HSG C					
0.715	75	Weighted Average					
0.628		87.74% Pervious Area					
0.088		12.26% Impervious Area					
Tc Leng (min) (fe	gth et)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)					
6.0		Direct Entry,					

Summary for Subcatchment P-1E: Subcat P-1E

Runoff = 2.35 cfs @ 12.09 hrs, Volume= 0.176 af, Depth= 5.54" Routed to Reach SW-2 : swale

Area (ac)	CN	Description
0.040	61	>75% Grass cover, Good, HSG B
0.037	98	Paved parking, HSG B
0.168	98	Paved parking, HSG C
0.138	74	>75% Grass cover, Good, HSG C
0.382	85	Weighted Average
0.178		46.51% Pervious Area
0.204		53.49% Impervious Area
- ·		
Tc Leng		Slope Velocity Capacity Description
(min) (fee	et)	(ft/ft) (ft/sec) (cfs)
6.0		Direct Entry, tr55 min

Summary for Subcatchment P-1F: Subcat P-1F

Runoff = 10.77 cfs @ 12.09 hrs, Volume= 0.816 af, Depth= 5.77" Routed to Pond DW-1 : House Drywell

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-year Rainfall=7.30"

Area	(ac)	CN	Desc	escription						
0	.779	74	>759	% Grass co	over, Good	, HSG C				
0	.457	98	Root	fs, HSG C						
0	.461	98	Pave	ed parking,	, HSG C					
1	.697	87	Weig	ghted Aver	age					
0	.779		45.8	8% Pervio	us Area					
0	.919		54.1	2% Imperv	∕ious Area					
Tc	Leng	th	Slope	Velocity	Capacity	Description				
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)					
6.0						Direct Entry, tr55 min				

Summary for Subcatchment P-2A: Subcat P-2A

Runoff = 11.22 cfs @ 12.09 hrs, Volume= Routed to Pond DW-12 : House Drywell 0.815 af, Depth= 4.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-year Rainfall=7.30"

Area (ac)	CN	Description				
0.188	98	Roofs, HSG C				
0.001	98	Paved parking, HSG C				
0.636	70	Woods, Good, HSG C				
1.391	74	>75% Grass cover, Good, HSG C				
2.217	75	Weighted Average				
2.027		01.46% Pervious Area				
0.189		8.54% Impervious Area				
Tc Leng	gth S	Slope Velocity Capacity Description				
(min) (fee	et)	(ft/ft) (ft/sec) (cfs)				

6.0

Direct Entry,

Summary for Subcatchment P-2B: Subcat P-2B

Runoff = 13.35 cfs @ 12.09 hrs, Volume= 0.972 af, Depth= 4.53" Routed to Pond DW-11 : House Drywell

Area (ac)	CN	Description	
1.178	74	>75% Grass cover, Good	, HSG C
0.687	70	Woods, Good, HSG C	
0.307	65	Brush, Good, HSG C	
0.021	98	Paved parking, HSG C	
0.384	98	Roofs, HSG C	
2.577	76	Weighted Average	
2.172		84.30% Pervious Area	
0.405		15.70% Impervious Area	
	ngth eet)	Slope Velocity Capacity (ft/ft) (ft/sec) (cfs)	Description
6.0			Direct Entry,

Summary for Subcatchment P-2E: Subcat P-2E

Runoff = 15.02 cfs @ 12.09 hrs, Volume= 1.138 af, Depth= 5.77" Routed to Pond DW-7 : House Drywell

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-year Rainfall=7.30"

Area (ac) CN Description							
1.123 74 >75% Grass cover, Good, HSG C	5% Grass cover, Good, HSG C						
0.668 98 Roofs, HSG C							
0.577 98 Paved parking, HSG C							
2.368 87 Weighted Average							
1.123 47.41% Pervious Area							
1.245 52.59% Impervious Area							
Tc Length Slope Velocity Capacity Descrip	tion						
(min) (feet) (ft/ft) (ft/sec) (cfs)							
6.0 Direct I	Entry,						
Summary for S	Subcatchment P-2F: Subcat P-2F						
Runoff = 8.99 cfs @ 12.09 hrs, Volume=	0.668 af, Depth= 5.31"						
Routed to Pond DW-5 : House Drywell	0.000 al, Deptil= 0.01						
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN,	Time Span= 0.00-36.00 hrs. dt= 0.05 hrs						
Type III 24-hr 50-year Rainfall=7.30"							
Area (ac) CN Description							
0.935 74 >75% Grass cover, Good, HSG C							
0.289 98 Roofs, HSG C							
0.284 98 Paved parking, HSG C							
1.509 83 Weighted Average							
0.935 61.98% Pervious Area							
0.574 38.02% Impervious Area							

Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)

6.0

Direct Entry, tr55 min

Summary for Subcatchment P-2G: Subcat P-2G

Runoff = 6.63 cfs @ 12.09 hrs, Volume= 0.503 af, Depth= 5.77" Routed to Pond DW-9 : House Drywell

Area (ac)	CN	Description
0.493	74	>75% Grass cover, Good, HSG C
0.206	98	Roofs, HSG C
0.346	98	Paved parking, HSG C
1.045	87	Weighted Average
0.493		47.19% Pervious Area
0.552		52.81% Impervious Area
Tc Leng (min) (fee	,	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)
6.0		Direct Entry, tr55 min

Summary for Subcatchment P-2H: Subcat P-2H

Runoff = 3.47 cfs @ 12.09 hrs, Volume= 0.262 af, Depth= 5.65" Routed to Pond DW-8 : House Drywell

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-year Rainfall=7.30"

Area (ac)	CN	Description	cription				
0.280	74	>75% Grass cov	ver, Good,	HSG C			
0.058	98	Roofs, HSG C					
0.217	98	Paved parking, H	HSG C				
0.555	86	Weighted Average	ge				
0.280		50.36% Pervious	s Area				
0.276		49.64% Impervio	ous Area				
Tc Ler	ath	Slope Velocity C	Capacity	Description			
	et)	(ft/ft) (ft/sec)	(cfs)	Description			
6.0	,	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Direct Entry, tr55 min			

Summary for Subcatchment P-3A: Subcat P-3A

Runoff = 16.68 cfs @ 12.22 hrs, Volume= Routed to Pond DB-1 : detention 1.617 af, Depth= 3.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-year Rainfall=7.30"

Are	ea (a	ac) C	N De	scription		
	2.5	91 7	/4 >7	5% Grass c	over, Good	, HSG C
	0.8	47 7	70 Wo	ods, Good,	HSG C	
	1.5	78 6	5 Bru	lsh, Good, İ	HSG C	
	5.0	16 7	70 We	ighted Ave	rade	
	5.0	16				
Т	c I	Length	Slope	Velocity	Capacity	Description
(mir	ר)	(feet)	(ft/ft	(ft/sec)	(cfs)	
12.	.7	50	0.0180	0.07		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.28"
1.	.0	91	0.0850	1.46		Shallow Concentrated Flow, B-C
						Woodland Kv= 5.0 fps
1.	.1	204	0.1800	2.97		Shallow Concentrated Flow, C-D
						Short Grass Pasture Kv= 7.0 fps
1.	.3	299	0.3000	3.83		Shallow Concentrated Flow, D-E
						Short Grass Pasture Kv= 7.0 fps
16.	.1	644	Total			

Summary for Subcatchment P-3B: Subcat P-3B

Runoff = 6.21 cfs @ 12.09 hrs, Volume= Routed to Reach R-01 : Routing to wetlands 0.450 af, Depth= 4.09"

Area	a (ac)	CN	Description
0	0.000	98	Roofs, HSG C
C).172	65	Brush, Good, HSG C
C).273	70	Woods, Good, HSG C
C).878	74	>75% Grass cover, Good, HSG C
1	1.323	72	Weighted Average
1	1.323		100.00% Pervious Area
C	0.000		0.00% Impervious Area

Prepared by Allen & Major	Associates, Inc
HydroCAD® 10.20-2f s/n 02881	© 2022 HydroCAD Software Solutions LLC

Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 Direct Entry,
Summary for Subcatchment P-3C: Subcat P-3C
Runoff = 2.01 cfs @ 12.09 hrs, Volume= 0.147 af, Depth= 4.75" Routed to Pond dmh56 : dmh
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-year Rainfall=7.30"
Area (ac) CN Description
0.315 74 >75% Grass cover, Good, HSG C 0.055 98 Paved parking, HSG C
0.370 78 Weighted Average 0.315 85.06% Pervious Area 0.055 14.94% Impervious Area
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
6.0Direct Entry, tr55 min
Summary for Subcatchment P-3D: Subcat P-3D
Runoff = 9.66 cfs @ 12.09 hrs, Volume= 0.710 af, Depth= 4.97" Routed to Pond DW-3 : House Drywell
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-year Rainfall=7.30"
Area (ac) CN Description
1.319 74 >75% Grass cover, Good, HSG C 0.136 98 Roofs, HSG C
0.260 98 Paved parking, HSG C 1.714 80 Weighted Average
1.319 76.93% Pervious Area 0.395 23.07% Impervious Area
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
6.0Direct Entry, tr-55 min
Summary for Subcatchment P-3E: Subcat P-3E
Runoff = 9.21 cfs @ 12.09 hrs, Volume= 0.687 af, Depth= 5.43" Routed to Pond DW-4 : House Drywell
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-year Rainfall=7.30"
Area (ac) CN Description
0.891 74 >75% Grass cover, Good, HSG C 0.301 98 Roofs, HSG C <u>0.327 98 Paved parking, HSG C</u>
1.51984Weighted Average0.89158.68% Pervious Area0.62841.32% Impervious Area
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 Direct Entry, TR-55 MIN

Summary for Subcatchment P-3F: Subcat P-3F

0.618 af, Depth= 5.54" Runoff = 8.25 cfs @ 12.09 hrs, Volume= Routed to Pond DW-6 : House Drywell

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-year Rainfall=7.30"

Area (ac)	CN	Desc	escription					
0.7	704	74	>75%	6 Grass co	over, Good,	, HSG C			
0.2	290	98	Roof	s, HSG C					
0.3	345	98	Pave	d parking	, HSG C				
1.3	339	85	Weig	hted Aver	age				
0.7	704 52.56% Pervious Area				us Area				
0.6	0.635 47.44% Impervious Area				∕ious Area				
Тс	Lengt		Slope	Velocity	Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
6.0						Direct Entry, TR-55 MIN			

Summary for Subcatchment P-4: Subcat P-4

3.06 cfs @ 12.09 hrs, Volume= 0.223 af, Depth= 4.41" Runoff = Routed to Link SP4 : STUDY POINT #4

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-year Rainfall=7.30"

Area (sf)	CN	Description				
56	61	>75% Grass cover, Good, HSG B				
14,249	74	>75% Grass cover, Good, HSG C				
9,257	70	Woods, Good, HSG C				
2,814	98	Paved parking, HSG C				
26,375	75	Weighted Average				
23,561		89.33% Pervious Area				
2,814		10.67% Impervious Area				
Tc Length (min) (feet)	Slop (ft/					

6.0

Direct Entry, tr55 min

Summary for Subcatchment P-5: Subcat P-5

Runoff 0.76 cfs @ 12.09 hrs, Volume= 0.055 af, Depth= 4.20" = Routed to Link SP5 : STUDY POINT #5

	Area (sf) (CN	Description			
	2,401	1	70	Woods, Go	od, HSG C		
	4,473	3	74	>75% Gras	s cover, Go	od, HSG C	
	6,874	1	73	Weighted A	verage		
	6,874	1		100.00% Pe	ervious Are	а	
(r	Tc Lengt nin) (fee		Slope (ft/ft)		Capacity (cfs)	Description	n
	5.0					Direct Entry,	try, TR-55 Min.
	5.0	0	Total,	Increased t	o minimum	Tc = 6.0 min	in

Summary for Reach R-01: Routing to wetlands

A subcatchment performs runoff calculations, including the associated Tc anc CN determinations. It does not have any facility for routing an inflow hydrograph from another source. However, a reach may be used to perform this type of specialized routing.

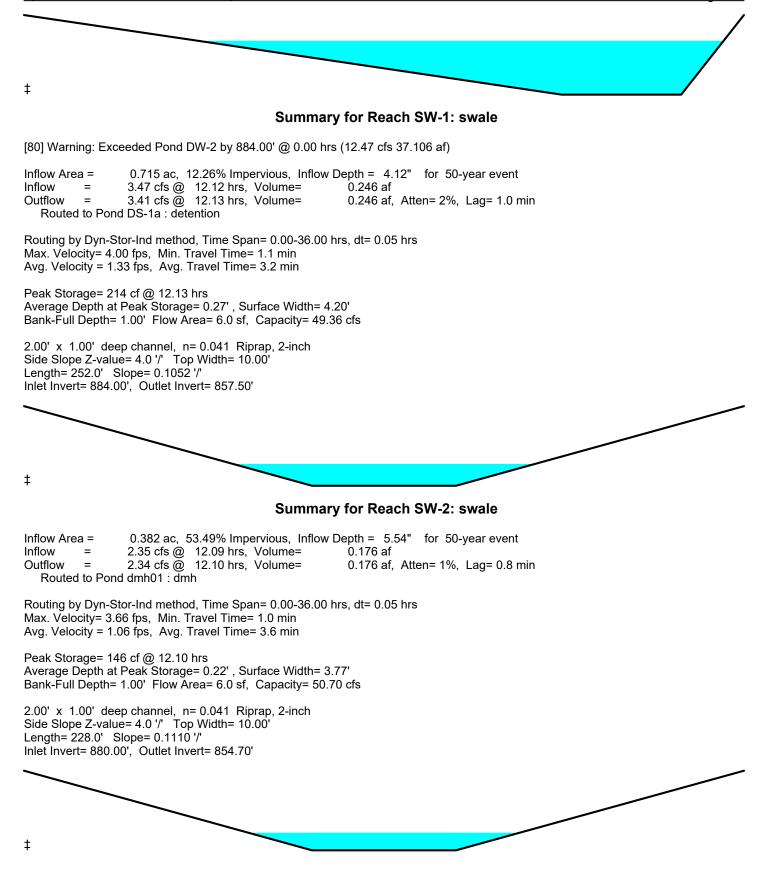
This reach demonstrates a procedure for performing a shallow concetrated flow routing through woods. In this case, the "reach" is defined as a channel with very low side slopes. The Manning's value of 0.40 is selected from the table of sheet flow roughness coefficients, which is comparable to the Manning's value for "woods with light underbrush".

0.00% Impervious, Inflow Depth = 4.09" for 50-year event Inflow Area = 1.323 ac, 6.21 cfs @ 12.09 hrs, Volume= 0.450 af Inflow = 2.76 cfs @ 12.30 hrs, Volume= 0.450 af, Atten= 56%, Lag= 12.7 min Outflow = Routed to Link SP3 : STUDY POINT #3 Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 0.40 fps, Min. Travel Time= 30.3 min Avg. Velocity = 0.14 fps, Avg. Travel Time= 85.3 min Peak Storage= 5,021 cf @ 12.30 hrs Average Depth at Peak Storage= 0.33', Surface Width= 37.63' Bank-Full Depth= 1.00' Flow Area= 55.0 sf. Capacity= 43.77 cfs 5.00' x 1.00' deep channel, n= 0.400 Sheet flow: Woods+light brush Side Slope Z-value = 50.0 '/' Top Width = 105.00' Length= 722.0' Slope= 0.1087 '/' Inlet Invert= 889.50', Outlet Invert= 811.00' ‡

Summary for Reach R-02: Routing through wetland/swale

A subcatchment performs runoff calculations, including the associated Tc anc CN determinations. It does not have any facility for routing an inflow hydrograph from another source. However, a reach may be used to perform this type of specialized routing.

This reach demonstrates a procedure for performing a shallow concetrated flow routing through the wooded wetland/swale adjacent to the stone wall. In this case, the "reach" is defined as a channel with low side slopes. The Manning's value of 0.40 is selected from the table of sheet flow roughness coefficients, which is comparable to the Manning's value for "woods with light underbrush".


[80] Warning: Exceeded Pond DW-12 by 877.70' @ 0.00 hrs (12.43 cfs 36.978 af) [80] Warning: Exceeded Pond G1 by 0.20' @ 0.00 hrs (5.87 cfs 5.303 af)

Inflow Area = 7.693 ac, 36.86% Impervious, Inflow Depth > 4.79" for 50-year event Inflow = 15.85 cfs @ 12.15 hrs, Volume= 3.073 af Outflow = 10.17 cfs @ 12.67 hrs, Volume= 3.069 af, Atten= 36%, Lag= 31.1 min Routed to Link SP2 : STUDY POINT #2 Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 0.37 fps, Min. Travel Time= 33.0 min Avg. Velocity = 0.16 fps, Avg. Travel Time= 76.5 min

Peak Storage= 20,113 cf @ 12.67 hrs Average Depth at Peak Storage= 1.01', Surface Width= 43.97' Bank-Full Depth= 1.50' Flow Area= 52.7 sf, Capacity= 24.55 cfs

10.00' x 1.50' deep channel, n= 0.400 Sheet flow: Woods+light brush Side Slope Z-value= 30.0 3.5 '/' Top Width= 60.25' Length= 735.0' Slope= 0.0189 '/' Inlet Invert= 877.70', Outlet Invert= 863.80'

2889-01 - Proposed HydroCAD_rev3 Prepared by Allen & Major Associates, Inc HydroCAD® 10.20-2f s/n 02881 © 2022 HydroCAD Software Solutions LLC

Summary for Pond DB-1: detention

Inflow Area = 9.959 ac, 17.21% Impervious, Inflow Depth = 4.25" for 50-year event Inflow = 40.59 cfs @ 12.14 hrs, Volume= 3.527 af Outflow = 12.95 cfs @ 12.57 hrs, Volume= 3.507 af, Atten= 68%, Lag= 26.0 min Primary = 12.95 cfs @ 12.57 hrs, Volume= 3.507 af Routed to Pond G2 : gabion Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Routed to Link SP3 : STUDY POINT #3 Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Data State					
Peak Elev= 814.07' @ 12.57 hrs Surf.Area= 21,107 sf Storage= 56,039 cf Flood Elev= 816.00' Surf.Area= 24,900 sf Storage= 100,504 cf					
Plug-Flow detention time= 83.8 min calculated for 3.502 af (99% of inflow) Center-of-Mass det. time= 81.1 min(903.0 - 821.8)					
Volume Invert Avail.Storage Storage Description					
#1 811.00' 100,504 cf Custom Stage Data (Irregular)Listed below (Recalc)					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
#2 Device 1 #3 Device 1 #4 Device 1 #5 Secondary 814.40' 814.40					
Primary OutFlow Max=12.94 cfs @ 12.57 hrs HW=814.06' TW=811.38' (Dynamic Tailwater) 1=Culvert (Inlet Controls 12.94 cfs @ 7.32 fps) -2=(2) 8" Orifice (2yr) (Passes < 5.50 cfs potential flow) -3=(2) 12" Orifice (10yr) (Passes < 9.75 cfs potential flow) -4=24" Top of Structure (Passes < 17.89 cfs potential flow)					
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=811.00' TW=0.00' (Dynamic Tailwater) -5=Broad-Crested Rectangular Weir(Controls 0.00 cfs)					
Summary for Pond dmh01: dmh					
Inflow Area = 0.382 ac, 53.49% Impervious, Inflow Depth = 5.54" for 50-year event Inflow = 2.34 cfs @ 12.10 hrs, Volume= 0.176 af Outflow = 2.34 cfs @ 12.10 hrs, Volume= 0.176 af, Atten= 0%, Lag= 0.0 min Primary = 2.34 cfs @ 12.10 hrs, Volume= 0.176 af					

Routed to Pond DS-1a : detention

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 851.82' @ 12.36 hrs Flood Elev= 855.31'

Device	Routing	Invert	Outlet Devices
#1	Primary	849.34'	12.0" Round Culvert L= 12.0' Ke= 0.500
	-		Inlet / Outlet Invert= 849.34' / 849.22' S= 0.0100 '/' Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.00 cfs @ 12.10 hrs HW=850.37' TW=850.51' (Dynamic Tailwater)

Summary for Pond dmh05: dmh

[80] Warning: Exceeded Pond DW-1 by 868.66' @ 12.10 hrs (12.38 cfs 36.781 af)

 Inflow Area =
 1.697 ac, 54.12% Impervious, Inflow Depth =
 5.12" for 50-year event

 Inflow =
 10.33 cfs @
 12.11 hrs, Volume=
 0.724 af

 Outflow =
 10.33 cfs @
 12.11 hrs, Volume=
 0.724 af

 Primary =
 10.33 cfs @
 12.11 hrs, Volume=
 0.724 af

 Routed to Pond DS-1a : detention
 0.724 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 872.19' @ 12.11 hrs Flood Elev= 883.10'

_ . . _ .

Device	Routing	Invert	Outlet Devices
#1	Primary	868.52'	15.0" Round Culvert L= 97.0' Ke= 0.500 Inlet / Outlet Invert= 868.52' / 865.12' S= 0.0351 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=10.10 cfs @ 12.11 hrs HW=872.06' TW=850.62' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 10.10 cfs @ 8.23 fps)

Summary for Pond dmh20: dmh

[80] Warning: Exceeded Pond DW-5 by 903.86' @ 12.15 hrs (12.63 cfs 37.501 af)

Inflow Area	=	1.509 ac, 3	38.02% Imp	ervious, Inflo	w Depth = 4.74"	for 50-year event
Inflow :	=	8.62 cfs @	12.11 hrs,	Volume=	0.596 af	-
Outflow :	=	8.62 cfs @	12.11 hrs,	Volume=	0.596 af, Atte	en= 0%, Lag= 0.0 min
Primary :	=	8.62 cfs @	12.11 hrs,	Volume=	0.596 af	-
Routed to Pond dmh21 : dmh						

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 907.42' @ 12.14 hrs Flood Elev= 907.61'

Device	Routing	Invert	Outlet Devices
#1	Primary	902.74'	15.0" Round Culvert L= 205.0' Ke= 0.500 Inlet / Outlet Invert= 902.74' / 900.30' S= 0.0119 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=7.57 cfs @ 12.11 hrs HW=906.92' TW=903.21' (Dynamic Tailwater) -1=Culvert (Outlet Controls 7.57 cfs @ 6.17 fps)

Summary for Pond dmh21: dmh

[80] Warning: Exceeded Pond DW-7 by 899.74' @ 12.15 hrs (12.60 cfs 37.435 af)

Inflow Area =	3.876 ac, 46.92% Impervious, Inflow	/ Depth = 5.08" for 50-year event			
Inflow =	23.03 cfs @ 12.11 hrs, Volume=	1.640 af			
Outflow =	23.03 cfs @ 12.11 hrs, Volume=	1.640 af, Atten= 0%, Lag= 0.0 min			
Primary =	23.03 cfs @ 12.11 hrs, Volume=	1.640 af			
Routed to Pond dmh23 : dmh					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 903.39' @ 12.13 hrs Flood Elev= 905.24'

Device	Routing	Invert	Outlet Devices
#1	Primary	899.55'	24.0" Round Culvert L= 190.0' Ke= 0.500
	-		Inlet / Outlet Invert= 899.55' / 897.65' S= 0.0100 '/' Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=21.39 cfs @ 12.11 hrs HW=903.21' TW=900.43' (Dynamic Tailwater) -1=Culvert (Outlet Controls 21.39 cfs @ 6.81 fps)

Summary for Pond dmh23: dmh

[80] Warning: Exceeded Pond DW-9 by 897.55' @ 0.00 hrs (12.57 cfs 37.395 af)

 Inflow Area =
 4.921 ac, 48.17% Impervious, Inflow Depth = 5.09" for 50-year event

 Inflow =
 29.39 cfs @
 12.11 hrs, Volume=
 2.087 af

 Outflow =
 29.39 cfs @
 12.11 hrs, Volume=
 2.087 af

 Primary =
 29.39 cfs @
 12.11 hrs, Volume=
 2.087 af

 Routed to Pond DS-2a : detention
 20.11 hrs, Volume=
 2.087 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 900.86' @ 12.49 hrs Flood Elev= 910.71'

Device	Routing	Invert	Outlet Devices
#1	Primary	897.55'	30.0" Round Culvert L= 27.0' Ke= 0.500 Inlet / Outlet Invert= 897.55' / 897.20' S= 0.0130 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf

Primary OutFlow Max=28.73 cfs @ 12.11 hrs HW=900.43' TW=898.06' (Dynamic Tailwater) 1=Culvert (Barrel Controls 28.73 cfs @ 6.38 fps)

Summary for Pond dmh25: dmh

[80] Warning: Exceeded Pond DW-8 by 922.60' @ 0.00 hrs (12.74 cfs 37.911 af)

Inflow Area	a =	0.555 ac, 4	9.64% Imperv	ious, Inflow	Depth = 5.25"	for 50-year event
Inflow	=	3.33 cfs @	12.11 hrs, Vo	olume=	0.243 af	-
Outflow	=	3.33 cfs @	12.11 hrs, Vo	olume=	0.243 af, Atte	en= 0%, Lag= 0.0 min
Primary	=	3.33 cfs @	12.11 hrs, Vo	olume=	0.243 af	
Routed	Routed to Pond DS-2a : detention					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 923.87' @ 12.11 hrs Flood Elev= 930.54'

Device	Routing	Invert	Outlet Devices
#1	Primary	922.60'	12.0" Round Culvert L= 97.0' Ke= 0.500 Inlet / Outlet Invert= 922.60' / 915.84' S= 0.0697 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=3.26 cfs @ 12.11 hrs HW=923.84' TW=898.06' (Dynamic Tailwater) -1=Culvert (Inlet Controls 3.26 cfs @ 4.15 fps)

Summary for Pond dmh50: dmh

[80] Warning: Exceeded Pond DW-6 by 927.65' @ 0.00 hrs (12.78 cfs 38.016 af)

Inflow Area =	1.339 ac, 47.44% Impervious, Inflow	Depth = 4.89" for 50-year event
Inflow =	7.90 cfs @ 12.11 hrs, Volume=	0.545 af
Outflow =	7.90 cfs @ 12.11 hrs, Volume=	0.545 af, Atten= 0%, Lag= 0.0 min
Primary =	7.90 cfs @ 12.11 hrs, Volume=	0.545 af
Routed to Por	nd dmh51 : dmh	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 930.06' @ 12.11 hrs Flood Elev= 933.94'

Device	Routing	Invert	Outlet Devices
#1	Primary	927.65'	15.0" Round Culvert L= 102.0' Ke= 0.500
	-		Inlet / Outlet Invert= 927.65' / 919.50' S= 0.0799 '/' Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=7.72 cfs @ 12.11 hrs HW=929.98' TW=921.73' (Dynamic Tailwater) -1=Culvert (Inlet Controls 7.72 cfs @ 6.29 fps)

Summary for Pond dmh51: dmh

 Inflow Area =
 1.339 ac, 47.44% Impervious, Inflow Depth =
 4.89" for 50-year event

 Inflow =
 7.90 cfs @
 12.11 hrs, Volume=
 0.545 af

 Outflow =
 7.90 cfs @
 12.11 hrs, Volume=
 0.545 af

 Primary =
 7.90 cfs @
 12.11 hrs, Volume=
 0.545 af

 Routed to Pond dmh52 : dmh
 0.545 af
 0.545 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 921.81' @ 12.11 hrs Flood Elev= 924.04'

Device	Routing	Invert	Outlet Devices
#1	Primary	919.40'	
			Inlet / Outlet Invert= $919.40' / 909.50' = 0.0780 '/' Cc= 0.900$ n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=7.72 cfs @ 12.11 hrs HW=921.73' TW=894.85' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 7.72 cfs @ 6.29 fps)

Summary for Pond dmh52: dmh

 Inflow Area =
 1.339 ac, 47.44% Impervious, Inflow Depth =
 4.89"
 for 50-year event

 Inflow =
 7.90 cfs @
 12.11 hrs, Volume=
 0.545 af

 Outflow =
 7.90 cfs @
 12.11 hrs, Volume=
 0.545 af, Atten= 0%, Lag= 0.0 min

 Primary =
 7.90 cfs @
 12.11 hrs, Volume=
 0.545 af, Atten= 0%, Lag= 0.0 min

 Primary =
 7.90 cfs @
 12.11 hrs, Volume=
 0.545 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 894.93' @ 12.11 hrs Flood Elev= 914.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	892.52'	15.0" Round Culvert L= 62.0' Ke= 0.500
			Inlet / Outlet Invert= 892.52' / 887.55' S= 0.0802 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=7.72 cfs @ 12.11 hrs HW=894.85' TW=889.03' (Dynamic Tailwater) -1=Culvert (Inlet Controls 7.72 cfs @ 6.29 fps)

Summary for Pond dmh53: dmh

[80] Warning: Exceeded Pond DW-4 by 916.83' @ 0.00 hrs (12.70 cfs 37.793 af)

Inflow Are	a =	1.519 ac, 41.32% Impervious, Inflow Depth = 4.64" f	or 50-year event
Inflow	=	8.82 cfs @ 12.11 hrs, Volume= 0.588 af	
Outflow	=	8.82 cfs @12.11 hrs, Volume=0.588 af, Atten	n= 0%, Lag= 0.0 min
Primary	=	8.82 cfs @ 12.11 hrs, Volume= 0.588 af	-
Routed	l to Pond	dmh55 : dmh	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 918.65' @ 12.11 hrs Flood Elev= 921.46'

Device	Routing	Invert	Outlet Devices
#1	Primary	916.83'	18.0" Round Culvert L= 31.0' Ke= 0.500
			Inlet / Outlet Invert= 916.83' / 915.39' S= 0.0465 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=8.61 cfs @ 12.11 hrs HW=918.60' TW=904.97' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 8.61 cfs @ 4.87 fps)

Summary for Pond dmh55: dmh

[80] Warning: Exceeded Pond DW-3 by 902.61' @ 0.00 hrs (12.61 cfs 37.499 af)

Inflow Area =				
Inflow = Outflow = Primary = Routed to Pol	18.07 cfs @ 12 18.07 cfs @ 12	64% Impervious, Inflow [2.11 hrs, Volume= 2.11 hrs, Volume= 2.11 hrs, Volume=	Depth = 4.52" for 50-year event 1.218 af 1.218 af, Atten= 0%, Lag= 0.0 min 1.218 af	
Routing by Dyn- Peak Elev= 905. Flood Elev= 911	03' @ 12.11 hrs	Time Span= 0.00-36.00 h	rs, dt= 0.05 hrs	
Device Routing	a Invert	Outlet Devices		
#1 Primary		24.0" Round Culvert Inlet / Outlet Invert= 902	L= 72.0' Ke= 0.500 2.61' / 899.92' S= 0.0374 '/' Cc= 0.900 E, smooth interior, Flow Area= 3.14 sf	
		@ 12.11 hrs HW=904.97 4 cfs @ 5.61 fps)	7' TW=899.14' (Dynamic Tailwater)	
		Summar	y for Pond dmh56: dmh	
Inflow Area = Inflow = Outflow = Primary = Routed to Po	20.03 cfs @ 12 20.03 cfs @ 12	2.11 hrs. Volume=	Depth = 4.54" for 50-year event 1.365 af 1.365 af, Atten= 0%, Lag= 0.0 min 1.365 af	
Routing by Dyn- Peak Elev= 899. Flood Elev= 908 Device Routing	23' @ 12.15 hrs .47'	Time Span= 0.00-36.00 h Outlet Devices	rs, dt= 0.05 hrs	
#1 Primary		30.0" Round Culvert	L= 20.0' Ke= 0.500 5.80' / 896.60' S= 0.0100 '/' Cc= 0.900 E, smooth interior, Flow Area= 4.91 sf	
		@ 12.11 hrs HW=899.13 36 cfs @ 4.46 fps)	3' TW=898.62' (Dynamic Tailwater)	
		.36 cfs @ 4.46 fps)	8' TW=898.62' (Dynamic Tailwater) y for Pond dmh57: dmh	
<pre>1=Culvert (O Inflow Area = Inflow = Outflow = Primary =</pre>	3.604 ac, 29. 20.03 cfs @ 12 20.03 cfs @ 12	36 cfs @ 4.46 fps) Summar		
▲ 1=Culvert (O Inflow Area = Inflow = Outflow = Primary = Routed to Por	3.604 ac, 29. 20.03 cfs @ 12 20.03 cfs @ 12 20.03 cfs @ 12 20.03 cfs @ 12 nd dmh58 : dmh Stor-Ind method, 67' @ 12.13 hrs	36 cfs @ 4.46 fps) Summar 93% Impervious, Inflow [2.11 hrs, Volume= 2.11 hrs, Volume=	y for Pond dmh57: dmh Depth = 4.54" for 50-year event 1.365 af 1.365 af, Atten= 0%, Lag= 0.0 min 1.365 af	
Inflow Area = Inflow = Outflow = Primary = Routed to Pol Routing by Dyn- Peak Elev= 898.	3.604 ac, 29. 20.03 cfs @ 12 20.03 cfs @ 12 20.03 cfs @ 12 20.03 cfs @ 12 nd dmh58 : dmh Stor-Ind method, 67' @ 12.13 hrs .00'	36 cfs @ 4.46 fps) Summar 93% Impervious, Inflow [2.11 hrs, Volume= 2.11 hrs, Volume= 2.11 hrs, Volume=	y for Pond dmh57: dmh Depth = 4.54" for 50-year event 1.365 af 1.365 af, Atten= 0%, Lag= 0.0 min 1.365 af	

1=Culvert (Outlet Controls 18.03 cfs @ 5.46 fps)

Summary for Pond dmh58: dmh

-
Inflow Area = 3.604 ac, 29.93% Impervious, Inflow Depth = 4.54" for 50-year event Inflow = 20.03 cfs @ 12.11 hrs, Volume= 1.365 af Outflow = 20.03 cfs @ 12.11 hrs, Volume= 1.365 af, Atten= 0%, Lag= 0.0 min Primary = 20.03 cfs @ 12.11 hrs, Volume= 1.365 af Routed to Pond dmh59 : dmh
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 897.59' @ 12.12 hrs Flood Elev= 901.46'
Device Routing Invert Outlet Devices
#1 Primary 895.58' 30.0" Round Culvert L= 278.0' Ke= 0.500 Inlet / Outlet Invert= 895.58' / 893.35' S= 0.0080 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=18.63 cfs @ 12.11 hrs HW=897.56' TW=895.37' (Dynamic Tailwater)
Summary for Pond dmh59: dmh
Inflow Area = 3.604 ac, 29.93% Impervious, Inflow Depth = 4.54" for 50-year event Inflow = 20.03 cfs @ 12.11 hrs, Volume= 1.365 af Outflow = 20.03 cfs @ 12.11 hrs, Volume= 1.365 af, Atten= 0%, Lag= 0.0 min Primary = 20.03 cfs @ 12.11 hrs, Volume= 1.365 af Routed to Pond dmh60 : dmh
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 895.41' @ 12.13 hrs Flood Elev= 909.31'
Device Routing Invert Outlet Devices
#1 Primary 893.25' 30.0" Round Culvert L= 82.0' Ke= 0.500 Inlet / Outlet Invert= 893.25' / 892.50' S= 0.0091 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=18.13 cfs @ 12.11 hrs HW=895.37' TW=894.35' (Dynamic Tailwater) [●] —1=Culvert (Outlet Controls 18.13 cfs @ 5.52 fps)
Summary for Pond dmh60: dmh
Inflow Area = 3.604 ac, 29.93% Impervious, Inflow Depth = 4.54" for 50-year event Inflow = 20.03 cfs @ 12.11 hrs, Volume= 1.365 af Outflow = 20.03 cfs @ 12.11 hrs, Volume= 1.365 af, Atten= 0%, Lag= 0.0 min Primary = 20.03 cfs @ 12.11 hrs, Volume= 1.365 af Routed to Pond dmh61 : dmh
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 894.38' @ 12.11 hrs Flood Elev= 901.96'
Device Routing Invert Outlet Devices
#1 Primary 892.40' 30.0" Round Culvert L= 258.0' Ke= 0.500 Inlet / Outlet Invert= 892.40' / 889.43' S= 0.0115 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=19.60 cfs @ 12.11 hrs HW=894.35' TW=891.30' (Dynamic Tailwater) -1=Culvert (Inlet Controls 19.60 cfs @ 4.76 fps)

Summary for Pond dmh61: dmh

Inflow Area = 3.604 ac, 29.93% Impervious, Inflow Depth = 4.54" for 50-year event Inflow = 20.03 cfs @ 12.11 hrs, Volume= 1.365 af Outflow = 20.03 cfs @ 12.11 hrs, Volume= 1.365 af, Atten= 0%, Lag= 0.0 min Primary = 20.03 cfs @ 12.11 hrs, Volume= 1.365 af Routed to Pond dmh62 : dmh
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 891.33' @ 12.12 hrs Flood Elev= 898.16'
Device Routing Invert Outlet Devices
#1 Primary 889.33' 30.0" Round Culvert L= 278.0' Ke= 0.500 Inlet / Outlet Invert= 889.33' / 886.55' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=18.84 cfs @ 12.11 hrs HW=891.30' TW=889.03' (Dynamic Tailwater) ▲1=Culvert (Outlet Controls 18.84 cfs @ 6.23 fps)
Summary for Pond dmh62: dmh
Inflow Area = 4.942 ac, 34.67% Impervious, Inflow Depth = 4.64" for 50-year event Inflow = 27.93 cfs @ 12.11 hrs, Volume= 1.910 af Outflow = 27.93 cfs @ 12.11 hrs, Volume= 1.910 af, Atten= 0%, Lag= 0.0 min Primary = 27.93 cfs @ 12.11 hrs, Volume= 1.910 af Routed to Pond dmh69 : dmh
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 889.09' @ 12.11 hrs Flood Elev= 902.00'
Device Routing Invert Outlet Devices
#1 Primary 886.45' 30.0" Round Culvert L= 62.0' Ke= 0.500 Inlet / Outlet Invert= 886.45' / 884.91' S= 0.0248 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=27.29 cfs @ 12.11 hrs HW=889.03' TW=815.06' (Dynamic Tailwater) [●] —1=Culvert (Inlet Controls 27.29 cfs @ 5.56 fps)
Summary for Pond dmh69: dmh
Inflow Area = 4.942 ac, 34.67% Impervious, Inflow Depth = 4.64" for 50-year event Inflow = 27.93 cfs @ 12.11 hrs, Volume= 1.910 af Outflow = 27.93 cfs @ 12.11 hrs, Volume= 1.910 af, Atten= 0%, Lag= 0.0 min Primary = 27.93 cfs @ 12.11 hrs, Volume= 1.910 af Routed to Pond DB-1 : detention
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 815.12' @ 12.11 hrs Flood Elev= 818.02'
Device Routing Invert Outlet Devices
#1 Primary 812.48' 30.0" Round Culvert L= 29.0' Ke= 0.500 Inlet / Outlet Invert= 812.48' / 811.50' S= 0.0338 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=27.29 cfs @ 12.11 hrs HW=815.06' TW=812.86' (Dynamic Tailwater)

Summary for Pond DS-1a: detention

[44] Hint: Outlet device #2 is below defined storage [80] Warning: Exceeded Pond dmh01 by 0.30' @ 12.15 hrs (2.06 cfs 0.028 af)

Inflow Area =		2.795 ac, 4	13.32% Impervious, I	nflow Depth = 4.92" for 50-year event		
Inflow :	=	16.01 cfs @	12.11 hrs, Volume=	1.146 af		
Outflow :	=	7.12 cfs @	12.32 hrs, Volume=	1.146 af, Atten= 56%, Lag= 12.6 min		
Primary :	=	7.12 cfs @	12.32 hrs, Volume=	1.146 af		
Routed t	Routed to Link SP1 : STUDY POINT #1					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 851.77' @ 12.32 hrs Surf.Area= 7,168 sf Storage= 16,790 cf Flood Elev= 853.00' Surf.Area= 7,168 sf Storage= 20,434 cf

Plug-Flow detention time= 112.7 min calculated for 1.144 af (100% of inflow) Center-of-Mass det. time= 113.3 min (917.2 - 804.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	846.50'	0 cf	64.00'W x 56.00'L x 5.67'H Field A
			20,309 cf Overall - 20,309 cf Embedded = 0 cf
#2A	846.50'	16,000 cf	retain_it retain_it 5.0' x 56 Inside #1
			Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf
			Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf
			8 Rows adjusted for 311.7 cf perimeter wall
#3B	851.50'	0 cf	64.00'W x 56.00'L x 2.17'H Field B
			7,765 cf Overall - 7,765 cf Embedded = 0 cf x 40.0% Voids
#4B	851.50'	4,434 cf	retain_it retain_it 1.5' x 56 Inside #3
			Inside= 84.0"W x 18.0"H => 9.90 sf x 8.00'L = 79.2 cf
			Outside= 96.0"W x 26.0"H => 17.33 sf x 8.00'L = 138.7 cf
			56 Chambers in 8 Rows
		20,434 cf	Total Available Storage

Storage Group A created with Chamber Wizard Storage Group B created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	846.40'	15.0" Round Culvert L= 129.0' Ke= 0.500
	-		Inlet / Outlet Invert= 846.40' / 845.62' S= 0.0060 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf
#2	Device 1	846.40'	2.0" Vert. 2" Orifice (2yr) X 2.00 C= 0.600 Limited to weir flow at low heads
#3	Device 1	848.10'	6.0" Vert. 6" Orifice (10yr) X 2.00 C= 0.600 Limited to weir flow at low heads
#4	Device 1	849.40'	5.0" Vert. 5" Orifice (25yr) X 2.00 C= 0.600 Limited to weir flow at low heads
#5	Device 1	850.70'	5.0" Vert. 5" Orifice (50yr) X 2.00 C= 0.600 Limited to weir flow at low heads
#6	Device 1	852.80'	4.0' long Overflow Weir 2 End Contraction(s) 4.0' Crest Height

Primary OutFlow Max=7.11 cfs @ 12.32 hrs HW=851.76' TW=0.00' (Dynamic Tailwater)

1=Culvert (Passes 7.11 cfs of 10.25 cfs potential flow)

-2=2" Orifice (2yr) (Orifice Controls 0.48 cfs @ 11.06 fps)
-3=6" Orifice (10yr) (Orifice Controls 3.49 cfs @ 8.89 fps)

-4=5" Orifice (25yr) (Orifice Controls 1.93 cfs @ 7.06 fps)

-5=5" Orifice (50yr) (Orifice Controls 1.21 cfs @ 4.44 fps)

6=Overflow Weir (Controls 0.00 cfs)

Summary for Pond DS-1b: detention

Inflow Area =	0.571 ac, 2	3.27% Impervious, Inflow	Depth = 4.75"	for 50-year event
Inflow =	2.89 cfs @	12.12 hrs, Volume=	0.226 af	
Outflow =	0.65 cfs @	12.56 hrs, Volume=	0.226 af, Atter	n= 77%, Lag= 26.5 min
Primary =	0.65 cfs @	12.56 hrs, Volume=	0.226 af	-
Routed to Link	SP1 : STUD) د SP1	POINT #1		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 861.78' @ 12.56 hrs Surf.Area= 1,536 sf Storage= 3,453 cf Flood Elev= 862.70' Surf.Area= 1,536 sf Storage= 4,684 cf

Plug-Flow detention time= 66.8 min calculated for 0.225 af (100% of inflow) Center-of-Mass det. time= 66.5 min (879.6 - 813.1)

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	859.20'	12.0" Round Culvert L= 100.0' Ke= 0.500
	,		Inlet / Outlet Invert= 859.20' / 858.10' S= 0.0110 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	859.20'	4.0" Vert. 4" Orifice C= 0.600 Limited to weir flow at low heads
#3	Device 1	862.50'	12.0" Vert. Overflow C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=0.65 cfs @ 12.56 hrs HW=861.78' TW=0.00' (Dynamic Tailwater)

- -1=Culvert (Passes 0.65 cfs of 4.79 cfs potential flow)
- 2=4" Orifice (Orifice Controls 0.65 cfs @ 7.48 fps)

-3=Overflow (Controls 0.00 cfs)

Summary for Pond DS-2a: detention

[92] Warning: Device #4 is above defined storage

[92] Warning: Device #5 is above defined storage

[92] Warning: Device #6 is above defined storage

[93] Warning: Storage range exceeded by 3.77

[80] Warning: Exceeded Pond dmh23 by 0.02' @ 12.25 hrs (3.06 cfs 0.013 af)

Inflow Are	a =	5.477 ac, 4	18.32% Impervious,	Inflow Depth = 5.1	11" for 50-year event
Inflow	=	32.72 cfs @	12.11 hrs, Volume	e= 2.330 af	-
Outflow	=	9.11 cfs @	12.47 hrs, Volume	e 2.328 af,	Atten= 72%, Lag= 21.7 min
Primary	=	9.11 cfs @	12.47 hrs, Volume	e= 2.328 af	-
Routed	to Por	nd G1 : gabion			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 900.77' @ 12.47 hrs Surf.Area= 4,704 sf Storage= 42,216 cf Flood Elev= 902.66' Storage= 48,125 cf

Plug-Flow detention time= 111.1 min calculated for 2.324 af (100% of inflow) Center-of-Mass det. time= 110.9 min (911.4 - 800.5)

Volume	Invert	Avail.Storage	Storage Description	
#1	892.00'	24,073 cf		
			Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf	
			Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf	
			7 Rows adjusted for 394.8 cf perimeter wall	
#2	897.00'	24,052 cf		
			Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf	
			Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf	
			6 Rows adjusted for 415.6 cf perimeter wall	
		48,125 cf	Total Available Storage	
Device	Routing	Invert Outl	et Devices	
#1	Primary	892.00' 24.0	" Round Culvert L= 46.0' Ke= 0.500	
		Inlet	t / Outlet Invert= 892.00' / 890.75' S= 0.0272 '/' Cc= 0.900	
		n= 0	0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf	
#2	Device 1	892.00' 4.0''	Vert. Orifice (2yr) X 2.00 C= 0.600 Limited to weir flow at low heads	
#3	Device 1		Vert. Orifice (10yr) C= 0.600 Limited to weir flow at low heads	
#4	Device 1		Vert. Orifice (25yr) C= 0.600 Limited to weir flow at low heads	
#5	Device 1	899.90' 4.0''	' Vert. Orifice (50yr) C= 0.600 Limited to weir flow at low heads	

#6 Device 1 901.60' 4.0' long Sharp-Crested Weir Overflow (100yr) 2 End Contraction(s)

Primary OutFlow Max=9.09 cfs @ 12.47 hrs HW=900.76' TW=878.79' (Dynamic Tailwater)

-**1=Culvert** (Passes 9.09 cfs of 42.15 cfs potential flow)

-2=Orifice (2yr) (Orifice Controls 2.46 cfs @ 14.12 fps)

-3=Orifice (10yr) (Orifice Controls 3.77 cfs @ 10.80 fps)

-4=Orifice (25yr) (Orifice Controls 2.51 cfs @ 7.19 fps)

-5=Orifice (50yr) (Orifice Controls 0.35 cfs @ 4.02 fps)

-6=Sharp-Crested Weir Overflow (100yr)(Controls 0.00 cfs)

Summary for Pond DS-2b: detention

[80] Warning: Exceeded Pond DW-11 by 863.00' @ 0.00 hrs (12.32 cfs 36.664 af)

Inflow Area	a =	2.577 ac, 1	5.70% Impervious, Infle	ow Depth = 4.20" for 50-year event
Inflow	=	12.78 cfs @	12.11 hrs, Volume=	0.902 af
Outflow	=	7.18 cfs @	12.26 hrs, Volume=	0.900 af, Atten= 44%, Lag= 8.9 min
Primary	=	7.18 cfs @	12.26 hrs, Volume=	0.900 af
Routed	to Link	(SP2 : STUD)	Y POINT #2	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 864.55' @ 12.26 hrs Surf.Area= 5,568 sf Storage= 7,535 cf Flood Elev= 866.00' Surf.Area= 5,568 sf Storage= 14,541 cf

Plug-Flow detention time= 32.4 min calculated for 0.899 af (100% of inflow) Center-of-Mass det. time= 31.9 min (852.7 - 820.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	863.00'	0 cf	232.00'W x 24.00'L x 3.67'H Field A
			20,416 cf Overall - 20,416 cf Embedded = 0 cf x 40.0% Voids
#2A	863.00'	14,541 cf	retain_it retain_it 3.0' x 87 Inside #1
			Inside= 84.0"W x 36.0"H => 21.33 sf x 8.00'L = 170.6 cf
			Outside= 96.0"W x 44.0"H => 29.33 sf x 8.00'L = 234.7 cf
			29 Rows adjusted for 302.1 cf perimeter wall
		14,541 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Primary OutFlow Max=7.17 cfs @ 12.26 hrs HW=864.55' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Inlet Controls 7.17 cfs @ 9.13 fps)

1-2=Orifice/Grate (Passes 7.17 cfs of 11.06 cfs potential flow)

Summary for Pond DW-1: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	1.697 ac, 54.12% Impervious, Inflow D	Depth = 5.77" for 50-year event
Inflow =	10.77 cfs @ 12.09 hrs, Volume=	0.816 af
Outflow =	10.36 cfs @ 12.11 hrs, Volume=	0.797 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.03 cfs @ 9.80 hrs, Volume=	0.073 af
Primary =	10.33 cfs @_ 12.11 hrs, Volume=	0.724 af
Routed to Por	nd dmh05 : dmh	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 9.80 hrs Surf.Area= 958 sf Storage= 1,963 cf

Plug-Flow detention time= 64.2 min calculated for 0.797 af (98% of inflow) Center-of-Mass det. time= 49.9 min (837.8 - 788.0)

Volume	Invert		Storage Description
#1A	0.00'	68 cf	7.67'W x 12.50'L x 3.50'H Field A 335 cf Overall - 166 cf Embedded = 169 cf x 40.0% Voids
#2A	0.67'	129 cf	Siss ci Overali - 100 ci Embedded - 109 ci x 40.0% volds Shea Dry Well 1000gal Inside #1
#2/	0.07	120 01	Inside = 62.0 "W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		196 cf	x 10.00 = 1,963 cf Total Available Storage
Stora	ige Group A cr	reated with Cham	ber Wizard
Device	Routing	Invert Out	et Devices
#0	Primary		omatic Storage Overflow (Discharged without head)
#1	Discarded		0 in/hr Exfiltration over Wetted area
#2	Primary		Round Culvert L= 10.0' Ke= 0.500
			: / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900).010 PVC, smooth interior, Flow Area= 0.09 sf
		11- 0	.010 1 VC, Shlooth Interior, 1 low Alea- 0.09 Si
Discard [€] —1=Ex	ed OutFlow N filtration (Exf	/lax=0.03 cfs @ 9 iltration Controls	1.80 hrs HW=3.50' (Free Discharge) 0.03 cfs)
Primary [€] —2=Cu	OutFlow Max Ilvert(Contro	x=0.00 cfs @ 12. Is 0.00 cfs)	11 hrs HW=3.50' TW=872.06' (Dynamic Tailwater)
			Summary for Pond DW-10: House Drywell
Area mu Inflow Ai Inflow Outflow Discarde	Itiplyer adjuste rea = 3. = 12.8 = 12.6 ed = 0.0	ed to the account 168 ac, 17.98% I 35 cfs @ 12.19 h 68 cfs @ 12.21 h 04 cfs @ 10.90 h	nrs, Volume= 1.143 af, Atten= 1%, Lag= 1.6 min nrs, Volume= 0.080 af
Primary Route Seconda	ed to Link SP1	9 cfs @ 10.90 h :STUDY POINT 5 cfs @ 12.21 h	- #1
Route	ed to Link SP1	: STUDY POINT	*#1
	by Dyn-Stor-Ir area = Inflow a		Span= 0.00-36.00 hrs, dt= 0.05 hrs
			ea= 0.026 ac Storage= 0.054 af
		me= 48.6 min calo me= 38.3 min (86	culated for 1.142 af (98% of inflow) 63.0 - 824.7)
Volume	Invert	Avail Storage	Storage Description
#1A	0.00'		7.67'W x 12.50'L x 3.50'H Field A
<i>,,</i> 17 X	0.00		0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'		Shea Dry Well 1000gal Inside #1 Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
		0 005 of	Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf x 12.00 = 0.054 af Total Available Storage
Store			Ũ
Slora		reated with Cham	
Device	<u> </u>		et Devices
#0	Secondary		omatic Storage Overflow (Discharged without head)
#1 #2	Discarded Primany		0 in/hr Exfiltration over Wetted area ' Round Culvert L= 10.0' Ke= 0.500
#∠	Primary		Could Cuiven L = 10.0 Ke = 0.000 '/' Cc= 0.900
			1.7 Outlet Invert = 5.0075.00 S = 0.00007 CC = 0.900 Otherwise

n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.04 cfs @ 10.90 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=0.19 cfs @ 10.90 hrs HW=3.50' TW=0.00' (Dynamic Tailwater) 2=Culvert (Barrel Controls 0.19 cfs @ 2.14 fps)

Secondary OutFlow Max=0.00 cfs @ 12.21 hrs HW=3.50' TW=0.00' (Dynamic Tailwater)

Summary for Pond DW-11: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	2.577 ac, 15.70% Impervious, Inflow	Depth = 4.53" for 50-year event
Inflow =	13.35 cfs @ 12.09 hrs, Volume=	0.972 af
Outflow =	12.81 cfs @ 12.11 hrs, Volume=	0.956 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.03 cfs @ 10.45 hrs, Volume=	0.055 af
Primary =	12.78 cfs @ 12.11 hrs, Volume=	0.902 af
Routed to Por	nd DS-2b : detention	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 10.45 hrs Surf.Area= 0.018 ac Storage= 0.036 af

Plug-Flow detention time= 40.1 min calculated for 0.955 af (98% of inflow) Center-of-Mass det. time= 31.6 min (847.3 - 815.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 8.00 = 0.036 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
	-		Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.03 cfs @ 10.45 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=3.50' TW=864.23' (Dynamic Tailwater) 2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-12: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	2.217 ac,	8.54% Impervious, Inflow D	Depth = 4.41" for 50-year event
Inflow =	11.22 cfs @	12.09 hrs, Volume=	0.815 af
Outflow =	10.76 cfs @	12.12 hrs, Volume=	0.800 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.03 cfs @	10.75 hrs, Volume=	0.054 af
Primary =	10.74 cfs @	12.12 hrs, Volume=	0.746 af
Routed to Re	ach R-02 : Roi	uting through wetland/swale	

Routed to Reach R-02 : Routing through wetland/swale

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Peak Elev= 3.50' @ 10.75 hrs Surf.Area= 0.018 ac Storage= 0.036 af

Plug-Flow detention time= 46.9 min calculated for 0.799 af (98% of inflow) Center-of-Mass det. time= 36.7 min (854.6 - 817.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 8.00 = 0.036 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500 Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900 n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.03 cfs @ 10.75 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 12.12 hrs HW=3.50' TW=878.40' (Dynamic Tailwater) 2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-2: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	0.715 ac, 12.26% Impervious, Inflow D	epth = 4.41" for 50-year event
Inflow =	3.62 cfs @ 12.09 hrs, Volume=	0.263 af
Outflow =	3.47 cfs @ 12.12 hrs, Volume=	0.259 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.01 cfs @ 10.45 hrs, Volume=	0.014 af
Primary =	3.47 cfs @ 12.12 hrs, Volume=	0.246 af
Routed to Read	ch SW-1 : swale	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 10.45 hrs Surf.Area= 0.004 ac Storage= 0.009 af

Plug-Flow detention time= 37.0 min calculated for 0.259 af (98% of inflow) Center-of-Mass det. time= 29.2 min (847.1 - 817.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 2.00 = 0.009 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
			Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.01 cfs @ 10.45 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 12.12 hrs HW=3.50' TW=884.27' (Dynamic Tailwater) -2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-3: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	1.714 ac, 23.07% Impervious, Inflow De	epth = 4.97" for 50-year event
Inflow =	9.66 cfs @ 12.09 hrs, Volume=	0.710 af
Outflow =	9.28 cfs @ 12.11 hrs, Volume=	0.693 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.03 cfs @ 10.60 hrs, Volume=	0.063 af
Primary =	9.26 cfs @ 12.11 hrs, Volume=	0.630 af
Routed to Pond	d dmh55 : dmh	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 10.60 hrs Surf.Area= 0.020 ac Storage= 0.041 af

Plug-Flow detention time= 62.6 min calculated for 0.693 af (98% of inflow) Center-of-Mass det. time= 48.1 min (854.5 - 806.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 9.00 = 0.041 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
			Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.03 cfs @ 10.60 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=3.50' TW=904.97' (Dynamic Tailwater) -2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-4: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	1.519 ac, 41.32% Impervious, Inflow D	epth = 5.43" for 50-year event
Inflow =	9.21 cfs @ 12.09 hrs, Volume=	0.687 af
Outflow =	8.85 cfs @ 12.11 hrs, Volume=	0.666 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.04 cfs @ 10.60 hrs, Volume=	0.078 af
Primary =	8.82 cfs @ 12.11 hrs, Volume=	0.588 af
Routed to Pon	d dmh53 : dmh	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 10.60 hrs Surf.Area= 0.024 ac Storage= 0.050 af

Plug-Flow detention time= 79.5 min calculated for 0.666 af (97% of inflow)

2889-01 - Proposed HydroCAD_rev3

Center-of-Mass det. time= 61.4 min (857.7 - 796.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 11.00 = 0.050 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
	-		Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf
Discard	ad OutFlow May	/=0.0/ cf	= 0.1060 brs HW=3.50' (Free Discharge)

Discarded OutFlow Max=0.04 cfs @ 10.60 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=3.50' TW=918.60' (Dynamic Tailwater) ←2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-5: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	1.509 ac, 38.02% Impervious, Inflow De	epth = 5.31" for 50-year event
Inflow =	8.99 cfs @ 12.09 hrs, Volume=	0.668 af
Outflow =	8.64 cfs @ 12.11 hrs, Volume=	0.652 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.03 cfs @ 10.25 hrs, Volume=	0.057 af
Primary =	8.62 cfs @ 12.11 hrs, Volume=	0.596 af
Routed to Pond	d dmh20 : dmh	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 10.25 hrs Surf.Area= 0.018 ac Storage= 0.036 af

Plug-Flow detention time= 59.7 min calculated for 0.652 af (98% of inflow) Center-of-Mass det. time= 47.0 min (845.9 - 798.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 8.00 = 0.036 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
			Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.03 cfs @ 10.25 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=3.50' TW=906.92' (Dynamic Tailwater) ←2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-6: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area = 1.339 ac, 47.44% Impervious, Inflow Depth = 5.54" for 50-year event 8.25 cfs @ 12.09 hrs, Volume= 7.93 cfs @ 12.11 hrs, Volume= Inflow 0.618 af = Outflow = 0.603 af, Atten= 4%, Lag= 1.4 min 0.03 cfs @ 10.15 hrs, Volume= Discarded = 0.058 af 7.90 cfs @ 12.11 hrs, Volume= Primary = 0.545 af Routed to Pond dmh50 : dmh Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 10.15 hrs Surf.Area= 0.018 ac Storage= 0.036 af

Plug-Flow detention time= 65.1 min calculated for 0.602 af (97% of inflow) Center-of-Mass det. time= 51.2 min (844.9 - 793.6)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 8.00 = 0.036 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
			Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.03 cfs @ 10.15 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=3.50' TW=929.98' (Dynamic Tailwater) -2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-7: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	2.368 ac, 52.59% Impervious, Inflow D	Depth = 5.77" for 50-year event
Inflow =	15.02 cfs @ 12.09 hrs, Volume=	1.138 af
Outflow =	14.45 cfs @_ 12.11 hrs, Volume=	1.119 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.03 cfs @ 9.15 hrs, Volume=	0.074 af
Primary =	14.42 cfs @_ 12.11 hrs, Volume=	1.045 af
Routed to Por	nd dmh21 : dmh	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 9.15 hrs Surf.Area= 0.022 ac Storage= 0.045 af

Plug-Flow detention time= 47.7 min calculated for 1.119 af (98% of inflow) Center-of-Mass det. time= 37.2 min (825.2 - 788.0)

2889-01 - Proposed HydroCAD_rev3

Prepared by Allen & Major Associates, Inc HydroCAD® 10.20-2f s/n 02881 © 2022 HydroCAD Software Solutions LLC

HydroCA	D® 10.20-2f s/	n 02881 © 2022	HydroCAD Software Solutions LLC	Page 133
Volume	Invert	Avail.Storage	Storage Description	
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A	
#2 ^	0.67	0.002 of	0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids	
#2A	0.67'	0.003 ai	Shea Dry Well 1000gal Inside #1 Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf	
			Outside= 68.0 "W x 34.0 "H => 15.80 sf x 10.50 'L = 165.9 cf	
		0.005 af	x 10.00 = 0.045 af Total Available Storage	
Stora	age Group A c	reated with Cha	mber Wizard	
Device	Routing	Invert Ou	utlet Devices	
#0	Primary	3.50' A ι	utomatic Storage Overflow (Discharged without head)	
#1	Discarded		600 in/hr Exfiltration over Wetted area	
#2	Primary		0" Round Culvert L= 10.0' Ke= 0.500	
			let / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900 = 0.010 PVC, smooth interior, Flow Area= 0.09 sf	
		Max=0.03 cfs @ filtration Controls	9.15 hrs HW=3.50' (Free Discharge) s 0.03 cfs)	
	OutFlow Ma Ivert (Contro		2.11 hrs HW=3.50' TW=903.21' (Dynamic Tailwater)	
			Summary for Pond DW-8: House Drywell	
Storage	multiplyer add	ded to account for	0g drywell at each dwelling unit. or number of dwelling units with subcatchment. nt for the percentage of roof area within subcatchment.	
Inflow A	rea = 0.	555 ac, 49.64%	6 Impervious, Inflow Depth = 5.65" for 50-year event	
Inflow	= 3.4	47 cfs @ 12.09	hrs, Volume= 0.262 af	
Outflow		34 cfs @ 12.11		
Discarde		01 cfs @ 9.10		
Primary Rout	= 3.3 ed to Pond dn	33 cfs @ 12.11 nh25 : dmh	hrs, Volume= 0.243 af	
Pouting	by Dyn Stor I	nd mothod Time	e Span= 0.00-36.00 hrs, dt= 0.05 hrs	
			ea= 0.004 ac Storage= 0.009 af	
			alculated for 0.257 af (98% of inflow)	
Center-o	of-Mass det. ti	me= 32.6 min (8	823.4 - 790.8)	

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 2.00 = 0.009 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
			Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.01 cfs @ 9.10 hrs HW=3.50' (Free Discharge) **—1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=3.50' TW=923.84' (Dynamic Tailwater) -2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-9: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Outflow Discarded Primary	= 6. = 6. = 0. = 6.	.045 ac, 52.81% 63 cfs @ 12.09 38 cfs @ 12.11 02 cfs @ 9.75 36 cfs @ 12.11 nh23 : dmh	hrs, Volume= 0.491 af, Atten= 4%, Lag= 1.4 min hrs, Volume= 0.044 af	
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 9.75 hrs Surf.Area= 0.013 ac Storage= 0.027 af				
Plug-Flow detention time= 61.6 min calculated for 0.490 af (98% of inflow) Center-of-Mass det. time= 48.7 min(836.7-788.0)				
Volume	Invert	Avail.Storage	Storage Description	
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A 0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids	

#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 of	v C.00 - 0.007 of Total Available Starses

0.005 af x 6.00 = 0.027 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500 Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900 n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.02 cfs @ 9.75 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=3.50' TW=900.43' (Dynamic Tailwater) -2=Culvert (Controls 0.00 cfs)

Summary for Pond G1: gabion

[92] Warning: Device #3 is above defined storage[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=7)

Inflow Area =	5.477 ac, 48.32% Impervious, Inflow D	epth > 5.10" for 50-year event	
Inflow =	9.11 cfs @ 12.47 hrs, Volume=	2.328 af	
Outflow =	9.08 cfs @ 12.47 hrs, Volume=	2.327 af, Atten= 0%, Lag= 0.0 min	
Primary =	9.08 cfs @ 12.47 hrs, Volume=	2.327 af	
Routed to Reach R-02 : Routing through wetland/swale			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 878.82' @ 12.63 hrs Surf.Area= 243 sf Storage= 412 cf Flood Elev= 880.00' Surf.Area= 2 sf Storage= 444 cf

Plug-Flow detention time= 2.0 min calculated for 2.327 af (100% of inflow) Center-of-Mass det. time= 1.6 min (913.0 - 911.4)

Volume	Invert	Avail.Storage	Storage Description
#1	877.50'	442 cf	18.0" Round Pipe Storage
			L= 250.0'
#2	879.00'	2 cf	1.50'D x 1.00'H Vertical Cone/Cylinder
		444 cf	Total Available Storage

2889-01 - Proposed HydroCAD_rev3

Prepared by Allen & Major Associates, Inc HydroCAD® 10.20-2f s/n 02881 © 2022 HydroCAD Software Solutions LLC

Device Routing Invert Outlet Devices				
#1Primary877.50'2.0" Horiz. invert orifices X 125.00C= 0.600Limited to weir flow at low heads#2Primary878.25'2.0" Vert. spring line orifices X 125.00C= 0.600Limited to weir flow at low heads#3Primary880.00'18.0" Horiz. overflow grates X 2.00C= 0.600Limited to weir flow at low heads				
Primary OutFlow Max=8.37 cfs @ 12.47 hrs HW=878.79' TW=878.69' (Dynamic Tailwater) -1=invert orifices (Orifice Controls 4.18 cfs @ 1.53 fps) -2=spring line orifices (Orifice Controls 4.18 cfs @ 1.53 fps) -3=overflow grates (Controls 0.00 cfs)				
Summary for Pond G2: gabion				
[92] Warning: Device #3 is above defined storage [90] Warning: Qout>Qin may require smaller dt or Finer Routing				
Inflow Area = 9.959 ac, 17.21% Impervious, Inflow Depth > 4.23" for 50-year event Inflow = 12.95 cfs @ 12.57 hrs, Volume= 3.507 af Outflow = 12.97 cfs @ 12.56 hrs, Volume= 3.507 af, Atten= 0%, Lag= 0.0 min Primary = 12.97 cfs @ 12.56 hrs, Volume= 3.507 af Routed to Link SP3 : STUDY POINT #3				
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 811.39' @ 12.56 hrs Surf.Area= 107 sf Storage= 110 cf Flood Elev= 811.80' Storage= 141 cf				
Plug-Flow detention time= 0.1 min calculated for 3.507 af (100% of inflow) Center-of-Mass det. time= 0.1 min(903.0-903.0)				
Volume Invert Avail.Storage Storage Description #1 810.30' 141 cf 18.0'' Round Pipe Storage L= 80.0'				
Device Routing Invert Outlet Devices				
#1Primary810.30'2.0" Horiz. invert orifices X 80.00C= 0.600Limited to weir flow at low heads#2Primary811.05'2.0" Vert. spring line orifices X 80.00C= 0.600Limited to weir flow at low heads#3Primary811.80'18.0" Horiz. overflow grates X 2.00C= 0.600Limited to weir flow at low heads				
Primary OutFlow Max=12.96 cfs @ 12.56 hrs HW=811.38' TW=0.00' (Dynamic Tailwater) -1=invert orifices (Orifice Controls 8.75 cfs @ 5.01 fps) -2=spring line orifices (Orifice Controls 4.21 cfs @ 2.41 fps) -3=overflow grates (Controls 0.00 cfs)				
Summary for Link SP1: STUDY POINT #1				
Inflow Area = 6.871 ac, 28.86% Impervious, Inflow Depth = 4.47" for 50-year event Inflow = 20.93 cfs @ 12.22 hrs, Volume= 2.558 af Primary = 20.93 cfs @ 12.22 hrs, Volume= 2.558 af, Atten= 0%, Lag= 0.0 min				
Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs				
Summary for Link SP2: STUDY POINT #2				
Inflow Area = 10.270 ac, 31.55% Impervious, Inflow Depth > 4.64" for 50-year event Inflow = 16.61 cfs @ 12.49 hrs, Volume= 3.969 af Primary = 16.61 cfs @ 12.49 hrs, Volume= 3.969 af, Atten= 0%, Lag= 0.0 min				

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP3: STUDY POINT #3

Inflow Area =	11.281 ac, 15.19% Impervious, Ir	nflow Depth > 4.21" for 50-year event
Inflow =	15.41 cfs @ 12.46 hrs, Volume=	3.957 af
Primary =	15.41 cfs @ 12.46 hrs, Volume=	3.957 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP4: STUDY POINT #4

Inflow Area =	0.605 ac, 10.67% Impervious, Infl	low Depth = 4.41" for 50-year event
Inflow =	3.06 cfs @ 12.09 hrs, Volume=	0.223 af
Primary =	3.06 cfs @ 12.09 hrs, Volume=	0.223 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP5: STUDY POINT #5

Inflow Area =	0.158 ac,	0.00% Impervious, Inflow I	Depth = 4.20"	for 50-year event
Inflow =	0.76 cfs @	12.09 hrs, Volume=	0.055 af	-
Primary =	0.76 cfs @	12.09 hrs, Volume=	0.055 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentP-1A: Subcat P-1A	Runoff Area=3.168 ac 17.98% Impervious Runoff Depth=5.70" Flow Length=782' Tc=13.3 min CN=75 Runoff=16.51 cfs 1.504 af
SubcatchmentP-1B: Subcat P-1B	Runoff Area=24,871 sf 23.27% Impervious Runoff Depth=6.06" Flow Length=315' Tc=8.2 min CN=78 Runoff=3.66 cfs 0.288 af
SubcatchmentP-1C: Subcat P-1C	Runoff Area=0.337 ac 20.77% Impervious Runoff Depth=5.70" Tc=6.0 min CN=75 Runoff=2.19 cfs 0.160 af
SubcatchmentP-1D: Subcat P-1D	Runoff Area=0.715 ac 12.26% Impervious Runoff Depth=5.70" Tc=6.0 min CN=75 Runoff=4.64 cfs 0.340 af
SubcatchmentP-1E: Subcat P-1E	Runoff Area=0.382 ac 53.49% Impervious Runoff Depth=6.91" Tc=6.0 min CN=85 Runoff=2.90 cfs 0.220 af
SubcatchmentP-1F: Subcat P-1F	Runoff Area=1.697 ac 54.12% Impervious Runoff Depth=7.15" Tc=6.0 min CN=87 Runoff=13.19 cfs 1.012 af
SubcatchmentP-2A: Subcat P-2A	Runoff Area=2.217 ac 8.54% Impervious Runoff Depth=5.70" Tc=6.0 min CN=75 Runoff=14.39 cfs 1.052 af
SubcatchmentP-2B: Subcat P-2B	Runoff Area=2.577 ac 15.70% Impervious Runoff Depth=5.82" Tc=6.0 min CN=76 Runoff=17.04 cfs 1.249 af
SubcatchmentP-2E: Subcat P-2E	Runoff Area=2.368 ac 52.59% Impervious Runoff Depth=7.15" Tc=6.0 min CN=87 Runoff=18.39 cfs 1.411 af
SubcatchmentP-2F: Subcat P-2F	Runoff Area=1.509 ac 38.02% Impervious Runoff Depth=6.67" Tc=6.0 min CN=83 Runoff=11.16 cfs 0.838 af
SubcatchmentP-2G: Subcat P-2G	Runoff Area=1.045 ac 52.81% Impervious Runoff Depth=7.15" Tc=6.0 min CN=87 Runoff=8.12 cfs 0.623 af
SubcatchmentP-2H: Subcat P-2H	Runoff Area=0.555 ac 49.64% Impervious Runoff Depth=7.03" Tc=6.0 min CN=86 Runoff=4.26 cfs 0.325 af
SubcatchmentP-3A: Subcat P-3A	Runoff Area=5.016 ac 0.00% Impervious Runoff Depth=5.09" Flow Length=644' Tc=16.1 min CN=70 Runoff=21.97 cfs 2.127 af
SubcatchmentP-3B: Subcat P-3B	Runoff Area=1.323 ac 0.00% Impervious Runoff Depth=5.33" Tc=6.0 min CN=72 Runoff=8.08 cfs 0.588 af
SubcatchmentP-3C: Subcat P-3C	Runoff Area=0.370 ac 14.94% Impervious Runoff Depth=6.06" Tc=6.0 min CN=78 Runoff=2.54 cfs 0.187 af
SubcatchmentP-3D: Subcat P-3D	Runoff Area=1.714 ac 23.07% Impervious Runoff Depth=6.30" Tc=6.0 min CN=80 Runoff=12.14 cfs 0.900 af
SubcatchmentP-3E: Subcat P-3E	Runoff Area=1.519 ac 41.32% Impervious Runoff Depth=6.79" Tc=6.0 min CN=84 Runoff=11.39 cfs 0.859 af
SubcatchmentP-3F: Subcat P-3F	Runoff Area=1.339 ac 47.44% Impervious Runoff Depth=6.91" Tc=6.0 min CN=85 Runoff=10.16 cfs 0.771 af
SubcatchmentP-4: Subcat P-4	Runoff Area=26,375 sf 10.67% Impervious Runoff Depth=5.70" Tc=6.0 min CN=75 Runoff=3.93 cfs 0.287 af
SubcatchmentP-5: Subcat P-5	Runoff Area=6,874 sf 0.00% Impervious Runoff Depth=5.45" Tc=6.0 min CN=73 Runoff=0.98 cfs 0.072 af
Reach R-01: Routing to wetlands	Avg. Flow Depth=0.37' Max Vel=0.43 fps Inflow=8.08 cfs 0.588 af n=0.400 L=722.0' S=0.1087 '/' Capacity=43.77 cfs Outflow=3.77 cfs 0.588 af

2889-01 - Proposed HydroCAD_rev3

Prepared by Allen & Major	Associates, Inc
HydroCAD® 10.20-2f s/n 02881	© 2022 HydroCAD Software Solutions LLC

Reach R-02: Routing through wetland/swale	Avg. Flow Depth=1.22' Max Vel=0.41 fps Inflow=33.17 cfs 3.930 af n=0.400 L=735.0' S=0.0189 '/' Capacity=24.55 cfs Outflow=15.43 cfs 3.926 af
Reach SW-1: swale	Avg. Flow Depth=0.31' Max Vel=4.29 fps Inflow=4.45 cfs 0.322 af n=0.041 L=252.0' S=0.1052 '/' Capacity=49.36 cfs Outflow=4.38 cfs 0.322 af
Reach SW-2: swale	Avg. Flow Depth=0.25' Max Vel=3.90 fps Inflow=2.90 cfs 0.220 af n=0.041 L=228.0' S=0.1110 '/' Capacity=50.70 cfs Outflow=2.89 cfs 0.220 af
Pond DB-1: detention	Peak Elev=814.77' Storage=71,489 cf Inflow=51.68 cfs 4.588 af Primary=14.80 cfs 4.437 af Secondary=4.63 cfs 0.130 af Outflow=19.43 cfs 4.567 af
Pond dmh01: dmh	Peak Elev=853.00' Inflow=2.89 cfs 0.220 af 12.0" Round Culvert n=0.013 L=12.0' S=0.0100 '/' Outflow=2.89 cfs 0.220 af
Pond dmh05: dmh	Peak Elev=873.72' Inflow=12.66 cfs 0.917 af 15.0" Round Culvert n=0.013 L=97.0' S=0.0351 '/' Outflow=12.66 cfs 0.917 af
Pond dmh20: dmh	Peak Elev=911.73' Inflow=10.71 cfs 0.764 af 15.0" Round Culvert n=0.013 L=205.0' S=0.0119 '/' Outflow=10.71 cfs 0.764 af
Pond dmh21: dmh	Peak Elev=905.51' Inflow=28.38 cfs 2.080 af 24.0" Round Culvert n=0.013 L=190.0' S=0.0100 '/' Outflow=28.38 cfs 2.080 af
Pond dmh23: dmh	Peak Elev=903.12' Inflow=36.17 cfs 2.646 af 30.0" Round Culvert n=0.013 L=27.0' S=0.0130 '/' Outflow=36.17 cfs 2.646 af
Pond dmh25: dmh	Peak Elev=924.27' Inflow=4.10 cfs 0.306 af 12.0" Round Culvert n=0.013 L=97.0' S=0.0697 '/' Outflow=4.10 cfs 0.306 af
Pond dmh50: dmh	Peak Elev=930.99' Inflow=9.75 cfs 0.696 af 15.0" Round Culvert n=0.013 L=102.0' S=0.0799 '/' Outflow=9.75 cfs 0.696 af
Pond dmh51: dmh	Peak Elev=922.74' Inflow=9.75 cfs 0.696 af 15.0" Round Culvert n=0.013 L=127.0' S=0.0780 '/' Outflow=9.75 cfs 0.696 af
Pond dmh52: dmh	Peak Elev=895.86' Inflow=9.75 cfs 0.696 af 15.0" Round Culvert n=0.013 L=62.0' S=0.0802 '/' Outflow=9.75 cfs 0.696 af
Pond dmh53: dmh	Peak Elev=919.22' Inflow=10.92 cfs 0.758 af 18.0" Round Culvert n=0.013 L=31.0' S=0.0465 '/' Outflow=10.92 cfs 0.758 af
Pond dmh55: dmh	Peak Elev=905.83' Inflow=22.55 cfs 1.577 af 24.0" Round Culvert n=0.013 L=72.0' S=0.0374 '/' Outflow=22.55 cfs 1.577 af
Pond dmh56: dmh	Peak Elev=899.94' Inflow=25.03 cfs 1.764 af 30.0" Round Culvert n=0.013 L=20.0' S=0.0100 '/' Outflow=25.03 cfs 1.764 af
Pond dmh57: dmh	Peak Elev=899.07' Inflow=25.03 cfs 1.764 af 30.0" Round Culvert n=0.013 L=103.0' S=0.0080 '/' Outflow=25.03 cfs 1.764 af
Pond dmh58: dmh	Peak Elev=897.96' Inflow=25.03 cfs 1.764 af 30.0" Round Culvert n=0.013 L=278.0' S=0.0080 '/' Outflow=25.03 cfs 1.764 af
Pond dmh59: dmh	Peak Elev=895.82' Inflow=25.03 cfs 1.764 af 30.0" Round Culvert n=0.013 L=82.0' S=0.0091 '/' Outflow=25.03 cfs 1.764 af
Pond dmh60: dmh	Peak Elev=894.75' Inflow=25.03 cfs 1.764 af 30.0" Round Culvert n=0.013 L=258.0' S=0.0115 '/' Outflow=25.03 cfs 1.764 af
Pond dmh61: dmh	Peak Elev=891.80' Inflow=25.03 cfs 1.764 af 30.0" Round Culvert n=0.013 L=278.0' S=0.0100 '/' Outflow=25.03 cfs 1.764 af
Pond dmh62: dmh	Peak Elev=889.86' Inflow=34.78 cfs 2.460 af 30.0" Round Culvert n=0.013 L=62.0' S=0.0248 '/' Outflow=34.78 cfs 2.460 af

2889-01 - Proposed HydroCAD_rev3 Prepared by Allen & Major Associates, Inc HydroCAD® 10.20-2f s/n 02881 © 2022 HydroCAD Software Solutions LLC

Pond dmh69: dmh	Peak Elev=815.89' Inflow=34.78 cfs 2.460 af 30.0" Round Culvert n=0.013 L=29.0' S=0.0338 '/' Outflow=34.78 cfs 2.460 af
Pond DS-1a: detention	Peak Elev=852.92' Storage=20,193 cf Inflow=19.86 cfs 1.459 af Outflow=9.36 cfs 1.459 af
Pond DS-1b: detention	Peak Elev=862.60' Storage=4,545 cf Inflow=3.66 cfs 0.288 af Outflow=0.80 cfs 0.288 af
Pond DS-2a: detention	Peak Elev=902.74' Storage=48,125 cf Inflow=40.27 cfs 2.952 af Outflow=26.32 cfs 2.950 af
Pond DS-2b: detention	Peak Elev=865.14' Storage=10,362 cf Inflow=16.34 cfs 1.177 af Outflow=7.74 cfs 1.176 af
Pond DW-1: House Drywell	Peak Elev=3.50' Storage=1,963 cf Inflow=13.19 cfs 1.012 af Discarded=0.03 cfs 0.075 af Primary=12.66 cfs 0.917 af Outflow=12.69 cfs 0.992 af
Pond DW-10: House Drywell Discarded=0.04 cfs 0.083 af	Peak Elev=3.50' Storage=0.054 af Inflow=16.51 cfs 1.504 af Primary=0.19 cfs 0.217 af Secondary=16.06 cfs 1.182 af Outflow=16.28 cfs 1.482 af
Pond DW-11: House Drywell	Peak Elev=3.50' Storage=0.036 af Inflow=17.04 cfs 1.249 af Discarded=0.03 cfs 0.056 af Primary=16.34 cfs 1.177 af Outflow=16.37 cfs 1.234 af
Pond DW-12: House Drywell	Peak Elev=3.50' Storage=0.036 af Inflow=14.39 cfs 1.052 af Discarded=0.03 cfs 0.056 af Primary=13.79 cfs 0.981 af Outflow=13.82 cfs 1.037 af
Pond DW-2: House Drywell	Peak Elev=3.50' Storage=0.009 af Inflow=4.64 cfs 0.340 af Discarded=0.01 cfs 0.014 af Primary=4.45 cfs 0.322 af Outflow=4.46 cfs 0.336 af
Pond DW-3: House Drywell	Peak Elev=3.50' Storage=0.041 af Inflow=12.14 cfs 0.900 af Discarded=0.03 cfs 0.064 af Primary=11.64 cfs 0.819 af Outflow=11.67 cfs 0.883 af
Pond DW-4: House Drywell	Peak Elev=3.50' Storage=0.050 af Inflow=11.39 cfs 0.859 af Discarded=0.04 cfs 0.080 af Primary=10.92 cfs 0.758 af Outflow=10.95 cfs 0.838 af
Pond DW-5: House Drywell	Peak Elev=3.50' Storage=0.036 af Inflow=11.16 cfs 0.838 af Discarded=0.03 cfs 0.059 af Primary=10.71 cfs 0.764 af Outflow=10.73 cfs 0.823 af
Pond DW-6: House Drywell	Peak Elev=3.50' Storage=0.036 af Inflow=10.16 cfs 0.771 af Discarded=0.03 cfs 0.059 af Primary=9.75 cfs 0.696 af Outflow=9.78 cfs 0.756 af
Pond DW-7: House Drywell	Peak Elev=3.50' Storage=0.045 af Inflow=18.39 cfs 1.411 af Discarded=0.03 cfs 0.076 af Primary=17.67 cfs 1.316 af Outflow=17.70 cfs 1.392 af
Pond DW-8: House Drywell	Peak Elev=3.50' Storage=0.009 af Inflow=4.26 cfs 0.325 af Discarded=0.01 cfs 0.015 af Primary=4.10 cfs 0.306 af Outflow=4.10 cfs 0.321 af
Pond DW-9: House Drywell	Peak Elev=3.50' Storage=0.027 af Inflow=8.12 cfs 0.623 af Discarded=0.02 cfs 0.045 af Primary=7.80 cfs 0.566 af Outflow=7.82 cfs 0.611 af
Pond G1: gabion	Peak Elev=879.75' Storage=443 cf Inflow=26.32 cfs 2.950 af Outflow=26.50 cfs 2.949 af
Pond G2: gabion	Peak Elev=811.55' Storage=126 cf Inflow=14.80 cfs 4.437 af Outflow=14.81 cfs 4.437 af
Link SP1: STUDY POINT #1	Inflow=26.70 cfs 3.306 af Primary=26.70 cfs 3.306 af
Link SP2: STUDY POINT #2	Inflow=22.92 cfs 5.102 af Primary=22.92 cfs 5.102 af
Link SP3: STUDY POINT #3	Inflow=22.63 cfs 5.155 af Primary=22.63 cfs 5.155 af

Link SP4: STUDY POINT #4

Link SP5: STUDY POINT #5

Inflow=3.93 cfs 0.287 af Primary=3.93 cfs 0.287 af

Inflow=0.98 cfs 0.072 af Primary=0.98 cfs 0.072 af

Total Runoff Area = 29.185 ac Runoff Volume = 14.814 af Average Runoff Depth = 6.09" 76.01% Pervious = 22.184 ac 23.99% Impervious = 7.001 ac

Summary for Subcatchment P-1A: Subcat P-1A

[47] Hint: Peak is 402% of capacity of segment #3

Runoff = 16.51 cfs @ 12.18 hrs, Volume= 1.504 af, Depth= 5.70" Routed to Pond DW-10 : House Drywell

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=8.72"

_	Area	(ac) (CN D	escription		
	0.	168	55 W	oods, Good	, HSG B	
	0.	059	98 R	oofs, HSG B		
	0.	085	98 P	aved parking	a. HSG B	
	0.			75% Ġrass c		. HSG B
				75% Grass o	,	
		-		oods, Good	,	,
				aved parking	,	
				oofs, HSG C		
-	-			eighted Ave		
		599		2.02% Pervice	0	
		599 569	-			
	0.	509	1	7.98% Imper	vious Area	
	Та	Longth	Clas		Conosity	Description
	Tc (main)	Length				Description
_	(min)	(feet)		/ (/	(cfs)	
	9.8	55	0.167	0 0.09		Sheet Flow,
						Woods: Dense underbrush n= 0.800 P2= 3.28"
	1.1	105	0.050	0 1.57		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	2.4	622	0.028	4.24	4.11	Trap/Vee/Rect Channel Flow,
						Bot.W=1.00' D=0.25' Z= 3.0 & 20.0 '/' Top.W=6.75'
						n= 0.016 Asphalt, rough
-	13 3	782	Total			· · · ·

13.3 782 Total

Summary for Subcatchment P-1B: Subcat P-1B

Runoff = 3.66 cfs @ 12.12 hrs, Volume= 0.288 af, Depth= 6.06" Routed to Pond DS-1b : detention

A	Area (sf)	CN	Description		
	4,342	98	Paved park	ing, HSG C	
	1,445		Paved park		
	3,282	61	>75% Gras	s cover, Go	bod, HSG B
	13,797	74	>75% Gras	s cover, Go	bod, HSG C
	2,004	70	Woods, Go	od, HSG C	
	24,871	78	Weighted A	verage	
	19,083		76.73% Pe	rvious Area	
	5,787		23.27% Imp	pervious Ar	ea
Тс	Length	Slope	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft	,	(cfs)	Beschpiton
6.6	. ,	0.0960	/ (/ /	(/	Sheet Flow, A-B
0.0		0.000			Grass: Bermuda $n= 0.410$ P2= 3.28"
1.4	183	0.0960) 2.17		Shallow Concentrated Flow, B-C
					Short Grass Pasture Kv= 7.0 fps
0.2	82	0.0840	5.88		Shallow Concentrated Flow, C-D
					Paved Kv= 20.3 fps
8.2	315	Total			

Summary for Subcatchment P-1C: Subcat P-1C

Runoff = 2.19 cfs @ 12.09 hrs, Volume= 0.160 af, Depth= 5.70" Routed to Link SP1 : STUDY POINT #1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=8.72"

Area (ac)	CN	Description				
0.002	98	Paved parking, HSG C				
0.068	98	Paved parking, HSG B				
0.111	61	>75% Grass cover, Good, HSG B				
0.156	74	>75% Grass cover, Good, HSG C				
0.337	75	Weighted Average				
0.267		79.23% Pervious Area				
0.070		20.77% Impervious Area				
Tc Leng	jth S	Slope Velocity Capacity Description				
(min) (fee	et)	(ft/ft) (ft/sec) (cfs)				
6.0		Direct Entry, TR-55 MIN				
	Summary for Subcatchment P-1D: Subcat P-1D					

0.340 af, Depth= 5.70"

Runoff = 4.64 cfs @ 12.09 hrs, Volume= Routed to Pond DW-2 : House Drywell

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=8.72"

Area (ac)	CN	Description	
0.105	61	>75% Grass cover, Good, HSG B	
0.060	98	Paved parking, HSG B	
0.027	98	Paved parking, HSG C	
0.523	74	>75% Grass cover, Good, HSG C	
0.715	75	Weighted Average	_
0.628		87.74% Pervious Area	
0.088		12.26% Impervious Area	
Tc Lenç (min) (fe	,	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)	
6.0		Direct Entry,	

Summary for Subcatchment P-1E: Subcat P-1E

Runoff = 2.90 cfs @ 12.09 hrs, Volume= 0.220 af, Depth= 6.91" Routed to Reach SW-2 : swale

Area (ac)	CN	Description
0.040	61	>75% Grass cover, Good, HSG B
0.037	98	Paved parking, HSG B
0.168	98	Paved parking, HSG C
0.138	74	>75% Grass cover, Good, HSG C
0.382	85	Weighted Average
0.178		46.51% Pervious Area
0.204		53.49% Impervious Area
- ·		
Tc Leng		Slope Velocity Capacity Description
(min) (fee	et)	(ft/ft) (ft/sec) (cfs)
6.0		Direct Entry, tr55 min

Summary for Subcatchment P-1F: Subcat P-1F

Runoff = 13.19 cfs @ 12.09 hrs, Volume= 1.012 af, Depth= 7.15" Routed to Pond DW-1 : House Drywell

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=8.72"

Area	(ac)	CN	Desc	cription		
0.	.779	74	>759	% Grass co	over, Good	, HSG C
0.	.457	98	Root	fs, HSG C		
0.	.461	98	Pave	ed parking,	, HSG C	
1.	.697	87	Weig	ghted Aver	age	
0.	.779		45.88% Pervious Area			
0.	0.919 54.12% Impervious Area			2% Imperv	/ious Area	
_						
Tc	5		Slope	Velocity	Capacity	Description
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
6.0						Direct Entry, tr55 min

Summary for Subcatchment P-2A: Subcat P-2A

1.052 af, Depth= 5.70"

Runoff = 14.39 cfs @ 12.09 hrs, Volume= Routed to Pond DW-12 : House Drywell

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=8.72"

	Area (ac)	CN	Description					
	0.188	98	Roofs, HSG C					
	0.001	98	Paved parking, HSG C					
	0.636	70	Woods, Good, HSG C					
	1.391	74	>75% Grass cover, Good, HSG C					
	2.217	75	Weighted Average					
	2.027		01.46% Pervious Area					
	0.189		8.54% Impervious Area					
	Tc Len	gth S	Slope Velocity Capacity Description					
((min) (fe	et)	(ft/ft) (ft/sec) (cfs)					

6.0

Direct Entry,

Summary for Subcatchment P-2B: Subcat P-2B

Runoff = 17.04 cfs @ 12.09 hrs, Volume= 1.249 af, Depth= 5.82" Routed to Pond DW-11 : House Drywell

Area (ac)	CN	Description	
1.178	74	>75% Grass cover, Goo	d, HSG C
0.687	70	Woods, Good, HSG C	
0.307	65	Brush, Good, HSG C	
0.021	98	Paved parking, HSG C	
0.384	98	Roofs, HSG C	
2.577	76	Weighted Average	
2.172		84.30% Pervious Area	
0.405		15.70% Impervious Area	
Tc Leng (min) (fe		Slope Velocity Capacity (ft/ft) (ft/sec) (cfs	
6.0			Direct Entry,

Summary for Subcatchment P-2E: Subcat P-2E

Runoff = 18.39 cfs @ 12.09 hrs, Volume= 1.411 af, Depth= 7.15" Routed to Pond DW-7 : House Drywell

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=8.72"

Area (ac) CN Description
1.123 74 >75% Grass cover, Good, HSG C
0.668 98 Roofs, HSG C
0.577 98 Paved parking, HSG C
2.368 87 Weighted Average
1.123 47.41% Pervious Area
1.245 52.59% Impervious Area
Tc Length Slope Velocity Capacity Description
(min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 Direct Entry,
Summary for Subcatchment P-2F: Subcat P-2F
Runoff = 11.16 cfs @ 12.09 hrs, Volume= 0.838 af, Depth= 6.67" Routed to Pond DW-5 : House Drywell
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=8.72"
Area (ac) CN Description
0.935 74 >75% Grass cover, Good, HSG C
0.289 98 Roofs, HSG C
0.284 98 Paved parking, HSG C
1.509 83 Weighted Average
0.935 61.98% Pervious Area
0.574 38.02% Impervious Area
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 Direct Entry, tr55 min
Summary for Subcatchment P-2G: Subcat P-2G
Runoff = 8.12 cfs @ 12.09 hrs, Volume= 0.623 af, Depth= 7.15" Routed to Pond DW-9 : House Drywell
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=8.72"
Area (ac) CN Description
0.493 74 >75% Grass cover, Good, HSG C
0.206 98 Roofs, HSG C
0.346 98 Paved parking, HSG C
1.045 87 Weighted Average
0.493 47.19% Pervious Area
0.552 52.81% Impervious Area
Tc Length Slope Velocity Capacity Description

				Direct Entry	fr
(feet)	(ft/ft)	(ft/sec)	(cfs)		
Length	Slope	Velocity	Capacity	Description	

(min)

6.0

Direct Entry, tr55 min

Summary for Subcatchment P-2H: Subcat P-2H

Runoff = 4.26 cfs @ 12.09 hrs, Volume= 0.325 af, Depth= 7.03" Routed to Pond DW-8 : House Drywell

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=8.72"

(ac)	CN	Description	Description						
280	74	>75% Grass (75% Grass cover, Good, HSG C						
058	98	Roofs, HSG ()						
217	98	Paved parking	g, HSG C						
555	86	Weighted Ave	Veighted Average						
280		50.36% Pervious Area							
276		49.64% Impervious Area							
0				Description					
(fee	t)	(ft/ft) (ft/sec)	(cfs)						
				Direct Entry, tr55 min					
(280 058 217 555 280 276 Lengt	280 74 058 98 217 98 555 86 280 276	280 74 >75% Grass of 058 98 Roofs, HSG Of 217 98 Paved parking 555 86 Weighted Ave 280 50.36% Pervior 276 49.64% Impervior 276 Length Slope Velocity	28074>75% Grass cover, Good05898Roofs, HSG C21798Paved parking, HSG C55586Weighted Average28050.36% Pervious Area27649.64% Impervious AreaLengthSlopeVelocity					

Summary for Subcatchment P-3A: Subcat P-3A

Runoff = 21.97 cfs @ 12.22 hrs, Volume= Routed to Pond DB-1 : detention 2.127 af, Depth= 5.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=8.72"

Area	ı (ac)	CN	Desc	ription		
2	2.591	74	>75%	6 Grass co	over, Good	, HSG C
0).847	70	Woo	ds, Good,	HSG C	
1	.578	65	Brus	h, Good, H	ISG C	
5	5.016	70	Weid	hted Aver	ade	
5	5.016			, 00% Pervi		
Тс	Length	n S	Slope	Velocity	Capacity	Description
(min)	(feet))	(ft/ft)	(ft/sec)	(cfs)	
12.7	50	0.0	0180	0.07		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.28"
1.0	91	0.0	0850	1.46		Shallow Concentrated Flow, B-C
						Woodland Kv= 5.0 fps
1.1	204	0.	1800	2.97		Shallow Concentrated Flow, C-D
						Short Grass Pasture Kv= 7.0 fps
1.3	299	0.3	3000	3.83		Shallow Concentrated Flow, D-E
						Short Grass Pasture Kv= 7.0 fps
16.1	644	Тс	otal			

Summary for Subcatchment P-3B: Subcat P-3B

Runoff = 8.08 cfs @ 12.09 hrs, Volume= Routed to Reach R-01 : Routing to wetlands 0.588 af, Depth= 5.33"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=8.72"

Area	a (ac)	CN	Description
0	0.000	98	Roofs, HSG C
C).172	65	Brush, Good, HSG C
C).273	70	Woods, Good, HSG C
C).878	74	>75% Grass cover, Good, HSG C
1	1.323	72	Weighted Average
1	1.323		100.00% Pervious Area
C	0.000		0.00% Impervious Area

Prepared by Allen & Majo	r Associates, Inc
HydroCAD® 10.20-2f s/n 0288	1 © 2022 HydroCAD Software Solutions LLC

Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)				
6.0 Direct Entry,				
Summary for Subcatchment P-3C: Subcat P-3C				
Runoff = 2.54 cfs @ 12.09 hrs, Volume= 0.187 af, Depth= 6.06" Routed to Pond dmh56 : dmh				
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=8.72"				
Area (ac) CN Description				
0.315 74 >75% Grass cover, Good, HSG C 0.055 98 Paved parking, HSG C				
0.37078Weighted Average0.31585.06% Pervious Area0.05514.94% Impervious Area				
Tc Length Slope Velocity Capacity Description				
(min) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, tr55 min				
Summary for Subcatchment P-3D: Subcat P-3D				
Runoff = 12.14 cfs @ 12.09 hrs, Volume= 0.900 af, Depth= 6.30" Routed to Pond DW-3 : House Drywell				
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=8.72"				
Area (ac) CN Description				
1.319 74 >75% Grass cover, Good, HSG C 0.136 98 Roofs, HSG C				
0.260 98 Paved parking, HSG C				
1.71480Weighted Average1.31976.93% Pervious Area				
0.395 23.07% Impervious Area				
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)				
6.0 Direct Entry, tr-55 min				
Summary for Subcatchment P-3E: Subcat P-3E				
Runoff = 11.39 cfs @ 12.09 hrs, Volume= 0.859 af, Depth= 6.79" Routed to Pond DW-4 : House Drywell				
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=8.72"				
Area (ac) CN Description				
0.891 74 >75% Grass cover, Good, HSG C 0.301 98 Roofs, HSG C 0.327 98 Paved parking, HSG C				
1.51984Weighted Average0.89158.68% Pervious Area0.62841.32% Impervious Area				
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)				
6.0 Direct Entry, TR-55 MIN				

Summary for Subcatchment P-3F: Subcat P-3F

0.771 af, Depth= 6.91" Runoff = 10.16 cfs @ 12.09 hrs, Volume= Routed to Pond DW-6 : House Drywell

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=8.72"

Area (ac)	CN	Description	Description						
0.704	74	>75% Grass cover, Goo	d, HSG C						
0.290	98	Roofs, HSG C							
0.345	98	Paved parking, HSG C							
1.339	85	Weighted Average							
0.704		52.56% Pervious Area							
0.635		47.44% Impervious Area							
Tc Len (min) (fe	gth set)	Slope Velocity Capacity (ft/ft) (ft/sec) (cfs							
6.0		· · · · · ·	Direct Entry, TR-55 MIN						

Summary for Subcatchment P-4: Subcat P-4

3.93 cfs @ 12.09 hrs, Volume= 0.287 af, Depth= 5.70" Runoff = Routed to Link SP4 : STUDY POINT #4

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=8.72"

Area (sf)	CN	Description			
56	61	>75% Grass cover, Good, HSG B			
14,249	74	>75% Grass cover, Good, HSG C			
9,257	70	Woods, Good, HSG C			
2,814	98	Paved parking, HSG C			
26,375	75	Weighted Average			
23,561		89.33% Pervious Area			
2,814		10.67% Impervious Area			
Tc Length (min) (feet)	Slor (ft/				

6.0

Direct Entry, tr55 min

Summary for Subcatchment P-5: Subcat P-5

Runoff 0.98 cfs @ 12.09 hrs, Volume= 0.072 af, Depth= 5.45" = Routed to Link SP5 : STUDY POINT #5

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=8.72"

	Area (sf) (CN	Description			
	2,401	1	70	Noods, Good, HSG C			
	4,473	3	74	>75% Gras	s cover, Go	od, HSG C	
	6,874	1	73	Weighted A	verage		
	6,874	1		100.00% Pe	ervious Are	а	
(r	Tc Lengt nin) (fee		Slope (ft/ft)		Capacity (cfs)	Description	n
	5.0					Direct Entry,	try, TR-55 Min.
	5.0	0	Total,	Increased t	o minimum	Tc = 6.0 min	in

Summary for Reach R-01: Routing to wetlands

A subcatchment performs runoff calculations, including the associated Tc anc CN determinations. It does not have any facility for routing an inflow hydrograph from another source. However, a reach may be used to perform this type of specialized routing.

This reach demonstrates a procedure for performing a shallow concetrated flow routing through woods. In this case, the "reach" is defined as a channel with very low side slopes. The Manning's value of 0.40 is selected from the table of sheet flow roughness coefficients, which is comparable to the Manning's value for "woods with light underbrush".

0.00% Impervious, Inflow Depth = 5.33" for 100-year event Inflow Area = 1.323 ac, 8.08 cfs @ 12.09 hrs, Volume= 0.588 af Inflow = 0.588 af, Atten= 53%, Lag= 11.2 min Outflow = 3.77 cfs @ 12.28 hrs, Volume= Routed to Link SP3 : STUDY POINT #3 Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 0.43 fps, Min. Travel Time= 28.0 min Avg. Velocity = 0.15 fps, Avg. Travel Time= 80.8 min Peak Storage= 6,328 cf @ 12.28 hrs Average Depth at Peak Storage= 0.37', Surface Width= 42.16' Bank-Full Depth= 1.00' Flow Area= 55.0 sf, Capacity= 43.77 cfs 5.00' x 1.00' deep channel, n= 0.400 Sheet flow: Woods+light brush Side Slope Z-value = 50.0 '/' Top Width = 105.00' Length= 722.0' Slope= 0.1087 '/' Inlet Invert= 889.50', Outlet Invert= 811.00' ‡

Summary for Reach R-02: Routing through wetland/swale

A subcatchment performs runoff calculations, including the associated Tc anc CN determinations. It does not have any facility for routing an inflow hydrograph from another source. However, a reach may be used to perform this type of specialized routing.

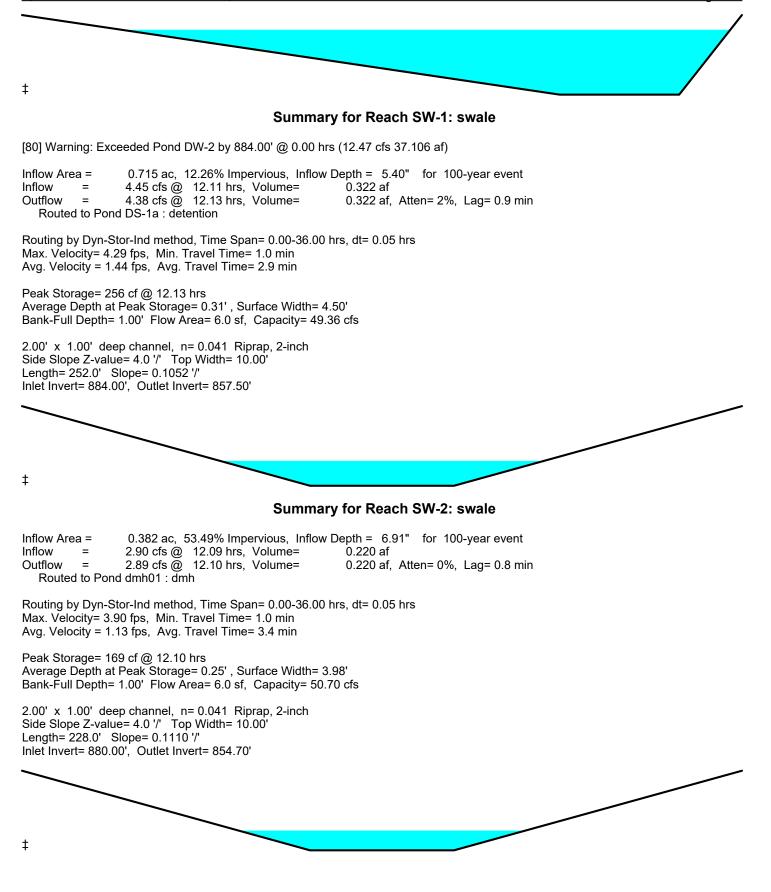
This reach demonstrates a procedure for performing a shallow concetrated flow routing through the wooded wetland/swale adjacent to the stone wall. In this case, the "reach" is defined as a channel with low side slopes. The Manning's value of 0.40 is selected from the table of sheet flow roughness coefficients, which is comparable to the Manning's value for "woods with light underbrush".

[55] Hint: Peak inflow is 135% of Manning's capacity [80] Warning: Exceeded Pond DW-12 by 877.70' @ 0.00 hrs (12.43 cfs 36.978 af) [80] Warning: Exceeded Pond G1 by 0.20' @ 0.00 hrs (5.87 cfs 4.893 af)

 Inflow Area =
 7.693 ac, 36.86% Impervious, Inflow Depth =
 6.13" for 100-year event

 Inflow =
 33.17 cfs @
 12.30 hrs, Volume=
 3.930 af

 Outflow =
 15.43 cfs @
 12.52 hrs, Volume=
 3.926 af, Atten= 53%, Lag= 13.5 min


 Routed to Link SP2 : STUDY POINT #2
 3.926 af, Atten= 53%, Lag= 13.5 min
 3.926 af, Atten= 53%, Lag= 13.5 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Max. Velocity= 0.41 fps, Min. Travel Time= 29.6 min Avg. Velocity = 0.17 fps, Avg. Travel Time= 72.0 min

Peak Storage= 27,416 cf @ 12.52 hrs Average Depth at Peak Storage= 1.22', Surface Width= 50.98' Bank-Full Depth= 1.50' Flow Area= 52.7 sf, Capacity= 24.55 cfs

10.00' x 1.50' deep channel, n= 0.400 Sheet flow: Woods+light brush Side Slope Z-value= $30.0 \ 3.5$ '/' Top Width= 60.25' Length= 735.0' Slope= 0.0189 '/' Inlet Invert= 877.70', Outlet Invert= 863.80'

2889-01 - Proposed HydroCAD_rev3 Prepared by Allen & Major Associates, Inc HydroCAD® 10.20-2f s/n 02881 © 2022 HydroCAD Software Solutions LLC

Summary for Pond DB-1: detention

Cummary is	
Inflow Area = 9.959 ac, 17.21% Impervious, Inflow De	enth = 5.53" for 100-year event
	4.588 af
	4.567 af, Atten= 62%, Lag= 23.1 min
	4.437 af
Routed to Pond G2 : gabion	4.457 al
	0.130 af
Routed to Link SP3 : STUDY POINT #3	0.150 al
Rouled to LINK SP3. STODY POINT #5	
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs	s. dt= 0.05 brs
Peak Elev= 814.77' @ 12.52 hrs Surf.Area= 22,468 sf Stor	
Flood Elev= 816.00' Surf.Area= 24,900 sf Storage= 100,50	
1000 Elev - 010.00 - 001. Alea - 24,000 31 - 001age - 100,00	
Plug-Flow detention time= 80.4 min calculated for 4.561 af (9	99% of inflow)
Center-of-Mass det. time= 78.4 min (893.8 - 815.4)	
Volume Invert Avail.Storage Storage Description	1
	a (Irregular)Listed below (Recalc)
······································	(····· ·····) (()
Elevation Surf.Area Perim. Inc.Store	Cum.Store Wet.Area
(feet) (sq-ft) (feet) (cubic-feet)	(cubic-feet) (sq-ft)
811.00 15,556 576.0 0	0 15,556
812.00 17,303 594.0 16,422	16,422 17,331
813.00 19,115 613.0 18,201	34,623 19,253
814.00 20,984 632.0 20,042	54,665 21,236
815.00 22,910 651.0 21,940	76,605 23,279
816.00 24,900 670.0 23,898	100,504 25,383
010.00 24,000 010.0 20,000	100,004 20,000
Device Routing Invert Outlet Devices	
#1 Primary 811.00' 18.0" Round Culvert L=	= 32 0' Ke= 0.500
	00' / 810.30' S= 0.0219 '/' Cc= 0.900
	smooth interior, Flow Area= 1.77 sf
	(2yr) X 2.00 C= 0.600 Limited to weir flow at low heads
	ce (10yr) X 2.00 C= 0.600 Limited to weir flow at low heads
	Top of Structure C= 0.600 Limited to weir flow at low heads
	Broad-Crested Rectangular Weir
Head (feet) 0 20 0 40 0	0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50
5.00 5.50	
	4 2.70 2.69 2.68 2.68 2.66 2.64 2.64 2.64 2.65 2.65 2.66 2.66 2.68
2.70 2.74	
Primary OutFlow Max=14.79 cfs @ 12.52 hrs HW=814.77	TW=811.55' (Dvnamic Tailwater)
1=Culvert (Inlet Controls 14.79 cfs @ 8.37 fps)	
-2=(2) 8" Orifice (2yr) (Passes < 6.04 cfs potential flow)	()
-3=(2) 12" Orifice (10yr) (Passes < 11.65 cfs potential f	
-4=24" Top of Structure (Passes < 24.14 cfs potential f	
	,
Secondary OutFlow Max=4.56 cfs @ 12.52 hrs HW=814.77	7' TW=0.00' (Dynamic Tailwater)
5=Broad-Crested Rectangular Weir (Weir Controls 4.56	cfs @ 1.54 fps)
Summary	for Pond dmh01: dmh
Inflow Area = 0.382 ac, 53.49% Impervious, Inflow De	epth = 6.91" for 100-year event
	0.220 af
	0.220 af, Atten= 0%, Lag= 0.0 min
	0.220 af
Routed to Pond DS-1a : detention	

Routed to Pond DS-1a : detention

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 853.00' @ 12.35 hrs Flood Elev= 855.31'

Device	Routing	Invert	Outlet Devices
#1	Primary	849.34'	12.0" Round Culvert L= 12.0' Ke= 0.500
	-		Inlet / Outlet Invert= 849.34' / 849.22' S= 0.0100 '/' Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.00 cfs @ 12.10 hrs HW=851.28' TW=851.39' (Dynamic Tailwater)

Summary for Pond dmh05: dmh

[80] Warning: Exceeded Pond DW-1 by 870.18' @ 12.10 hrs (12.39 cfs 36.781 af)

 Inflow Area =
 1.697 ac, 54.12% Impervious, Inflow Depth =
 6.48" for 100-year event

 Inflow =
 12.66 cfs @
 12.11 hrs, Volume=
 0.917 af

 Outflow =
 12.66 cfs @
 12.11 hrs, Volume=
 0.917 af, Atten= 0%, Lag= 0.0 min

 Primary =
 12.66 cfs @
 12.11 hrs, Volume=
 0.917 af, Atten= 0%, Lag= 0.0 min

 Routed to Pond DS-1a : detention
 0.917 af
 0.917 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 873.72' @ 12.11 hrs Flood Elev= 883.10'

_ .. . _

Device	Routing	Invert	Outlet Devices
#1	Primary	868.52'	15.0" Round Culvert L= 97.0' Ke= 0.500 Inlet / Outlet Invert= 868.52' / 865.12' S= 0.0351 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=12.38 cfs @ 12.11 hrs HW=873.54' TW=851.54' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 12.38 cfs @ 10.09 fps)

Summary for Pond dmh20: dmh

[58] Hint: Peaked 4.12' above defined flood level [80] Warning: Exceeded Pond DW-5 by 908.19' @ 12.15 hrs (12.66 cfs 37.501 af)

 Inflow Area =
 1.509 ac, 38.02% Impervious, Inflow Depth =
 6.08"
 for 100-year event

 Inflow =
 10.71 cfs @
 12.11 hrs, Volume=
 0.764 af

 Outflow =
 10.71 cfs @
 12.11 hrs, Volume=
 0.764 af, Atten= 0%, Lag= 0.0 min

 Primary =
 10.71 cfs @
 12.11 hrs, Volume=
 0.764 af

 Routed to Pond dmh21 : dmh
 0.764 af
 0.764 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 911.73' @ 12.14 hrs Flood Elev= 907.61'

Device	Routing	Invert	Outlet Devices
#1	Primary	902.74'	15.0" Round Culvert L= 205.0' Ke= 0.500 Inlet / Outlet Invert= 902.74' / 900.30' S= 0.0119 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=9.06 cfs @ 12.11 hrs HW=910.63' TW=905.32' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 9.06 cfs @ 7.38 fps)

Summary for Pond dmh21: dmh

[58] Hint: Peaked 0.27' above defined flood level [80] Warning: Exceeded Pond DW-7 by 901.85' @ 12.15 hrs (12.62 cfs 37.436 af)

Inflow Area =		3.876 ac, 4	16.92% Impervious,	Inflow Depth = 6.	44" for 100-year event
Inflow	=	28.38 cfs @	12.11 hrs, Volume	e 2.080 af	-
Outflow	=	28.38 cfs @	12.11 hrs, Volume	e 2.080 af,	, Atten= 0%, Lag= 0.0 min
Primary	=	28.38 cfs @	12.11 hrs, Volume	e= 2.080 af	
Routed to Pond dmh23 : dmh					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 905.51' @ 12.13 hrs Flood Elev= 905.24'

2889-01 - Proposed HydroCAD_rev3 Prepared by Allen & Major Associates, Inc HydroCAD® 10.20-2f s/n 02881 © 2022 HydroCAD Software Solutions LLC

Device Routing Invert Outlet Devices
#1 Primary 899.55' 24.0" Round Culvert L= 190.0' Ke= 0.500 Inlet / Outlet Invert= 899.55' / 897.65' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf
Primary OutFlow Max=25.93 cfs @ 12.11 hrs HW=905.32' TW=901.22' (Dynamic Tailwater) □ 1=Culvert (Outlet Controls 25.93 cfs @ 8.25 fps)
Summary for Pond dmh23: dmh
[80] Warning: Exceeded Pond DW-9 by 899.62' @ 12.35 hrs (12.60 cfs 37.396 af)
Inflow Area = 4.921 ac, 48.17% Impervious, Inflow Depth = 6.45" for 100-year event Inflow = 36.17 cfs @ 12.11 hrs, Volume= 2.646 af Outflow = 36.17 cfs @ 12.11 hrs, Volume= 2.646 af, Atten= 0%, Lag= 0.0 min Primary = 36.17 cfs @ 12.11 hrs, Volume= 2.646 af Routed to Pond DS-2a : detention
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 903.12' @ 12.35 hrs Flood Elev= 910.71'
Device Routing Invert Outlet Devices
#1 Primary 897.55' 30.0" Round Culvert L= 27.0' Ke= 0.500 Inlet / Outlet Invert= 897.55' / 897.20' S= 0.0130 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=29.05 cfs @ 12.11 hrs HW=901.22' TW=899.71' (Dynamic Tailwater) └──1=Culvert (Inlet Controls 29.05 cfs @ 5.92 fps)
Summary for Pond dmh25: dmh
[80] Warning: Exceeded Pond DW-8 by 922.60' @ 0.00 hrs (12.74 cfs 37.911 af)
Inflow Area = 0.555 ac, 49.64% Impervious, Inflow Depth = 6.62" for 100-year event Inflow = 4.10 cfs @ 12.11 hrs, Volume= 0.306 af Outflow = 4.10 cfs @ 12.11 hrs, Volume= 0.306 af, Atten= 0%, Lag= 0.0 min Primary = 4.10 cfs @ 12.11 hrs, Volume= 0.306 af Routed to Pond DS-2a : detention
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 924.27' @ 12.11 hrs Flood Elev= 930.54'
Device Routing Invert Outlet Devices
#1 Primary 922.60' 12.0" Round Culvert L= 97.0' Ke= 0.500 Inlet / Outlet Invert= 922.60' / 915.84' S= 0.0697 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
Primary OutFlow Max=4.01 cfs @ 12.11 hrs HW=924.22' TW=899.71' (Dynamic Tailwater) 1=Culvert (Inlet Controls 4.01 cfs @ 5.10 fps)
Summary for Pond dmh50: dmh
[80] Warning: Exceeded Pond DW-6 by 927.65' @ 0.00 hrs (12.78 cfs 38.016 af)
Inflow Area = 1.339 ac, 47.44% Impervious, Inflow Depth = 6.24" for 100-year event Inflow = 9.75 cfs @ 12.11 hrs, Volume= 0.696 af Outflow = 9.75 cfs @ 12.11 hrs, Volume= 0.696 af, Atten= 0%, Lag= 0.0 min Primary = 9.75 cfs @ 12.11 hrs, Volume= 0.696 af Routed to Pond dmh51 : dmh
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 930.99' @ 12.11 hrs Flood Elev= 933.94'

2889-01 - Proposed HydroCAD_rev3 Prepared by Allen & Major Associates, Inc HydroCAD® 10.20-2f s/n 02881 © 2022 HydroCAD Software Solutions LLC

Device Routing Invert Outlet Devices					
#1 Primary 927.65' 15.0" Round Culvert L= 102.0' Ke= 0.500 Inlet / Outlet Invert= 927.65' / 919.50' S= 0.0799 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf					
Primary OutFlow Max=9.54 cfs @ 12.11 hrs HW=930.88' TW=922.63' (Dynamic Tailwater) □ 1=Culvert (Inlet Controls 9.54 cfs @ 7.77 fps)					
Summary for Pond dmh51: dmh					
Inflow Area = 1.339 ac, 47.44% Impervious, Inflow Depth = 6.24" for 100-year event Inflow = 9.75 cfs @ 12.11 hrs, Volume= 0.696 af Outflow = 9.75 cfs @ 12.11 hrs, Volume= 0.696 af, Atten= 0%, Lag= 0.0 min Primary = 9.75 cfs @ 12.11 hrs, Volume= 0.696 af Routed to Pond dmh52 : dmh					
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 922.74' @ 12.11 hrs Flood Elev= 924.04'					
Device Routing Invert Outlet Devices					
#1 Primary 919.40' 15.0" Round Culvert L= 127.0' Ke= 0.500 Inlet / Outlet Invert= 919.40' / 909.50' S= 0.0780 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf					
Primary OutFlow Max=9.54 cfs @ 12.11 hrs HW=922.63' TW=895.75' (Dynamic Tailwater) 1=Culvert (Inlet Controls 9.54 cfs @ 7.77 fps)					
Summary for Pond dmh52: dmh					
Inflow Area = 1.339 ac, 47.44% Impervious, Inflow Depth = 6.24" for 100-year event Inflow = 9.75 cfs @ 12.11 hrs, Volume= 0.696 af Outflow = 9.75 cfs @ 12.11 hrs, Volume= 0.696 af, Atten= 0%, Lag= 0.0 min Primary = 9.75 cfs @ 12.11 hrs, Volume= 0.696 af Routed to Pond dmh62 : dmh					
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 895.86' @ 12.11 hrs Flood Elev= 914.00'					
Device Routing Invert Outlet Devices					
#1 Primary 892.52' 15.0" Round Culvert L= 62.0' Ke= 0.500 Inlet / Outlet Invert= 892.52' / 887.55' S= 0.0802 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf					
Primary OutFlow Max=9.54 cfs @ 12.11 hrs HW=895.75' TW=889.77' (Dynamic Tailwater) □ 1=Culvert (Inlet Controls 9.54 cfs @ 7.77 fps)					
Summary for Pond dmh53: dmh					
[80] Warning: Exceeded Pond DW-4 by 916.83' @ 0.00 hrs (12.70 cfs 37.793 af)					
Inflow Area = 1.519 ac, 41.32% Impervious, Inflow Depth = 5.99" for 100-year event Inflow = 10.92 cfs @ 12.11 hrs, Volume= 0.758 af Outflow = 10.92 cfs @ 12.11 hrs, Volume= 0.758 af, Atten= 0%, Lag= 0.0 min Primary = 10.92 cfs @ 12.11 hrs, Volume= 0.758 af Routed to Pond dmh55 : dmh					
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 919.22' @ 12.11 hrs Flood Elev= 921.46'					

Device	Routing	Invert	Outlet Devices	
#1	Primary	916.83'	18.0" Round Culvert L= 31.0' Ke= 0.500	
			Inlet / Outlet Invert= 916.83' / 915.39' S= 0.0465 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf	

Primary OutFlow Max=10.67 cfs @ 12.11 hrs HW=919.15' TW=905.73' (Dynamic Tailwater) -1=Culvert (Inlet Controls 10.67 cfs @ 6.04 fps)

Summary for Pond dmh55: dmh

[80] Warning: Exceeded Pond DW-3 by 902.61' @ 0.00 hrs (12.61 cfs 37.499 af)

 Inflow Area =
 3.233 ac, 31.64% Impervious, Inflow Depth =
 5.85" for 100-year event

 Inflow =
 22.55 cfs @
 12.11 hrs, Volume=
 1.577 af

 Outflow =
 22.55 cfs @
 12.11 hrs, Volume=
 1.577 af, Atten= 0%, Lag= 0.0 min

 Primary =
 22.55 cfs @
 12.11 hrs, Volume=
 1.577 af, Atten= 0%, Lag= 0.0 min

 Routed to Pond dmh56 : dmh
 100 min
 1.577 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 905.83' @ 12.11 hrs Flood Elev= 911.86'

Device	Routing	Invert	Outlet Devices
#1	Primary	902.61'	24.0" Round Culvert L= 72.0' Ke= 0.500
			Inlet / Outlet Invert= 902.61' / 899.92' S= 0.0374 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=22.03 cfs @ 12.11 hrs HW=905.73' TW=899.79' (Dynamic Tailwater) 1=Culvert (Inlet Controls 22.03 cfs @ 7.01 fps)

Summary for Pond dmh56: dmh

Inflow Area =		3.604 ac, 2	9.93% Imperviou	s, Inflow Depth	= 5.87"	for 100-year event
Inflow	=	25.03 cfs @	12.11 hrs, Volur	ne= 1.7	64 af	-
Outflow	=	25.03 cfs @	12.11 hrs, Volur	ne= 1.7	64 af, Atte	en= 0%, Lag= 0.0 min
Primary	=	25.03 cfs @	12.11 hrs, Volur	ne= 1.7	64 af	
Routed to Pond dmh57 : dmh						

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 899.94' @ 12.14 hrs Flood Elev= 908.47'

Device	Routing	Invert	Outlet Devices
#1	Primary	896.80'	30.0" Round Culvert L= 20.0' Ke= 0.500 Inlet / Outlet Invert= 896.80' / 896.60' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf

Primary OutFlow Max=20.85 cfs @ 12.11 hrs HW=899.78' TW=899.00' (Dynamic Tailwater) 1=Culvert (Inlet Controls 20.85 cfs @ 4.25 fps)

Summary for Pond dmh57: dmh

Inflow Area =		3.604 ac, 2	9.93% Impervious,	, Inflow Depth	= 5.87"	for 100-year event
Inflow	=	25.03 cfs @	12.11 hrs, Volume	e= 1.76	64 af	-
Outflow	=	25.03 cfs @	12.11 hrs, Volume	e= 1.76	64 af, Atte	en= 0%, Lag= 0.0 min
Primary	=	25.03 cfs @	12.11 hrs, Volume	e= 1.76	64 af	
Routed to Pond dmh58 : dmh						
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs						

Peak Elev= 899.07' @ 12.13 hrs

Flood Elev= 908.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	896.50'	30.0" Round Culvert L= 103.0' Ke= 0.500 Inlet / Outlet Invert= 896.50' / 895.68' S= 0.0080 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf

Primary OutFlow Max=22.02 cfs @ 12.11 hrs HW=899.00' TW=897.92' (Dynamic Tailwater) -1=Culvert (Outlet Controls 22.02 cfs @ 5.57 fps)

Summary for Pond dmh58: dmh

Inflow Area = 3.604 ac, 29.93% Impervious, Inflow Depth = 5.87" for 100-year event Inflow = 25.03 cfs @ 12.11 hrs, Volume= 1.764 af Outflow = 25.03 cfs @ 12.11 hrs, Volume= 1.764 af, Atten= 0%, Lag= 0.0 min Primary = 25.03 cfs @ 12.11 hrs, Volume= 1.764 af Routed to Pond dmh59 : dmh
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 897.96' @ 12.12 hrs Flood Elev= 901.46'
Device Routing Invert Outlet Devices
#1 Primary 895.58' 30.0" Round Culvert L= 278.0' Ke= 0.500 Inlet / Outlet Invert= 895.58' / 893.35' S= 0.0080 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=23.13 cfs @ 12.11 hrs HW=897.92' TW=895.74' (Dynamic Tailwater) 1=Culvert (Outlet Controls 23.13 cfs @ 6.29 fps)
Summary for Pond dmh59: dmh
Inflow Area = 3.604 ac, 29.93% Impervious, Inflow Depth = 5.87" for 100-year event Inflow = 25.03 cfs @ 12.11 hrs, Volume= 1.764 af Outflow = 25.03 cfs @ 12.11 hrs, Volume= 1.764 af, Atten= 0%, Lag= 0.0 min Primary = 25.03 cfs @ 12.11 hrs, Volume= 1.764 af Routed to Pond dmh60 : dmh
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 895.82' @ 12.13 hrs Flood Elev= 909.31'
Device Routing Invert Outlet Devices
#1 Primary 893.25' 30.0" Round Culvert L= 82.0' Ke= 0.500 Inlet / Outlet Invert= 893.25' / 892.50' S= 0.0091 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=22.14 cfs @ 12.11 hrs HW=895.74' TW=894.71' (Dynamic Tailwater) [▲] -1=Culvert (Outlet Controls 22.14 cfs @ 5.63 fps)
Summary for Pond dmh60: dmh
Inflow Area = 3.604 ac, 29.93% Impervious, Inflow Depth = 5.87" for 100-year event Inflow = 25.03 cfs @ 12.11 hrs, Volume= 1.764 af Outflow = 25.03 cfs @ 12.11 hrs, Volume= 1.764 af, Atten= 0%, Lag= 0.0 min Primary = 25.03 cfs @ 12.11 hrs, Volume= 1.764 af Routed to Pond dmh61 : dmh
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 894.75' @ 12.11 hrs Flood Elev= 901.96'
Device Routing Invert Outlet Devices
#1 Primary 892.40' 30.0" Round Culvert L= 258.0' Ke= 0.500 Inlet / Outlet Invert= 892.40' / 889.43' S= 0.0115 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf
Primary OutFlow Max=24.54 cfs @ 12.11 hrs HW=894.71' TW=891.69' (Dynamic Tailwater) └──1=Culvert (Inlet Controls 24.54 cfs @ 5.18 fps)

Summary for Pond dmh61: dmh

Inflow Area = 3.604 ac, 29.93% Impervious, Inflow Depth = 5.87" for 100-year event Inflow = 25.03 cfs @ 12.11 hrs, Volume= 1.764 af Outflow = 25.03 cfs @ 12.11 hrs, Volume= 1.764 af, Atten= 0%, Lag= 0.0 min Primary = 25.03 cfs @ 12.11 hrs, Volume= 1.764 af Routed to Pond dmh62 : dmh 1.764 af				
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 891.80' @ 12.13 hrs Flood Elev= 898.16'				
Device Routing Invert Outlet Devices				
#1 Primary 889.33' 30.0" Round Culvert L= 278.0' Ke= 0.500 Inlet / Outlet Invert= 889.33' / 886.55' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf				
Primary OutFlow Max=21.93 cfs @ 12.11 hrs HW=891.69' TW=889.78' (Dynamic Tailwater) └──1=Culvert (Outlet Controls 21.93 cfs @ 5.90 fps)				
Summary for Pond dmh62: dmh				
Inflow Area = 4.942 ac, 34.67% Impervious, Inflow Depth = 5.97" for 100-year event Inflow = 34.78 cfs @ 12.11 hrs, Volume= 2.460 af Outflow = 34.78 cfs @ 12.11 hrs, Volume= 2.460 af, Atten= 0%, Lag= 0.0 min Primary = 34.78 cfs @ 12.11 hrs, Volume= 2.460 af Routed to Pond dmh69 : dmh				
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 889.86' @ 12.11 hrs Flood Elev= 902.00'				
Device Routing Invert Outlet Devices				
#1 Primary 886.45' 30.0" Round Culvert L= 62.0' Ke= 0.500 Inlet / Outlet Invert= 886.45' / 884.91' S= 0.0248 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf				
Primary OutFlow Max=34.07 cfs @ 12.11 hrs HW=889.78' TW=815.81' (Dynamic Tailwater) [●] —1=Culvert (Inlet Controls 34.07 cfs @ 6.94 fps)				
Summary for Pond dmh69: dmh				
Inflow Area = 4.942 ac, 34.67% Impervious, Inflow Depth = 5.97" for 100-year event Inflow = 34.78 cfs @ 12.11 hrs, Volume= 2.460 af Outflow = 34.78 cfs @ 12.11 hrs, Volume= 2.460 af, Atten= 0%, Lag= 0.0 min Primary = 34.78 cfs @ 12.11 hrs, Volume= 2.460 af Routed to Pond DB-1 : detention				
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 815.89' @ 12.11 hrs Flood Elev= 818.02'				
Device Routing Invert Outlet Devices				
#1 Primary 812.48' 30.0" Round Culvert L= 29.0' Ke= 0.500 Inlet / Outlet Invert= 812.48' / 811.50' S= 0.0338 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf				
Primary OutFlow Max=34.07 cfs @ 12.11 hrs HW=815.81' TW=813.35' (Dynamic Tailwater) 1−1=Culvert (Inlet Controls 34.07 cfs @ 6.94 fps)				

1=Culvert (Inlet Controls 34.07 cfs @ 6.94 fps)

Summary for Pond DS-1a: detention

[44] Hint: Outlet device #2 is below defined storage[80] Warning: Exceeded Pond dmh01 by 0.30' @ 12.15 hrs (2.06 cfs 0.033 af)

Inflow Area	a =	2.795 ac, 4	13.32% Impervious, Inflo	w Depth = 6.26" for 100-year event	
Inflow	=	19.86 cfs @	12.11 hrs, Volume=	1.459 af	
Outflow	=	9.36 cfs @	12.31 hrs, Volume=	1.459 af, Atten= 53%, Lag= 11.7 min	
Primary	=	9.36 cfs @	12.31 hrs, Volume=	1.459 af	
Routed to Link SP1 : STUDY POINT #1					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 852.92' @ 12.31 hrs Surf.Area= 7,168 sf Storage= 20,193 cf Flood Elev= 853.00' Surf.Area= 7,168 sf Storage= 20,434 cf

Plug-Flow detention time= 101.4 min calculated for 1.457 af (100% of inflow) Center-of-Mass det. time= 102.0 min (900.3 - 798.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	846.50'	0 cf	64.00'W x 56.00'L x 5.67'H Field A
			20,309 cf Overall - 20,309 cf Embedded = 0 cf
#2A	846.50'	16,000 cf	retain_it retain_it 5.0' x 56 Inside #1
			Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf
			Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf
			8 Rows adjusted for 311.7 cf perimeter wall
#3B	851.50'	0 cf	64.00'W x 56.00'L x 2.17'H Field B
			7,765 cf Overall - 7,765 cf Embedded = 0 cf x 40.0% Voids
#4B	851.50'	4,434 cf	retain_it retain_it 1.5' x 56 Inside #3
			Inside= 84.0"W x 18.0"H => 9.90 sf x 8.00'L = 79.2 cf
			Outside= 96.0"W x 26.0"H => 17.33 sf x 8.00'L = 138.7 cf
			56 Chambers in 8 Rows
		20,434 cf	Total Available Storage

Storage Group A created with Chamber Wizard Storage Group B created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	846.40'	15.0" Round Culvert L= 129.0' Ke= 0.500
			Inlet / Outlet Invert= 846.40' / 845.62' S= 0.0060 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf
#2	Device 1	846.40'	2.0" Vert. 2" Orifice (2yr) X 2.00 C= 0.600 Limited to weir flow at low heads
#3	Device 1	848.10'	6.0" Vert. 6" Orifice (10yr) X 2.00 C= 0.600 Limited to weir flow at low heads
#4	Device 1	849.40'	5.0" Vert. 5" Orifice (25yr) X 2.00 C= 0.600 Limited to weir flow at low heads
#5	Device 1	850.70'	5.0" Vert. 5" Orifice (50yr) X 2.00 C= 0.600 Limited to weir flow at low heads
#6	Device 1	852.80'	4.0' long Overflow Weir 2 End Contraction(s) 4.0' Crest Height

Primary OutFlow Max=9.31 cfs @ 12.31 hrs HW=852.91' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Passes 9.31 cfs of 11.40 cfs potential flow)

-2=2" Orifice (2yr) (Orifice Controls 0.53 cfs @ 12.21 fps)

-3=6" Orifice (10yr) (Orifice Controls 4.04 cfs @ 10.28 fps)

-4=5" Orifice (25yr) (Orifice Controls 2.39 cfs @ 8.75 fps)

—5=5" Orifice (50yr) (Orifice Controls 1.86 cfs @ 6.82 fps)

6=Overflow Weir (Weir Controls 0.49 cfs @ 1.10 fps)

Summary for Pond DS-1b: detention

Inflow Area =	0.571 ac, 2	3.27% Impervious, Inflow	Depth = 6.06" f	or 100-year event
Inflow =	3.66 cfs @	12.12 hrs, Volume=	0.288 af	-
Outflow =	0.80 cfs @	12.56 hrs, Volume=	0.288 af, Atter	⊨ 78%, Lag= 26.9 min
Primary =	0.80 cfs @	12.56 hrs, Volume=	0.288 af	
Routed to Link SP1 : STUDY POINT #1				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 862.60' @ 12.56 hrs Surf.Area= 1,536 sf Storage= 4,545 cf Flood Elev= 862.70' Surf.Area= 1,536 sf Storage= 4,684 cf Plug-Flow detention time= 71.9 min calculated for 0.288 af (100% of inflow) Center-of-Mass det. time= 71.7 min (877.9 - 806.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	859.20'	0 cf	
			6,400 cf Overall - 6,400 cf Embedded = 0 cf x 40.0% Voids
#2A	859.20'	4,684 cf	retain_it retain_it 3.5' x 24 Inside #1
			Inside= 84.0"W x 42.0"H => 25.10 sf x 8.00'L = 200.8 cf
			Outside= 96.0"W x 50.0"H => 33.33 sf x 8.00'L = 266.7 cf
			8 Rows adjusted for 135.1 cf perimeter wall
		4,684 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	859.20'	12.0" Round Culvert L= 100.0' Ke= 0.500
			Inlet / Outlet Invert= 859.20' / 858.10' S= 0.0110 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2 #3	Device 1 Device 1	859.20' 862.50'	4.0" Vert. 4" Orifice C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=0.79 cfs @ 12.56 hrs HW=862.59' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Passes 0.79 cfs of 5.47 cfs potential flow)

2=4" Orifice (Orifice Controls 0.75 cfs @ 8.65 fps)

-3=Overflow (Orifice Controls 0.04 cfs @ 1.04 fps)

Summary for Pond DS-2a: detention

[92] Warning: Device #4 is above defined storage

[92] Warning: Device #5 is above defined storage

[92] Warning: Device #6 is above defined storage

[93] Warning: Storage range exceeded by 5.74

[58] Hint: Peaked 0.08' above defined flood level

[80] Warning: Exceeded Pond dmh23 by 0.26' @ 12.30 hrs (11.94 cfs 0.049 af)

Inflow Area =		5.477 ac, 4	18.32% Impervious, I	nflow Depth = 6.47"	for 100-year event
Inflow	=	40.27 cfs @	12.11 hrs, Volume=	2.952 af	
Outflow	=	26.32 cfs @	12.30 hrs, Volume=	2.950 af, Atte	en= 35%, Lag= 11.3 min
Primary	=	26.32 cfs @	12.30 hrs, Volume=	2.950 af	
Routed	to Por	nd G1 : gabion			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 902.74' @ 12.30 hrs Storage= 48,125 cf Flood Elev= 902.66' Storage= 48,125 cf

Plug-Flow detention time= 103.9 min calculated for 2.950 af (100% of inflow) Center-of-Mass det. time= 103.3 min (898.2 - 794.9)

Volume	Invert	Avail.Storage	Storage Description
#1	892.00'	24,073 cf	retain_it retain_it 5.0' x 84
			Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf
			Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf
			7 Rows adjusted for 394.8 cf perimeter wall
#2	897.00'	24,052 cf	
			Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf
			Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf
			6 Rows adjusted for 415.6 cf perimeter wall
		48,125 cf	Total Available Storage
Device	Routing	Invert Out	tlet Devices
#1	Primary	892.00' 24.	0" Round Culvert L= 46.0' Ke= 0.500
	•	Inle	et / Outlet Invert= 892.00' / 890.75' S= 0.0272 '/' Cc= 0.900
		n= (0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf
#2	Device 1		" Vert. Orifice (2yr) X 2.00 C= 0.600 Limited to weir flow at low heads
#3	Device 1		
#4	Device 1		
			" Vert. Orifice (10yr) C= 0.600 Limited to weir flow at low heads " Vert. Orifice (25yr) C= 0.600 Limited to weir flow at low heads

#5	Device 1	899.90'	4.0" Vert. Orifice (50yr) C= 0.600 Limited to weir flow at low heads
#6	Device 1	901.60'	4.0' long Sharp-Crested Weir Overflow (100yr) 2 End Contraction(s)

Primary OutFlow Max=26.08 cfs @ 12.30 hrs HW=902.73' TW=879.74' (Dynamic Tailwater)

-1=Culvert (Passes 26.08 cfs of 47.18 cfs potential flow)

-2=Orifice (2yr) (Orifice Controls 2.73 cfs @ 15.65 fps)

-3=Orifice (10yr) (Orifice Controls 4.45 cfs @ 12.73 fps)

-4=Orifice (25yr) (Orifice Controls 3.44 cfs @ 9.86 fps)

-6=Sharp-Crested Weir Overflow (100yr)(Weir Controls 14.78 cfs @ 3.47 fps)

Summary for Pond DS-2b: detention

[80] Warning: Exceeded Pond DW-11 by 863.00' @ 0.00 hrs (12.32 cfs 36.664 af)

 Inflow Area =
 2.577 ac, 15.70% Impervious, Inflow Depth =
 5.48" for 100-year event

 Inflow =
 16.34 cfs @
 12.11 hrs, Volume=
 1.177 af

 Outflow =
 7.74 cfs @
 12.31 hrs, Volume=
 1.176 af, Atten= 53%, Lag= 11.7 min

 Primary =
 7.74 cfs @
 12.31 hrs, Volume=
 1.176 af

 Routed to Link SP2 : STUDY POINT #2
 1.176 af
 1.176 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 865.14' @ 12.31 hrs Surf.Area= 5,568 sf Storage= 10,362 cf Flood Elev= 866.00' Surf.Area= 5,568 sf Storage= 14,541 cf

Plug-Flow detention time= 31.4 min calculated for 1.176 af (100% of inflow) Center-of-Mass det. time= 30.4 min (844.5 - 814.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	863.00'	0 cf	232.00'W x 24.00'L x 3.67'H Field A
			20,416 cf Overall - 20,416 cf Embedded = 0 cf x 40.0% Voids
#2A	863.00'	14,541 cf	retain_it retain_it 3.0' x 87 Inside #1
			Inside= 84.0"W x 36.0"H => 21.33 sf x 8.00'L = 170.6 cf
			Outside= 96.0"W x 44.0"H => 29.33 sf x 8.00'L = 234.7 cf
			29 Rows adjusted for 302.1 cf perimeter wall
		14,541 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	860.45'	12.0" Round Culvert L= 45.0' Ke= 0.500
			Inlet / Outlet Invert= 860.45' / 858.44' S= 0.0447 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	863.00'	24.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=7.74 cfs @ 12.31 hrs HW=865.13' TW=0.00' (Dynamic Tailwater)

2=Orifice/Grate (Passes 7.74 cfs of 16.11 cfs potential flow)

Summary for Pond DW-1: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	1.697 ac, 54.12% Impervious, Inflow D	Depth = 7.15" for 100-year event
Inflow =	13.19 cfs @ 12.09 hrs, Volume=	1.012 af
Outflow =	12.69 cfs @12.11 hrs, Volume=	0.992 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.03 cfs @ 9.10 hrs, Volume=	0.075 af
Primary =	12.66 cfs @ 12.11 hrs, Volume=	0.917 af
Routed to Por	nd dmh05 : dmh	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 9.10 hrs Surf.Area= 958 sf Storage= 1,963 cf

Plug-Flow detention time= 53.0 min calculated for 0.991 af (98% of inflow)

2889-01 - Proposed HydroCAD_rev3

Center-of-Mass det. time= 42.2 min (824.5 - 782.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	68 cf	7.67'W x 12.50'L x 3.50'H Field A
			335 cf Overall - 166 cf Embedded = 169 cf x 40.0% Voids
#2A	0.67'	129 cf	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		196 cf	x 10.00 = 1,963 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices	
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)	
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area	
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500 Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900 n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf	
Discarded OutFlow Max=0.03 cfs @ 9.10 hrs HW=3.50' (Free Discharge)				

1=Exfiltration (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=3.50' TW=873.54' (Dynamic Tailwater) 2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-10: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	3.168 ac, 1	7.98% Impervious, I	nflow Depth = 5.70"	for 100-year event
Inflow =	16.51 cfs @	12.18 hrs, Volume=	1.504 af	
Outflow =	16.28 cfs @	12.21 hrs, Volume=	1.482 af, At	tten= 1%, Lag= 1.6 min
Discarded =	0.04 cfs @	10.30 hrs, Volume=	0.083 af	
Primary =	0.19 cfs @	10.30 hrs, Volume=	0.217 af	
Routed to Link SP1 : STUDY POINT #1				
Secondary =	16.06 cfs @	12.21 hrs, Volume=	1.182 af	
Routed to Link	SP1 : STUD	Y POINT #1		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Primary area = Inflow area x 0.142 Peak Elev= 3.50' @ 10.30 hrs Surf.Area= 0.026 ac Storage= 0.054 af

Plug-Flow detention time= 40.2 min calculated for 1.482 af (99% of inflow) Center-of-Mass det. time= 31.2 min (848.7 - 817.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 12.00 = 0.054 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Secondary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	3.00'	4.0" Round Culvert L= 10.0' Ke= 0.500
			Inlet / Outlet Invert= 3.00' / 3.00' S= 0.0000 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.04 cfs @ 10.30 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=0.19 cfs @ 10.30 hrs HW=3.50' TW=0.00' (Dynamic Tailwater) 2=Culvert (Barrel Controls 0.19 cfs @ 2.14 fps)

Secondary OutFlow Max=0.00 cfs @ 12.21 hrs HW=3.50' TW=0.00' (Dynamic Tailwater)

Summary for Pond DW-11: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	2.577 ac, 15.70% Impervious, Inflow	Depth = 5.82" for 100-year event		
Inflow =	17.04 cfs @ 12.09 hrs, Volume=	1.249 af		
Outflow =	16.37 cfs @ 12.11 hrs, Volume=	1.234 af, Atten= 4%, Lag= 1.4 min		
Discarded =	0.03 cfs @ 9.75 hrs, Volume=	0.056 af		
Primary =	16.34 cfs @ 12.11 hrs, Volume=	1.177 af		
Routed to Pond DS-2b : detention				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 9.75 hrs Surf.Area= 0.018 ac Storage= 0.036 af

Plug-Flow detention time= 32.5 min calculated for 1.232 af (99% of inflow) Center-of-Mass det. time= 26.0 min (834.5 - 808.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 8.00 = 0.036 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
	-		Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.03 cfs @ 9.75 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=3.50' TW=864.55' (Dynamic Tailwater) 2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-12: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area = 2.217 ac,		8.54% Impervious, Inflow D	epth = 5.70" for 100-year event
Inflow =	14.39 cfs @	12.09 hrs, Volume=	1.052 af
Outflow =	13.82 cfs @	12.11 hrs, Volume=	1.037 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.03 cfs @	10.10 hrs, Volume=	0.056 af
Primary =	13.79 cfs @	12.11 hrs, Volume=	0.981 af
Routed to Rea	ach R-02 : Rou	uting through wetland/swale	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Peak Elev= 3.50' @ 10.10 hrs Surf.Area= 0.018 ac Storage= 0.036 af

Plug-Flow detention time= 37.9 min calculated for 1.035 af (98% of inflow) Center-of-Mass det. time= 30.0 min (840.7 - 810.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 8.00 = 0.036 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
			Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.03 cfs @ 10.10 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=3.50' TW=878.54' (Dynamic Tailwater) 2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-2: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	0.715 ac, 12.26% Impervious, Inflow I	Depth = 5.70" for 100-year event
Inflow =	4.64 cfs @ 12.09 hrs, Volume=	0.340 af
Outflow =	4.46 cfs @ 12.11 hrs, Volume=	0.336 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.01 cfs @ 9.75 hrs, Volume=	0.014 af
Primary =	4.45 cfs @ 12.11 hrs, Volume=	0.322 af
Routed to Read	ch SW-1 : swale	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 9.75 hrs Surf.Area= 0.004 ac Storage= 0.009 af

Plug-Flow detention time= 29.9 min calculated for 0.335 af (99% of inflow) Center-of-Mass det. time= 23.9 min (834.6 - 810.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 2.00 = 0.009 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
			Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.01 cfs @ 9.75 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=3.50' TW=884.31' (Dynamic Tailwater) 2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-3: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	1.714 ac, 23.07% Impervious, Inflow D	epth = 6.30" for 100-year event
Inflow =	12.14 cfs @ 12.09 hrs, Volume=	0.900 af
Outflow =	11.67 cfs @ 12.11 hrs, Volume=	0.883 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.03 cfs @ 9.95 hrs, Volume=	0.064 af
Primary =	11.64 cfs @ 12.11 hrs, Volume=	0.819 af
Routed to Po	nd dmh55 : dmh	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 9.95 hrs Surf.Area= 0.020 ac Storage= 0.041 af

Plug-Flow detention time= 50.5 min calculated for 0.882 af (98% of inflow) Center-of-Mass det. time= 39.9 min (839.6 - 799.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 9.00 = 0.041 af Total Available Storage

Storage Group A created with Chamber Wizard

Routing	Invert	Outlet Devices
Primary	3.50'	Automatic Storage Overflow (Discharged without head)
Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
		Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
		n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf
	Primary Discarded	Primary 3.50' Discarded 0.00'

Discarded OutFlow Max=0.03 cfs @ 9.95 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=3.50' TW=905.73' (Dynamic Tailwater) -2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-4: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	1.519 ac, 41.32% Impervious, Inflow E	Depth = 6.79" for 100-year event
Inflow =	11.39 cfs @ 12.09 hrs, Volume=	0.859 af
Outflow =	10.95 cfs @ 12.11 hrs, Volume=	0.838 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.04 cfs @ 9.95 hrs, Volume=	0.080 af
Primary =	10.92 cfs @ 12.11 hrs, Volume=	0.758 af
Routed to Po	nd dmh53 : dmh	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 9.95 hrs Surf.Area= 0.024 ac Storage= 0.050 af

Plug-Flow detention time= 65.2 min calculated for 0.837 af (97% of inflow)

2889-01 - Proposed HydroCAD_rev3

Prepared by Allen & Major Associates, Inc HydroCAD® 10.20-2f s/n 02881 © 2022 HydroCAD Software Solutions LLC

Center-of-Mass det. time= 51.4 min (841.5 - 790.1)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 11.00 = 0.050 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
	-		Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.04 cfs @ 9.95 hrs HW=3.50' (Free Discharge) -1=Exfiltration (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=3.50' TW=919.15' (Dynamic Tailwater) 2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-5: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	1.509 ac, 38.02% Impervious, Inflow D	epth = 6.67" for 100-year event
Inflow =	11.16 cfs @ 12.09 hrs, Volume=	0.838 af
Outflow =	10.73 cfs @ 12.11 hrs, Volume=	0.823 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.03 cfs @ 9.55 hrs, Volume=	0.059 af
Primary =	10.71 cfs @_ 12.11 hrs, Volume=	0.764 af
Routed to Por	nd dmh20 : dmh	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 9.55 hrs Surf.Area= 0.018 ac Storage= 0.036 af

Plug-Flow detention time= 50.6 min calculated for 0.823 af (98% of inflow) Center-of-Mass det. time= 39.3 min (831.9 - 792.6)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 8.00 = 0.036 af Total Available Storage

Storage Group A created with Chamber Wizard

Routing	Invert	Outlet Devices
Primary	3.50'	Automatic Storage Overflow (Discharged without head)
Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
		Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
		n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf
))	rimary iscarded	rimary 3.50' iscarded 0.00'

Discarded OutFlow Max=0.03 cfs @ 9.55 hrs HW=3.50' (Free Discharge) -1=Exfiltration (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=3.50' TW=910.63' (Dynamic Tailwater) **2=Culvert** (Controls 0.00 cfs)

Summary for Pond DW-6: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area = 1.339 ac, 47.44% Impervious, Inflow Depth = 6.91" for 100-year event 10.16 cfs @ 12.09 hrs, Volume= 9.78 cfs @ 12.11 hrs, Volume= Inflow 0.771 af = Outflow = 0.756 af, Atten= 4%, Lag= 1.4 min 9.45 hrs, Volume= Discarded = 0.03 cfs @ 0.059 af 9.75 cfs @ 12.11 hrs, Volume= Primary = 0.696 af Routed to Pond dmh50 : dmh Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 9.45 hrs Surf.Area= 0.018 ac Storage= 0.036 af

Plug-Flow detention time= 54.4 min calculated for 0.755 af (98% of inflow) Center-of-Mass det. time= 43.1 min (830.7 - 787.6)

Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 8.00 = 0.036 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
			Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.03 cfs @ 9.45 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=3.50' TW=930.88' (Dynamic Tailwater) -2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-7: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Inflow Area =	2.368 ac, 52.59% Impervious, Inflow I	Depth = 7.15" for 100-year event
Inflow =	18.39 cfs @ 12.09 hrs, Volume=	1.411 af
Outflow =	17.70 cfs @ 12.11 hrs, Volume=	1.392 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.03 cfs @ 8.45 hrs, Volume=	0.076 af
Primary =	17.67 cfs @ 12.11 hrs, Volume=	1.316 af
Routed to Por	nd dmh21 : dmh	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 8.45 hrs Surf.Area= 0.022 ac Storage= 0.045 af

Plug-Flow detention time= 39.3 min calculated for 1.390 af (99% of inflow) Center-of-Mass det. time= 31.6 min (813.9 - 782.2)

2889-01 - Proposed HydroCAD_rev3

Prepared by Allen & Major Associates, Inc HydroCAD® 10.20-2f s/n 02881 © 2022 HydroCAD Software Solutions LLC

		n 02881 © 2022	HydroCAD Software Solutions LLC	Page 166
Volume	Invert	Avail.Storage	Storage Description	
#1A	0.00'		7.67'W x 12.50'L x 3.50'H Field A	
	0.07		0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids	
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1 Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf	
			Outside= 68.0° W x 30.0 H => 12.80 sf x 10.00 L = 128.8 cf	
		0.005 af	x = 0.045 af Total Available Storage	
Stora	age Group A c	reated with Cha	mber Wizard	
Device	Routing	Invert Ou	utlet Devices	
#0	Primary	3.50' A ı	utomatic Storage Overflow (Discharged without head)	
#1	Discarded		600 in/hr Exfiltration over Wetted area	
#2	Primary		0" Round Culvert L= 10.0' Ke= 0.500	
			let / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900	
		n=	0.010 PVC, smooth interior, Flow Area= 0.09 sf	
Primary 2=Cu	/ OutFlow Ma ulvert(Contro	ax=0.00 cfs @ 12 ols 0.00 cfs)	2.11 hrs HW=3.50' TW=905.32' (Dynamic Tailwater)	
			Summary for Pond DW-8: House Drywell	
			0g drywell at each dwelling unit.	
			or number of dwelling units with subcatchment.	
Area mu	litipiyer adjust	ed to the accour	nt for the percentage of roof area within subcatchment.	
Inflow A			6 Impervious, Inflow Depth = 7.03" for 100-year event	
Inflow		26 cfs @ 12.09		
Outflow		10 cfs @ 12.11		
Discarde		01 cfs @ 8.35 10 cfs @ 12.11		
Primary Route	ed to Pond dn		Tills, volume– 0.500 al	
			e Span= 0.00-36.00 hrs, dt= 0.05 hrs	
Peak Ele	ev= 3.50' @ 8	.35 hrs Surf.Ar	ea= 0.004 ac Storage= 0.009 af	
			alculated for 0.321 af (99% of inflow)	
Center-o	of-Mass det. ti	me= 27.6 min (8	812.6 - 785.0)	
Volume	Invert	Avail.Storage	Storage Description	
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A	
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids	

Volume	mvort	/ Wall.Otorage	
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids
#2A	0.67'	0.003 af	Shea Dry Well 1000gal Inside #1
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf
		0.005 af	x 2.00 = 0.009 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
			Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.01 cfs @ 8.35 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=3.50' TW=924.22' (Dynamic Tailwater) -2=Culvert (Controls 0.00 cfs)

Summary for Pond DW-9: House Drywell

System sized based on standard 1,000g drywell at each dwelling unit. Storage multiplyer added to account for number of dwelling units with subcatchment. Area multiplyer adjusted to the account for the percentage of roof area within subcatchment.

Outflow Discarded Primary	= 8.7 = 7.8 = 0.0 = 7.8	12 cfs @ 12.09 32 cfs @ 12.11 02 cfs @ 9.05	Impervious, Inflow Depth = 7.15"for 100-year eventhrs, Volume=0.623 afhrs, Volume=0.611 af, Atten= 4%, Lag= 1.4 minhrs, Volume=0.045 afhrs, Volume=0.566 af			
0,	Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' @ 9.05 hrs Surf.Area= 0.013 ac Storage= 0.027 af					
Center-of-N	Plug-Flow detention time= 51.8 min calculated for 0.611 af (98% of inflow) Center-of-Mass det. time= 41.3 min (823.5 - 782.2)					
Volume	Invert	Avail.Storage	Storage Description			
#1A	0.00'	0.002 af	7.67'W x 12.50'L x 3.50'H Field A			
			0.008 af Overall - 0.004 af Embedded = 0.004 af x 40.0% Voids			
#2A	0.67'	0.003 af				
			Inside= 62.0"W x 30.0"H => 12.86 sf x 10.00'L = 128.6 cf			
			Outside= 68.0"W x 34.0"H => 15.80 sf x 10.50'L = 165.9 cf			

0.005 af x 6.00 = 0.027 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#0	Primary	3.50'	Automatic Storage Overflow (Discharged without head)
#1	Discarded	0.00'	0.600 in/hr Exfiltration over Wetted area
#2	Primary	2.50'	4.0" Round Culvert L= 10.0' Ke= 0.500
			Inlet / Outlet Invert= 2.50' / 2.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.09 sf

Discarded OutFlow Max=0.02 cfs @ 9.05 hrs HW=3.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=3.50' TW=901.22' (Dynamic Tailwater) -2=Culvert (Controls 0.00 cfs)

Summary for Pond G1: gabion

[92] Warning: Device #3 is above defined storage [90] Warning: Qout>Qin may require smaller dt or Finer Routing

Inflow Area =	5.477 ac, 48.32% Impervious, Inflow D	Depth > 6.46" for 100-year event
Inflow =	26.32 cfs @ 12.30 hrs, Volume=	2.950 af
Outflow =	26.50 cfs @ 12.30 hrs, Volume=	2.949 af, Atten= 0%, Lag= 0.0 min
Primary =	26.50 cfs @ 12.30 hrs, Volume=	2.949 af
Routed to Re	ach R-02 : Routing through wetland/swale	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 879.75' @ 12.30 hrs Surf.Area= 2 sf Storage= 443 cf Flood Elev= 880.00' Surf.Area= 2 sf Storage= 444 cf

Plug-Flow detention time= 1.8 min calculated for 2.949 af (100% of inflow) Center-of-Mass det. time= 1.4 min (899.6 - 898.2)

Volume	Invert	Avail.Storage	Storage Description
#1	877.50'	442 cf	18.0" Round Pipe Storage
			L= 250.0'
#2	879.00'	2 cf	1.50'D x 1.00'H Vertical Cone/Cylinder
		444 cf	Total Available Storage

2889-01 - Proposed HydroCAD_rev3

Prepared by Allen & Major Associates, Inc HydroCAD® 10.20-2f s/n 02881 © 2022 HydroCAD Software Solutions LLC

Device Routing Invert Outlet Devices				
#1Primary877.50' 2.0" Horiz. invert orifices X 125.00 C= 0.600Limited to weir flow at low heads#2Primary878.25' 2.0" Vert. spring line orifices X 125.00 C= 0.600Limited to weir flow at low heads#3Primary880.00' 18.0" Horiz. overflow grates X 2.00 C= 0.600Limited to weir flow at low heads				
Primary OutFlow Max=25.27 cfs @ 12.30 hrs HW=879.74' TW=878.81' (Dynamic Tailwater) 1=invert orifices (Orifice Controls 12.63 cfs @ 4.63 fps) 2=spring line orifices (Orifice Controls 12.63 cfs @ 4.63 fps) 3=overflow grates (Controls 0.00 cfs)				
Summary for Pond G2: gabion				
[92] Warning: Device #3 is above defined storage [90] Warning: Qout>Qin may require smaller dt or Finer Routing				
Inflow Area = 9.959 ac, 17.21% Impervious, Inflow Depth > 5.35" for 100-year event Inflow = 14.80 cfs @ 12.52 hrs, Volume= 4.437 af Outflow = 14.81 cfs @ 12.54 hrs, Volume= 4.437 af, Atten= 0%, Lag= 1.0 min Primary = 14.81 cfs @ 12.54 hrs, Volume= 4.437 af Routed to Link SP3 : STUDY POINT #3				
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 811.55' @ 12.54 hrs Surf.Area= 90 sf Storage= 126 cf Flood Elev= 811.80' Storage= 141 cf				
Plug-Flow detention time= 0.1 min calculated for 4.431 af (100% of inflow) Center-of-Mass det. time= 0.1 min(898.0-897.9)				
Volume Invert Avail.Storage Storage Description				
#1 810.30' 141 cf 18.0" Round Pipe Storage L= 80.0'				
Device Routing Invert Outlet Devices				
#1Primary810.30'2.0" Horiz. invert orifices X 80.00C= 0.600Limited to weir flow at low heads#2Primary811.05'2.0" Vert. spring line orifices X 80.00C= 0.600Limited to weir flow at low heads#3Primary811.80'18.0" Horiz. overflow grates X 2.00C= 0.600Limited to weir flow at low heads				
Primary OutFlow Max=14.80 cfs @ 12.54 hrs HW=811.55' TW=0.00' (Dynamic Tailwater) 1=invert orifices (Orifice Controls 9.39 cfs @ 5.38 fps) 2=spring line orifices (Orifice Controls 5.41 cfs @ 3.10 fps) 3=overflow grates (Controls 0.00 cfs)				
Summary for Link SP1: STUDY POINT #1				
Inflow Area = 6.871 ac, 28.86% Impervious, Inflow Depth = 5.77" for 100-year event Inflow = 26.70 cfs @ 12.22 hrs, Volume= 3.306 af Primary = 26.70 cfs @ 12.22 hrs, Volume= 3.306 af, Atten= 0%, Lag= 0.0 min				
Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs				
Summary for Link SP2: STUDY POINT #2				
Inflow Area = 10.270 ac, 31.55% Impervious, Inflow Depth > 5.96" for 100-year event Inflow = 22.92 cfs @ 12.50 hrs, Volume= 5.102 af Primary = 22.92 cfs @ 12.50 hrs, Volume= 5.102 af, Atten= 0%, Lag= 0.0 min				

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP3: STUDY POINT #3

Inflow Area =	11.281 ac, 1	15.19% Impervious,	Inflow Depth > 5.48	" for 100-year event
Inflow =	22.63 cfs @	12.51 hrs, Volume	e= 5.155 af	
Primary =	22.63 cfs @	12.51 hrs, Volume	e= 5.155 af, A	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP4: STUDY POINT #4

Inflow Area =	0.605 ac,	10.67% Impervious	, Inflow Depth = 5.	70" for 100-year event
Inflow =	3.93 cfs @) 12.09 hrs, Volum	e= 0.287 af	-
Primary =	3.93 cfs @) 12.09 hrs, Volum	e= 0.287 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Summary for Link SP5: STUDY POINT #5

Inflow Area =	0.158 ac,	0.00% Impervious, Inflow D	epth = 5.45" for 100-year event
Inflow =	0.98 cfs @	12.09 hrs, Volume=	0.072 af
Primary =	0.98 cfs @	12.09 hrs, Volume=	0.072 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Proposed Watershed Plan



REV	DATE	DESCR	RIPTION	
265	EP 770 I 5 SUNRIS	SE HIG	GHWAY, SU ER, NY 11	
project:	SKYV DENTI M		ESTATE DEVELOF STREET ER, MA	
PROJECT	NO. 2	2889-01	DATE:	12-02-22
SCALE: DESIGNEE		1 " = 80' SM	DWG. : C288901 CHECKED BY:	_WatershedProposed_rev1 MAM
PREPARED I				
AS	SOC	'IA'	τ MAJ ΓES, J • land surve	INC.
	www.al 100 COM WC TH FA	l e n MERCE DBURN EL: (781) X: (781)	 landscape m a j o r . c WAY, SUITE MA 01801 935-6889 935-2896 E, MA • MAN 	om 5
THIS DRAY CLIENT/CLIE PROVIDED C INFORMATIC POTENTIAL UNINTENTIC INC. MAY AUTHORSHI PORTABLE SPECIFICATI	Wing Has Int's Repress Copies of DR/ On And/or Si That the PR DNALLY OR O REMOVE A P ON THE DIG DOCUMENT ONS ISSUED	BEEN PF ENTATIVE AWINGS / PECIFIC U OVIDED I THERWISI LL INDI ITAL MED FORMA SHALL BE	REPARED IN DIA OR CONSULTA AND SPECIFICATIC SE ON THIS PROJE NFORMATION MA E, ALLEN & MAJ CATION OF TH IA. PRINTED REPR	GITAL FORMAT. ANTS MAY BE DNS FOR HIS/HER ECT. DUE TO THE AY BE MODIFIED OR ASSOCIATES, E DOCUMENT'S ESENTATIONS OR RAWINGS AND ORD COPIES OF
	SED WA		HED PLAN	SHEET NO. WS-2

SECTION 6.0 -APPENDIX

Rainfall Data

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing	Yes
State	Massachusetts
Location	
Longitude	71.892 degrees West
Latitude	42.243 degrees North
Elevation	0 feet
Date/Time	Tue, 22 Jun 2021 15:07:34 -0400

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.27	0.42	0.52	0.69	0.86	1.08	1yr	0.74	1.06	1.26	1.60	2.05	2.63	2.89	1yr	2.33	2.78	3.18	3.86	4.48	1yr
2yr	0.35	0.53	0.66	0.87	1.10	1.39	2yr	0.95	1.26	1.61	2.03	2.55	<mark>3.23</mark>	3.49	2yr	2.86	3.35	3.86	4.57	5.20	2yr
5yr	0.41	0.63	0.80	1.06	1.36	1.74	5yr	1.18	1.57	2.02	2.56	3.22	4.07	4.44	5yr	3.60	4.27	4.89	5.72	6.44	5yr
10yr	0.46	0.72	0.91	1.23	1.60	2.06	10yr	1.38	1.85	2.41	3.06	3.85	<mark>4.85</mark>	5.34	10yr	4.29	5.13	5.85	6.79	7.57	10yr
25yr	0.54	0.85	1.09	1.50	1.98	2.58	25yr	1.71	2.29	3.03	3.85	4.87	<mark>6.12</mark>	6.81	25yr	5.42	6.55	7.42	8.52	9.38	25yr
50yr	0.60	0.96	1.23	1.73	2.34	3.07	50yr	2.02	2.70	3.62	4.62	5.83	<mark>7.30</mark>	8.20	50yr	6.46	7.89	8.89	10.12	11.03	50yr
100yr	0.69	1.11	1.43	2.02	2.75	3.64	100yr	2.38	3.18	4.30	5.51	6.96	<mark>8.72</mark>	9.89	100yr	7.72	9.51	10.66	12.02	12.98	100yr
200yr	0.77	1.26	1.64	2.35	3.25	4.33	200yr	2.80	3.75	5.13	6.58	8.32	10.42	11.93	200yr	9.23	11.47	12.77	14.29	15.28	200yr
500yr	0.92	1.52	1.98	2.88	4.04	5.44	500yr	3.49	4.66	6.47	8.32	10.54	13.20	15.31	500yr	11.69	14.72	16.24	17.97	18.96	500yr

Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.21	0.32	0.39	0.52	0.64	0.97	1yr	0.55	0.95	1.11	1.47	1.90	2.35	2.50	1yr	2.08	2.40	2.63	3.26	4.07	1yr
2yr	0.34	0.52	0.64	0.87	1.07	1.25	2yr	0.93	1.23	1.43	1.89	2.43	3.13	3.38	2yr	2.77	3.25	3.74	4.42	5.02	2yr
5yr	0.38	0.59	0.73	1.01	1.28	1.49	5yr	1.10	1.46	1.71	2.23	2.85	3.79	4.11	5yr	3.35	3.95	4.52	5.26	5.90	5yr
10yr	0.42	0.65	0.81	1.13	1.46	1.70	10yr	1.26	1.67	1.93	2.53	3.21	4.37	4.75	10yr	3.87	4.57	5.21	5.99	6.63	10yr
25yr	0.49	0.75	0.93	1.33	1.75	2.03	25yr	1.51	1.99	2.29	3.00	3.78	5.30	5.93	25yr	4.69	5.71	6.30	7.22	7.81	25yr
50yr	0.55	0.83	1.04	1.49	2.01	2.32	50yr	1.73	2.27	2.61	3.40	4.27	6.16	6.95	50yr	5.45	6.68	7.27	8.28	8.82	50yr
100yr	0.62	0.93	1.17	1.68	2.31	2.65	100yr	1.99	2.59	2.98	3.87	4.83	7.14	8.18	100yr	6.32	7.87	8.41	9.51	9.94	100yr
200yr	0.69	1.04	1.32	1.91	2.66	3.03	200yr	2.30	2.96	3.39	4.42	5.48	8.31	9.69	200yr	7.35	9.32	9.73	10.91	11.21	200yr
500yr	0.82	1.22	1.56	2.27	3.23	3.63	500yr	2.79	3.55	4.04	5.28	6.49	10.15	12.12	500yr	8.98	11.65	12.49	13.16	13.12	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.31	0.47	0.58	0.78	0.96	1.18	1yr	0.83	1.15	1.37	1.75	2.31	2.87	3.16	1yr	2.54	3.04	3.47	4.16	4.84	1yr
2yr	0.36	0.55	0.68	0.92	1.14	1.33	2yr	0.98	1.30	1.53	2.00	2.57	3.34	3.62	2yr	2.96	3.49	4.00	4.75	5.44	2yr
5yr	0.43	0.67	0.83	1.14	1.44	1.73	5yr	1.25	1.69	1.99	2.55	3.22	4.38	4.82	5yr	3.88	4.64	5.29	6.23	7.05	5yr
10yr	0.50	0.77	0.96	1.34	1.73	2.10	10yr	1.49	2.05	2.42	3.07	3.83	5.39	5.96	10yr	4.77	5.73	6.52	7.65	8.59	10yr
25yr	0.62	0.94	1.17	1.68	2.21	2.73	25yr	1.90	2.66	3.14	3.90	4.82	7.07	7.87	25yr	6.26	7.57	8.63	9.92	11.06	25yr
50yr	0.72	1.10	1.37	1.97	2.65	3.32	50yr	2.29	3.24	3.83	4.69	5.73	8.70	9.73	50yr	7.70	9.36	10.66	12.16	13.48	50yr
100yr	0.85	1.29	1.61	2.33	3.19	4.04	100yr	2.75	3.95	4.67	5.64	6.82	10.68	12.04	100yr	9.45	11.58	13.17	14.89	16.44	100yr
200yr	1.00	1.50	1.90	2.75	3.84	4.92	200yr	3.32	4.81	5.70	6.77	8.11	13.14	14.90	200yr	11.63	14.33	16.27	18.23	20.04	200yr
500yr	1.25	1.85	2.38	3.46	4.93	6.39	500yr	4.25	6.25	7.42	8.63	10.19	17.25	19.70	500yr	15.26	18.95	20.84	23.81	26.04	500yr

Manning's Number Tables

Conduit	Manning's Coefficients
Closed Conduits	
Asbestos-Cement Pipe	0.011 to 0.015
Brick	0.013 to 0.017
Cast Iron Pipe	
Cement-lined and seal-coated	0.011 to 0.015
Concrete (Monolithic)	
Smooth forms	0.012 to 0.014
Rough forms	0.015 to 0.017
Concrete Pipe	0.011 to 0.015
Corrugated-Metal Pipe (1/2 - STUL 34470 2 1/2-inch corrgtn.)	
Plain	0.022 to 0.026
Paved invert	0.018 to 0.022
Spun asphalt-lined	0.011 to 0.015
Plastic Pipe (Smooth)	0.011 to 0.015
Vitrified Clay	
Pipes	0.011 to 0.015
Liner channels	0.013 to 0.017
Open Channels	
Lined Channels	
Asphalt	0.013 to 0.017
Brick	0.012 to 0.018
Concrete	0.011 to 0.020
Rubble or riprap	0.020 to 0.035
Vegetal	0.030 to 0.040
Excavated or Dredged	
Earth, straight and uniform	0.020 to 0.030
Earth, winding, fairly uniform	0.025 to 0.040
Rock	0.030 to 0.045
Unmaintained	0.050 to 0.140
Natural Channels (minor streams, top width at flood state < 100 feet)	
Fairly regular section	0.030 to 0.070
Irregular section with pools	0.040 to 0.100

Manning's Roughness Coefficients ("n")

- .

1

Soils Map

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Worcester County, Massachusetts, Southern Part

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	
Legend	.10
Map Unit Legend	12
Map Unit Descriptions	12
Worcester County, Massachusetts, Southern Part	15
70B—Ridgebury fine sandy loam, 3 to 8 percent slopes	15
71B—Ridgebury fine sandy loam, 3 to 8 percent slopes, extremely	
stony	16
73A—Whitman fine sandy loam, 0 to 3 percent slopes, extremely stony	18
305B—Paxton fine sandy loam, 3 to 8 percent slopes	.19
305C—Paxton fine sandy loam, 8 to 15 percent slopes	
305D—Paxton fine sandy loam, 15 to 25 percent slopes	22
312B—Woodbridge fine sandy loam, 0 to 8 percent slopes, extremely	
stony	24
407C—Charlton fine sandy loam, 8 to 15 percent slopes, extremely	
stony	25
420B—Canton fine sandy loam, 3 to 8 percent slopes	27
651—Udorthents, smoothed	28
Soil Information for All Uses	. 30
Soil Properties and Qualities	30
Soil Physical Properties	30
Saturated Hydraulic Conductivity (Ksat)	.30
Soil Qualities and Features	.35
Hydrologic Soil Group	35
References	.40

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

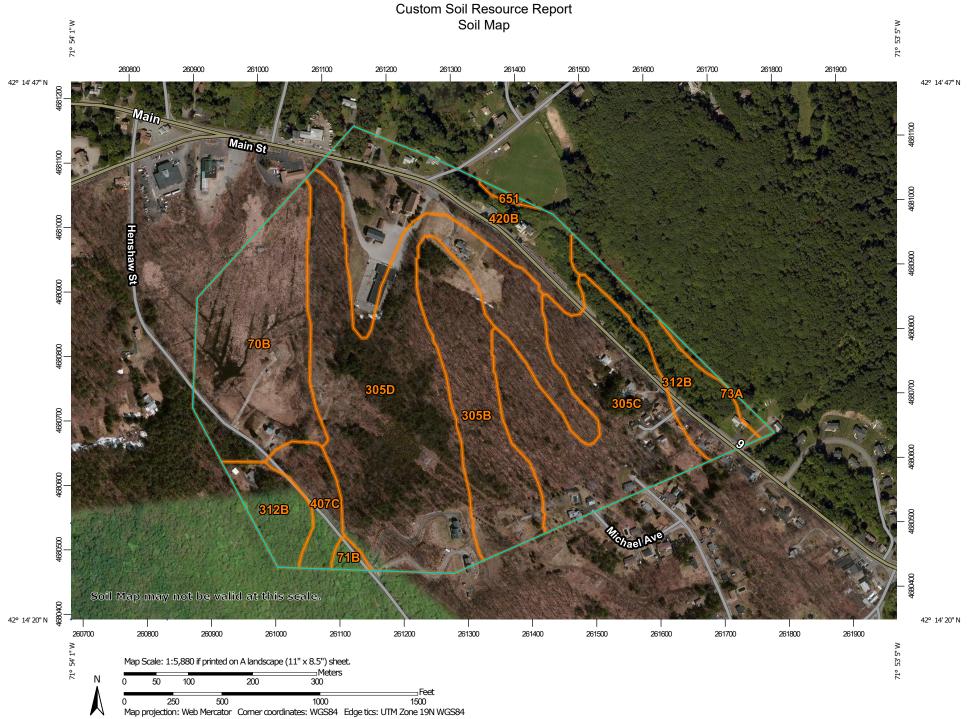
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.


Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND)	MAP INFORMATION		
	terest (AOI) Area of Interest (AOI)	8	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:25,000.		
Soils	Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Points	©	Very Stony Spot Wet Spot Other	Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil		
Special (1) (2)	Special Point Features		Special Line Features atures Streams and Canals	line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.		
×	Clay Spot Closed Depression	Transport	tation Rails Interstate Highways	Please rely on the bar scale on each map sheet for map measurements.		
*	Gravel Pit Gravelly Spot Landfill	~	US Routes Major Roads	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)		
© ∧ ⊯	Lava Flow Marsh or swamp	Backgrou	Local Roads Ind Aerial Photography	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.		
* 0 0	Mine or Quarry Miscellaneous Water Perennial Water			This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.		
× + ∷	Rock Outcrop Saline Spot Sandy Spot			Soil Survey Area: Worcester County, Massachusetts, Southern Part Survey Area Data: Version 13, Jun 11, 2020		
⊕ ◊	Severely Eroded Spot Sinkhole			Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.		
\$ Ø	Slide or Slip Sodic Spot			Date(s) aerial images were photographed: Apr 8, 2011—Jul 9, 2019 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background		

MAP LEGEND

MAP INFORMATION

imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
70B	Ridgebury fine sandy loam, 3 to 8 percent slopes	14.9	15.2%
71B	Ridgebury fine sandy loam, 3 to 8 percent slopes, extremely stony	0.5	0.5%
73A	Whitman fine sandy loam, 0 to 3 percent slopes, extremely stony	0.6	0.6%
305B	Paxton fine sandy loam, 3 to 8 percent slopes	10.6	10.8%
305C	Paxton fine sandy loam, 8 to 15 percent slopes	16.6	16.9%
305D	Paxton fine sandy loam, 15 to 25 percent slopes	30.1	30.7%
Woodbridge fine sandy loam, 0 to 8 percent slopes, extremely stony		8.6	8.7%
407C Charlton fine sandy loam, 8 to 15 percent slopes, extremely stony		2.9	3.0%
420B	Canton fine sandy loam, 3 to 8 percent slopes	12.9	13.2%
651	Udorthents, smoothed	0.2	0.2%
Totals for Area of Interest		97.9	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called

noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can

be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Worcester County, Massachusetts, Southern Part

70B—Ridgebury fine sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2xffw Elevation: 0 to 1,030 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Ridgebury and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ridgebury

Setting

Landform: Ground moraines, depressions, drumlins, drainageways, hills Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Head slope, base slope Down-slope shape: Concave Across-slope shape: Concave Parent material: Coarse-loamy lodgment till derived from gneiss, granite, and/or schist

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material

A - 1 to 6 inches: fine sandy loam

Bw - 6 to 10 inches: sandy loam

Bg - 10 to 19 inches: gravelly sandy loam

Cd - 19 to 66 inches: gravelly sandy loam

Properties and qualities

Slope: 3 to 8 percent Depth to restrictive feature: 15 to 35 inches to densic material Drainage class: Poorly drained Runoff class: Very high Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr) Depth to water table: About 0 to 6 inches Frequency of flooding: None Frequency of ponding: None Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)

Available water capacity: Low (about 3.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: D Ecological site: F144AY009CT - Wet Till Depressions Hydric soil rating: Yes

Minor Components

Woodbridge

Percent of map unit: 8 percent Landform: Drumlins, hills, ground moraines Landform position (two-dimensional): Footslope, summit, backslope Landform position (three-dimensional): Crest, side slope Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

Scituate

Percent of map unit: 4 percent Landform: Drumlins, hills, ground moraines Landform position (two-dimensional): Summit, footslope, backslope Landform position (three-dimensional): Crest, side slope Down-slope shape: Linear, convex Across-slope shape: Convex Hydric soil rating: No

Whitman

Percent of map unit: 3 percent Landform: Depressions, drainageways, hills, ground moraines, drumlins Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

71B—Ridgebury fine sandy loam, 3 to 8 percent slopes, extremely stony

Map Unit Setting

National map unit symbol: 2w69c Elevation: 0 to 1,290 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Ridgebury, extremely stony, and similar soils: 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Ridgebury, Extremely Stony

Setting

Landform: Depressions, drumlins, drainageways, hills, ground moraines Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Base slope, head slope Down-slope shape: Concave

Across-slope shape: Concave

Parent material: Coarse-loamy lodgment till derived from gneiss, granite, and/or schist

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material

A - 1 to 6 inches: fine sandy loam

Bw - 6 to 10 inches: sandy loam

Bg - 10 to 19 inches: gravelly sandy loam

Cd - 19 to 66 inches: gravelly sandy loam

Properties and qualities

Slope: 3 to 8 percent
Surface area covered with cobbles, stones or boulders: 9.0 percent
Depth to restrictive feature: 15 to 35 inches to densic material
Drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water capacity: Low (about 3.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: F144AY009CT - Wet Till Depressions Hydric soil rating: Yes

Minor Components

Woodbridge, extremely stony

Percent of map unit: 10 percent Landform: Drumlins, hills, ground moraines Landform position (two-dimensional): Footslope, summit, backslope Landform position (three-dimensional): Crest, side slope Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

Whitman, extremely stony

Percent of map unit: 8 percent Landform: Depressions Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Paxton, extremely stony

Percent of map unit: 2 percent Landform: Drumlins, hills, ground moraines Landform position (two-dimensional): Shoulder, summit, backslope Landform position (three-dimensional): Crest, side slope Down-slope shape: Linear, convex Across-slope shape: Convex, linear Hydric soil rating: No

73A—Whitman fine sandy loam, 0 to 3 percent slopes, extremely stony

Map Unit Setting

National map unit symbol: 2w695 Elevation: 0 to 1,580 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Whitman, extremely stony, and similar soils: 81 percent *Minor components:* 19 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Whitman, Extremely Stony

Setting

Landform: Depressions, drainageways, hills, ground moraines, drumlins Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Concave Parent material: Coarse-loamy lodgment till derived from gneiss, granite, and/or schist

Typical profile

Oi - 0 to 1 inches: peat *A - 1 to 10 inches:* fine sandy loam *Bg - 10 to 17 inches:* gravelly fine sandy loam *Cdg - 17 to 61 inches:* fine sandy loam

Properties and qualities

Slope: 0 to 3 percent
Surface area covered with cobbles, stones or boulders: 9.0 percent
Depth to restrictive feature: 7 to 38 inches to densic material
Drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water capacity: Low (about 3.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: F144AY041MA - Very Wet Till Depressions Hydric soil rating: Yes

Minor Components

Ridgebury, extremely stony

Percent of map unit: 10 percent Landform: Drainageways, hills, ground moraines, depressions, drumlins Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Base slope, head slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Scarboro

Percent of map unit: 5 percent Landform: Outwash deltas, outwash terraces, depressions, drainageways Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Swansea

Percent of map unit: 3 percent Landform: Swamps, bogs, marshes Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Woodbridge, extremely stony

Percent of map unit: 1 percent Landform: Hills, ground moraines, drumlins Landform position (two-dimensional): Backslope, footslope, summit Landform position (three-dimensional): Side slope, crest Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

305B—Paxton fine sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2t2qp Elevation: 0 to 1,570 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: All areas are prime farmland

Map Unit Composition

Paxton and similar soils: 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Paxton

Setting

Landform: Ground moraines, hills, drumlins Landform position (two-dimensional): Backslope, summit, shoulder Landform position (three-dimensional): Side slope, crest, nose slope Down-slope shape: Linear, convex Across-slope shape: Convex Parent material: Coarse-loamy lodgment till derived from gneiss, granite, and/or schist

Typical profile

Ap - 0 to 8 inches: fine sandy loam Bw1 - 8 to 15 inches: fine sandy loam Bw2 - 15 to 26 inches: fine sandy loam Cd - 26 to 65 inches: gravelly fine sandy loam

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: 18 to 39 inches to densic material
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)
Depth to water table: About 18 to 37 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water capacity: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2s Hydrologic Soil Group: C Ecological site: F144AY007CT - Well Drained Dense Till Uplands Hydric soil rating: No

Minor Components

Woodbridge

Percent of map unit: 9 percent Landform: Hills, drumlins, ground moraines Landform position (two-dimensional): Backslope, footslope, summit Landform position (three-dimensional): Side slope Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

Ridgebury

Percent of map unit: 6 percent *Landform:* Drainageways, hills, ground moraines, depressions Landform position (two-dimensional): Backslope, footslope, toeslope Landform position (three-dimensional): Head slope, base slope, dip Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Charlton

Percent of map unit: 5 percent Landform: Hills Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

305C—Paxton fine sandy loam, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2w66y Elevation: 0 to 1,320 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Paxton and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Paxton

Setting

Landform: Drumlins, hills, ground moraines Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear, convex Across-slope shape: Convex Parent material: Coarse-loamy lodgment till derived from gneiss, granite, and/or schist

Typical profile

Ap - 0 to 8 inches: fine sandy loam Bw1 - 8 to 15 inches: fine sandy loam Bw2 - 15 to 26 inches: fine sandy loam Cd - 26 to 65 inches: gravelly fine sandy loam

Properties and qualities

Slope: 8 to 15 percent Depth to restrictive feature: 20 to 39 inches to densic material Drainage class: Well drained Runoff class: Medium

Custom Soil Resource Report

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr) Depth to water table: About 18 to 37 inches Frequency of flooding: None Frequency of ponding: None Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm) Available water capacity: Low (about 4.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: C Ecological site: F144AY007CT - Well Drained Dense Till Uplands Hydric soil rating: No

Minor Components

Charlton

Percent of map unit: 7 percent Landform: Hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Woodbridge

Percent of map unit: 6 percent Landform: Ground moraines, drumlins, hills Landform position (two-dimensional): Backslope, footslope, summit Landform position (three-dimensional): Side slope Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

Ridgebury

Percent of map unit: 2 percent Landform: Depressions, drainageways, drumlins, hills, ground moraines Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Base slope, head slope Down-slope shape: Concave, linear Across-slope shape: Concave, linear Hydric soil rating: Yes

305D—Paxton fine sandy loam, 15 to 25 percent slopes

Map Unit Setting

National map unit symbol: 2w67j Elevation: 0 to 1,450 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F *Frost-free period:* 140 to 240 days *Farmland classification:* Not prime farmland

Map Unit Composition

Paxton and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Paxton

Setting

Landform: Hills, ground moraines, drumlins Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear, convex Across-slope shape: Convex Parent material: Coarse-loamy lodgment till derived from gneiss, granite, and/or schist

Typical profile

Ap - 0 to 8 inches: fine sandy loam *Bw1 - 8 to 15 inches:* fine sandy loam *Bw2 - 15 to 26 inches:* fine sandy loam *Cd - 26 to 65 inches:* gravelly fine sandy loam

Properties and qualities

Slope: 15 to 25 percent
Depth to restrictive feature: 20 to 39 inches to densic material
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)
Depth to water table: About 18 to 37 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water capacity: Low (about 4.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: C Ecological site: F144AY007CT - Well Drained Dense Till Uplands Hydric soil rating: No

Minor Components

Charlton

Percent of map unit: 8 percent Landform: Hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Woodbridge

Percent of map unit: 6 percent Landform: Ground moraines, drumlins, hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

Ridgebury

Percent of map unit: 1 percent Landform: Drumlins, drainageways, hills, ground moraines, depressions Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Base slope, head slope Down-slope shape: Concave, linear Across-slope shape: Concave, linear Hydric soil rating: Yes

312B—Woodbridge fine sandy loam, 0 to 8 percent slopes, extremely stony

Map Unit Setting

National map unit symbol: 2t2qs Elevation: 0 to 1,580 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Woodbridge, extremely stony, and similar soils: 82 percent *Minor components:* 18 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Woodbridge, Extremely Stony

Setting

Landform: Drumlins, hills, ground moraines Landform position (two-dimensional): Backslope, footslope, summit Landform position (three-dimensional): Side slope Down-slope shape: Concave Across-slope shape: Linear Parent material: Coarse-loamy lodgment till derived from gneiss, granite, and/or schist

Typical profile

Oe - 0 to 2 inches: moderately decomposed plant material *A - 2 to 9 inches:* fine sandy loam *Bw1 - 9 to 20 inches:* fine sandy loam *Bw2 - 20 to 32 inches:* fine sandy loam

Cd - 32 to 67 inches: gravelly fine sandy loam

Properties and qualities

Slope: 0 to 8 percent
Surface area covered with cobbles, stones or boulders: 9.0 percent
Depth to restrictive feature: 20 to 43 inches to densic material
Drainage class: Moderately well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)
Depth to water table: About 19 to 27 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water capacity: Low (about 4.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: C/D Ecological site: F144AY037MA - Moist Dense Till Uplands Hydric soil rating: No

Minor Components

Paxton, extremely stony

Percent of map unit: 10 percent Landform: Drumlins, hills, ground moraines Landform position (two-dimensional): Shoulder, backslope, summit Landform position (three-dimensional): Crest, side slope Down-slope shape: Linear, convex Across-slope shape: Convex, linear Hydric soil rating: No

Ridgebury, extremely stony

Percent of map unit: 8 percent Landform: Ground moraines, depressions, drumlins, drainageways, hills Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Head slope, base slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

407C—Charlton fine sandy loam, 8 to 15 percent slopes, extremely stony

Map Unit Setting

National map unit symbol: 9bd8 Elevation: 280 to 920 feet Mean annual precipitation: 32 to 50 inches Mean annual air temperature: 45 to 50 degrees F *Frost-free period:* 145 to 240 days *Farmland classification:* Not prime farmland

Map Unit Composition

Charlton and similar soils: 75 percent *Minor components:* 25 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Charlton

Setting

Landform: Hills, ridges Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Convex Parent material: Friable coarse-loamy eolian deposits over friable coarse-loamy basal till derived from granite and gneiss

Typical profile

H1 - 0 to 8 inches: fine sandy loam *H2 - 8 to 34 inches:* fine sandy loam *H3 - 34 to 65 inches:* sandy loam

Properties and qualities

Slope: 8 to 15 percent
Surface area covered with cobbles, stones or boulders: 9.0 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Moderate (about 7.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: A Ecological site: F144AY034CT - Well Drained Till Uplands Hydric soil rating: No

Minor Components

Paxton

Percent of map unit: 10 percent Hydric soil rating: No

Canton

Percent of map unit: 10 percent Hydric soil rating: No

Woodbridge

Percent of map unit: 5 percent Hydric soil rating: No

420B—Canton fine sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2w81b Elevation: 0 to 1,180 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: All areas are prime farmland

Map Unit Composition

Canton and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Canton

Setting

Landform: Moraines, hills, ridges Landform position (two-dimensional): Backslope, shoulder, summit Landform position (three-dimensional): Side slope, crest, nose slope Down-slope shape: Linear, convex Across-slope shape: Convex Parent material: Coarse-loamy over sandy melt-out till derived from gneiss, granite, and/or schist

Typical profile

Ap - 0 to 7 inches: fine sandy loam Bw1 - 7 to 15 inches: fine sandy loam Bw2 - 15 to 26 inches: gravelly fine sandy loam 2C - 26 to 65 inches: gravelly loamy sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: 19 to 39 inches to strongly contrasting textural stratification
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Very low (about 2.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2s Hydrologic Soil Group: B Ecological site: F144AY034CT - Well Drained Till Uplands Hydric soil rating: No

Minor Components

Scituate

Percent of map unit: 10 percent Landform: Drumlins, hills, ground moraines Landform position (two-dimensional): Footslope, backslope, summit Landform position (three-dimensional): Crest, side slope Down-slope shape: Linear, convex Across-slope shape: Convex Hydric soil rating: No

Montauk

Percent of map unit: 5 percent Landform: Drumlins, hills, ground moraines, moraines Landform position (two-dimensional): Backslope, shoulder, summit Landform position (three-dimensional): Side slope, crest Down-slope shape: Linear, convex Across-slope shape: Convex Hydric soil rating: No

Charlton

Percent of map unit: 4 percent Landform: Hills, ground moraines, ridges Landform position (two-dimensional): Backslope, shoulder, summit Landform position (three-dimensional): Crest, side slope Down-slope shape: Linear, convex Across-slope shape: Convex Hydric soil rating: No

Swansea

Percent of map unit: 1 percent Landform: Marshes, kettles, swamps, bogs, depressions Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

651—Udorthents, smoothed

Map Unit Setting

National map unit symbol: 9bfc Elevation: 0 to 3,000 feet Mean annual precipitation: 32 to 50 inches Mean annual air temperature: 45 to 50 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Udorthents and similar soils: 80 percent *Urban land:* 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Udorthents

Setting

Parent material: Made land over firm coarse-loamy basal till and/or dense coarseloamy lodgment till

Typical profile

H1 - 0 to 6 inches: variable H2 - 6 to 60 inches: variable

Properties and qualities

Slope: 0 to 25 percent
Depth to restrictive feature: More than 80 inches
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to very high (0.06 to 20.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None

Interpretive groups

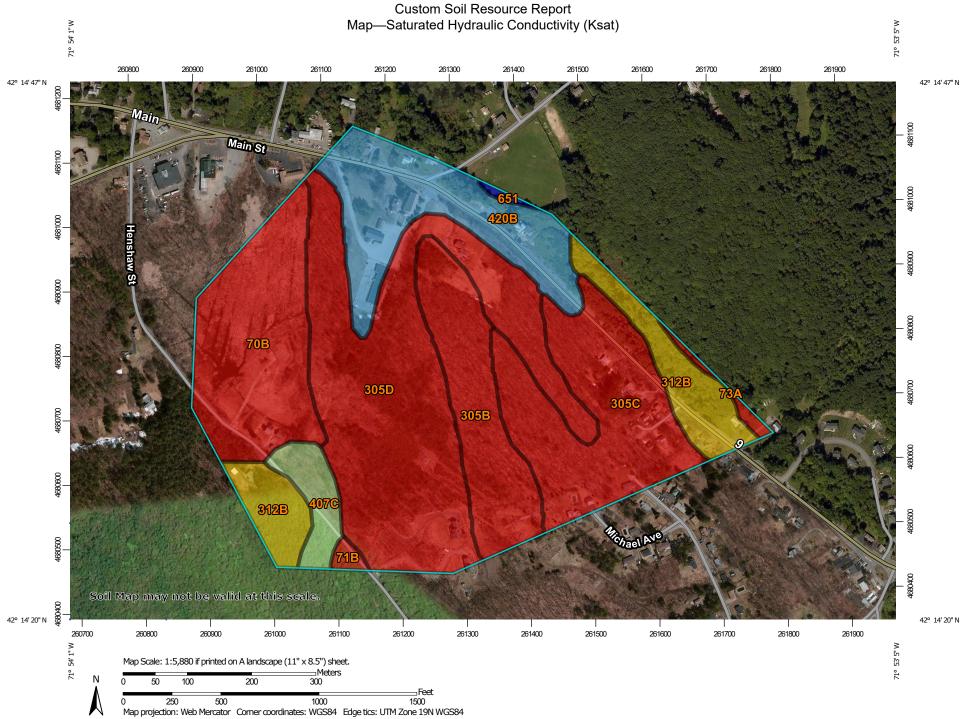
Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: A Hydric soil rating: No

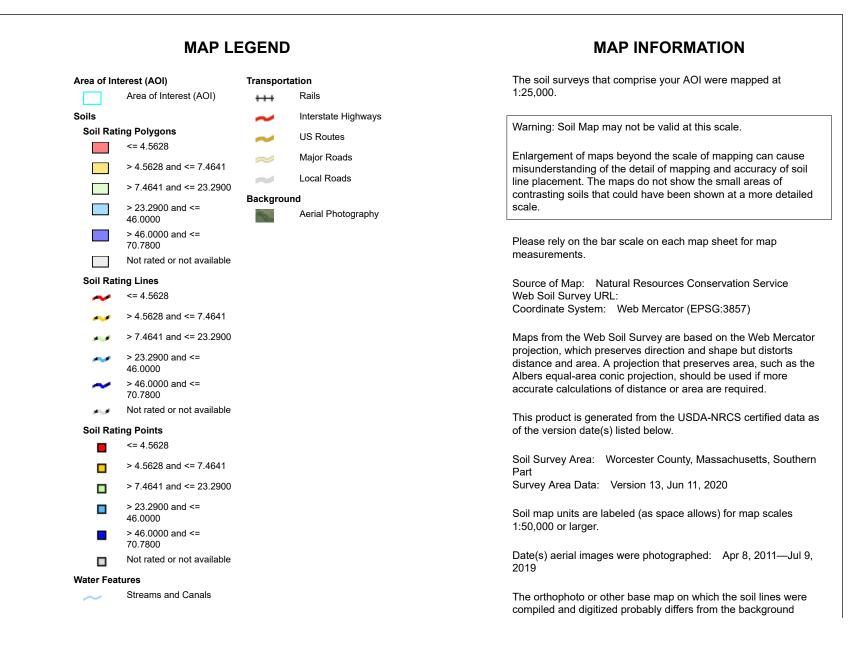
Soil Information for All Uses

Soil Properties and Qualities

The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality.

Soil Physical Properties


Soil Physical Properties are measured or inferred from direct observations in the field or laboratory. Examples of soil physical properties include percent clay, organic matter, saturated hydraulic conductivity, available water capacity, and bulk density.


Saturated Hydraulic Conductivity (Ksat)

Saturated hydraulic conductivity (Ksat) refers to the ease with which pores in a saturated soil transmit water. The estimates are expressed in terms of micrometers per second. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Saturated hydraulic conductivity is considered in the design of soil drainage systems and septic tank absorption fields.

For each soil layer, this attribute is actually recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A "representative" value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.

The numeric Ksat values have been grouped according to standard Ksat class limits.

MAP LEGEND

MAP INFORMATION

imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Table—Saturated Hydraul	ic Conductivity (Ksat)
-------------------------	------------------------

Map unit symbol	Map unit name	Rating (micrometers per second)	Acres in AOI	Percent of AOI
70B	Ridgebury fine sandy loam, 3 to 8 percent slopes	4.5628	14.9	15.2%
71B	Ridgebury fine sandy loam, 3 to 8 percent slopes, extremely stony	4.5628	0.5	0.5%
73A	Whitman fine sandy loam, 0 to 3 percent slopes, extremely stony	4.5559	0.6	0.6%
305B	Paxton fine sandy loam, 3 to 8 percent slopes	4.0600	10.6	10.8%
305C	Paxton fine sandy loam, 8 to 15 percent slopes	4.0600	16.6	16.9%
305D	Paxton fine sandy loam, 15 to 25 percent slopes	4.0600	30.1	30.7%
312B	Woodbridge fine sandy loam, 0 to 8 percent slopes, extremely stony	7.4641	8.6	8.7%
407C	Charlton fine sandy loam, 8 to 15 percent slopes, extremely stony	23.2900	2.9	3.0%
420B	Canton fine sandy loam, 3 to 8 percent slopes	46.0000	12.9	13.2%
651	Udorthents, smoothed	70.7800	0.2	0.2%
Totals for Area of Inter	est		97.9	100.0%

Rating Options—Saturated Hydraulic Conductivity (Ksat)

Units of Measure: micrometers per second Aggregation Method: Dominant Component Component Percent Cutoff: None Specified Tie-break Rule: Fastest Interpret Nulls as Zero: No Layer Options (Horizon Aggregation Method): Depth Range (Weighted Average) Top Depth: 0 Bottom Depth: 100 Units of Measure: Inches

Soil Qualities and Features

Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil.

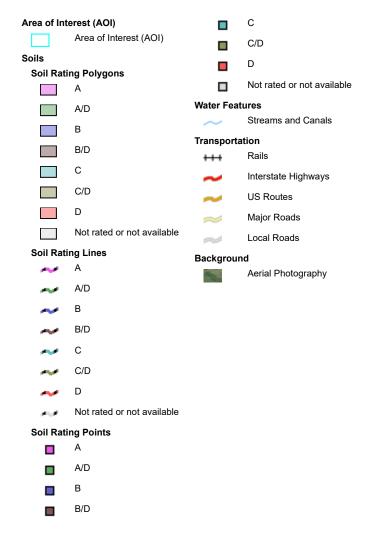
Hydrologic Soil Group

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.


Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

MAP LEGEND

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:25,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Worcester County, Massachusetts, Southern Part

Survey Area Data: Version 13, Jun 11, 2020

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Apr 8, 2011—Jul 9, 2019

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background

MAP LEGEND

MAP INFORMATION

imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Table—Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
70B	Ridgebury fine sandy loam, 3 to 8 percent slopes	D	14.9	15.2%
71B	Ridgebury fine sandy loam, 3 to 8 percent slopes, extremely stony	D	0.5	0.5%
73A	Whitman fine sandy loam, 0 to 3 percent slopes, extremely stony	D	0.6	0.6%
305B	Paxton fine sandy loam, 3 to 8 percent slopes	С	10.6	10.8%
305C	Paxton fine sandy loam, 8 to 15 percent slopes	С	16.6	16.9%
305D	Paxton fine sandy loam, 15 to 25 percent slopes	С	30.1	30.7%
312B	Woodbridge fine sandy loam, 0 to 8 percent slopes, extremely stony	C/D	8.6	8.7%
407C	Charlton fine sandy loam, 8 to 15 percent slopes, extremely stony	A	2.9	3.0%
420B	Canton fine sandy loam, 3 to 8 percent slopes	В	12.9	13.2%
651	Udorthents, smoothed	A	0.2	0.2%
Totals for Area of Interest			97.9	100.0%

Rating Options—Hydrologic Soil Group

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Water Quality Flow Calculations

Project: Location: Prepared For:	Skyview Estates Residential Subdivision Leicester, MA Allen & Major Associates	C NTECH ENGINEERED SOLUTIONS
<u>Purpose:</u>	To calculate the water quality flow rate (WQF) over a given site area. In derived from the first 1" of runoff from the contributing impervious surface	
<u>Reference:</u>	Massachusetts Dept. of Environmental Protection Wetlands Program / Agriculture Natural Resources Conservation Service TR-55 Manual	United States Department of
Procedure:	Determine unit peak discharge using Figure 1 or 2. Figure 2 is in tabulat the tc, read the unit peak discharge (qu) from Figure 1 or Table in Figure following units: cfs/mi ² /watershed inches (csm/in).	
	Compute Q Rate using the following equation:	

Q = (qu) (A) (WQV)

where:

Q = flow rate associated with first 1" of runoff

qu = the unit peak discharge, in csm/in.

A = impervious surface drainage area (in square miles)

WQV = water quality volume in watershed inches (1" in this case)

Structure Name	Impv. (acres)	A (miles ²)	t _c (min)	t _c (hr)	WQV (in)	qu (csm/in.)	Q (cfs)
DMH-50	1.02	0.0015891	6.0	0.100	1.00	774.00	1.23
DMH-57	2.59	0.0040438	6.0	0.100	1.00	774.00	3.13

CDS ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION BASED ON THE RATIONAL RAINFALL METHOD SKYVIEW ESTATES RESIDENTIAL SUBDIVISION LEICESTER, MA

Area	1.02 ac	Unit Site Designation	DMH-50
Weighted C	0.9	Rainfall Station #	70
t _c	6 min		
CDS Model	2015-4	CDS Treatment Capacity	1.4 cfs

<u>Rainfall</u> Intensity ¹ (in/hr)	<u>Percent Rainfall</u> <u>Volume¹</u>	<u>Cumulative</u> Rainfall Volume	Total Flowrate (cfs)	Treated Flowrate (cfs)	<u>Incremental</u> <u>Removal (%)</u>			
0.04	15.1%	15.1%	0.04	0.04	14.5			
0.08	24.6%	39.7%	0.07	0.07	23.0			
0.12	13.7%	53.4%	0.11	0.11	12.6			
0.16	9.4%	62.8%	0.15	0.15	8.5			
0.20	6.6%	69.5%	0.18	0.18	5.9			
0.24	5.2%	74.7%	0.22	0.22	4.5			
0.28	4.8%	79.5%	0.26	0.26	4.0			
0.32	3.1%	82.6%	0.29	0.29	2.6			
0.36	2.7%	85.3%	0.33	0.33	2.2			
0.40	2.1%	87.4%	0.37	0.37	1.7			
0.48	2.5%	89.9%	0.44	0.44	1.9			
0.56	2.0%	91.9%	0.51	0.51	1.5			
0.64	1.4%	93.3%	0.59	0.59	1.0			
0.72	1.0%	94.3%	0.66	0.66	0.7			
0.80	1.1%	95.4%	0.73	0.73	0.7			
1.00	1.6%	97.1%	0.92	0.92	0.9			
1.20	0.9%	98.0%	1.10	1.10	0.4			
1.40	0.6%	98.6%	1.28	1.28	0.2			
1.60	0.5%	99.1%	1.46	1.40	0.1			
1.80	0.5%	99.6%	1.65	1.40	0.1			
0.00	0.0%	99.6%	0.00	0.00	0.0			
					86.8			
	Removal Efficiency Adjustment ² = 0.0%							
	Predicted % Annual Rainfall Treated = 99.5%							
	Predicted Net Annual Load Removal Efficiency = 86.8%							
 Based on 14 years of 15-minute rainfall data from NCDC Station 2107, East Brimfield Lake, Worcester County, N Reduction due to use of 60-minute data for a site that has a time of concentration less than 30-minutes. 								

Estimated Net Annual Solids Load Reduction Based on the Rational Rainfall Method



separator™

LEICESTER, MA

DMH-57

AREA WEIGHTED C TC	2.59 0.90 6.00	acres minutes	CASCADE MODEL PARTICLE SIZE RAINFALL STATION	CS-5 110 70	microns			
Rainfall Intensity ¹ (in/hr)	Percent R	ainfall Volume ¹	Hydraulic Loading Rate (gpm/ft2)	Removal Efficiency (%)	Incremental Removal (%)			
0.04		15.1%	2.13	100.0	15.1			
0.08		24.6%	4.26	100.0	24.6			
0.12		13.7%	6.39	100.0	13.7			
0.16		9.4%	8.53	100.0	9.4			
0.20		6.6%	10.66	100.0	6.6			
0.24		5.2%	12.79	99.9	5.2			
0.28		4.8% 14.92 97.9		97.9	4.7			
0.32		3.1% 17.05		95.9	3.0			
0.36		2.7% 19.18		93.9	2.5			
0.40		2.1%	21.31	91.9	1.9			
0.48		2.5% 25.58		87.9	2.2			
0.56		2.0%	29.84	83.9	1.7			
0.64		1.4%	34.10	79.8	1.1			
0.72		1.0%	38.36	75.8	0.8			
0.80		1.1%	42.63	71.8	0.8			
1.00		1.6%	53.28	61.8	1.0			
1.20		0.9%	63.94	51.8	0.5			
1.40		0.6%	74.60	41.8	0.3			
1.60		0.5%	80.01	34.4	0.2			
1.80		0.5%	80.01	30.6	0.1			
				_	95.5			
	Removal Efficiency Adjustment ² = 0.0%							
	Predicted % Annual Rainfall Treated = 99.5%							
	Predicted Net Annual Load Removal Efficiency = 95.5%							
 Based on 14 years of 15-minute rainfall data from NCDC Station 2107, East Brimfield Lake, Worcester County, MA Reduction due to use of 60-minute data for a site that has a time of concentration less than 30-minutes. 								

WQU Sizing

CDS ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION BASED ON THE RATIONAL RAINFALL METHOD SKYVIEW ESTATES RESIDENTIAL SUBDIVISION LEICESTER, MA

Area	1.02 ac	Unit Site Designation	DMH-50
Weighted C	0.9	Rainfall Station #	70
t _c	6 min		
CDS Model	2015-4	CDS Treatment Capacity	1.4 cfs

<u>Rainfall</u> Intensity ¹ (in/hr)	<u>Percent Rainfall</u> <u>Volume¹</u>	<u>Cumulative</u> Rainfall Volume	Total Flowrate (cfs)	Treated Flowrate (cfs)	<u>Incremental</u> <u>Removal (%)</u>			
0.04	15.1%	15.1%	0.04	0.04	14.5			
0.08	24.6%	39.7%	0.07	0.07	23.0			
0.12	13.7%	53.4%	0.11	0.11	12.6			
0.16	9.4%	62.8%	0.15	0.15	8.5			
0.20	6.6%	69.5%	0.18	0.18	5.9			
0.24	5.2%	74.7%	0.22	0.22	4.5			
0.28	4.8%	79.5%	0.26	0.26	4.0			
0.32	3.1%	82.6%	0.29	0.29	2.6			
0.36	2.7%	85.3%	0.33	0.33	2.2			
0.40	2.1%	87.4%	0.37	0.37	1.7			
0.48	2.5%	89.9%	0.44	0.44	1.9			
0.56	2.0%	91.9%	0.51	0.51	1.5			
0.64	1.4%	93.3%	0.59	0.59	1.0			
0.72	1.0%	94.3%	0.66	0.66	0.7			
0.80	1.1%	95.4%	0.73	0.73	0.7			
1.00	1.6%	97.1%	0.92	0.92	0.9			
1.20	0.9%	98.0%	1.10	1.10	0.4			
1.40	0.6%	98.6%	1.28	1.28	0.2			
1.60	0.5%	99.1%	1.46	1.40	0.1			
1.80	0.5%	99.6%	1.65	1.40	0.1			
0.00	0.0%	99.6%	0.00	0.00	0.0			
					86.8			
	Removal Efficiency Adjustment ² = 0.0%							
	Predicted % Annual Rainfall Treated = 99.5%							
	Predicted Net Annual Load Removal Efficiency = 86.8%							
 Based on 14 years of 15-minute rainfall data from NCDC Station 2107, East Brimfield Lake, Worcester County, N Reduction due to use of 60-minute data for a site that has a time of concentration less than 30-minutes. 								

Estimated Net Annual Solids Load Reduction Based on the Rational Rainfall Method

separator™

LEICESTER, MA

DMH-57

AREA WEIGHTED C TC	2.59 0.90 6.00	acres minutes	CASCADE MODEL PARTICLE SIZE RAINFALL STATION	CS-5 110 70	microns			
Rainfall Intensity ¹ (in/hr)	Percent R	ainfall Volume ¹	Hydraulic Loading Rate (gpm/ft2)	Removal Efficiency (%)	Incremental Removal (%)			
0.04		15.1%	2.13	100.0	15.1			
0.08		24.6%	4.26	100.0	24.6			
0.12		13.7%	6.39	100.0	13.7			
0.16		9.4%	8.53	100.0	9.4			
0.20		6.6%	10.66	100.0	6.6			
0.24		5.2%	12.79	99.9	5.2			
0.28		4.8% 14.92 97.9		97.9	4.7			
0.32		3.1% 17.05		95.9	3.0			
0.36		2.7% 19.18		93.9	2.5			
0.40		2.1%	21.31	91.9	1.9			
0.48		2.5% 25.58		87.9	2.2			
0.56		2.0%	29.84	83.9	1.7			
0.64		1.4%	34.10	79.8	1.1			
0.72		1.0%	38.36	75.8	0.8			
0.80		1.1%	42.63	71.8	0.8			
1.00		1.6%	53.28	61.8	1.0			
1.20		0.9%	63.94	51.8	0.5			
1.40		0.6%	74.60	41.8	0.3			
1.60		0.5%	80.01	34.4	0.2			
1.80		0.5%	80.01	30.6	0.1			
				_	95.5			
	Removal Efficiency Adjustment ² = 0.0%							
	Predicted % Annual Rainfall Treated = 99.5%							
	Predicted Net Annual Load Removal Efficiency = 95.5%							
 Based on 14 years of 15-minute rainfall data from NCDC Station 2107, East Brimfield Lake, Worcester County, MA Reduction due to use of 60-minute data for a site that has a time of concentration less than 30-minutes. 								

Stormwater Pipe Sizing Calculation

DRAINAGE PIPE DESIGN ANALYSIS

Manning's Formula

 $V=1.486/n*R^{2/3}*S^{1/2}$ Where: V is the velocity in Ft/sec.Q = V*An is Manning's coefficient of friction(25-Year storm)R is the Hydraulic Radius
S is the slope of the pipe

Where: Area=Pi*(R/12)2 Wetted Perimeter=2*Pi*R/12

A&M Job No.	2889-01
Date:	12/2/2022
Project Location:	
Skyview Estates	
Main Street	
Leicester, MA	
Prepared For:	
MKEP 770 LLC	
265 Sunrise Highway	y, Suite 1368
Rockville Center, NY	[′] 11570

Start	\mathbf{Q}_{design}	n	Diameter	Α	Wp	R	S	Q _{full}	Q _{full} ≥ Q _{design}	V _{full}	Q_d/Q_f	Results	V _{design}	2 ft/s ≤ V _{design} ≤ 10 ft/s
	(cfs)		(inches)	(ft^2)	(ft)	(ft)	(feet/foot)	(cfs)	2	(ft/s)		Fig. 4-4A	(ft/s)	5
DMH-01	1.88	0.013	12	0.79	3.14	0.25	0.012	3.90	OK	4.97	0.48	0.98	4.87	OK
DMH-05	8.38	0.013	15	1.23	3.93	0.31	0.070	17.09	OK	13.93	0.49	0.98	13.65	WAIVER REQUESTED
DMH-20	6.87	0.013	18	1.77	4.71	0.38	0.008	9.10	OK	5.15	0.76	1.10	5.66	ОК
DMH-21	18.57	0.013	24	3.14	6.28	0.50	0.009	21.93	OK	6.98	0.85	1.12	7.82	ОК
DMH-23	23.73	0.013	30	4.91	7.85	0.63	0.013	46.77	OK	9.53	0.51	1.00	9.53	ОК
DMH-25	2.69	0.013	12	0.79	3.14	0.25	0.070	9.43	OK	12.00	0.29	0.84	10.08	WAIVER REQUESTED
DMH-31	6.83	0.013	12	0.79	3.14	0.25	0.045	7.56	OK	9.62	0.90	1.13	10.87	WAIVER REQUESTED
DMH-50 (CDS)	6.36	0.013	15	1.23	3.93	0.31	0.080	18.27	OK	14.89	0.35	0.89	13.25	WAIVER REQUESTED
DMH-51	6.36	0.013	15	1.23	3.93	0.31	0.078	18.01	OK	14.67	0.35	0.89	13.06	WAIVER REQUESTED
DMH-52	6.36	0.013	15	1.23	3.93	0.31	0.080	18.27	OK	14.89	0.35	0.89	13.25	WAIVER REQUESTED
DMH-53	7.06	0.013	18	1.77	4.71	0.38	0.047	22.82	OK	12.91	0.31	0.85	10.98	WAIVER REQUESTED
DMH-55	14.35	0.013	24	3.14	6.28	0.50	0.046	48.26	OK	15.36	0.30	0.85	13.06	WAIVER REQUESTED
DMH-56	15.87	0.013	30	4.91	7.85	0.63	0.010	41.02	OK	8.36	0.39	0.91	7.60	ОК
DMH-57 (CDS)	15.87	0.013	30	4.91	7.85	0.63	0.008	36.69	OK	7.47	0.43	0.95	7.10	ОК
DMH-58	15.87	0.013	30	4.91	7.85	0.63	0.008	36.69	OK	7.47	0.43	0.95	7.10	ОК
DMH-59	15.87	0.013	30	4.91	7.85	0.63	0.009	39.13	OK	7.97	0.41	0.94	7.49	ОК
DMH-60	15.87	0.013	30	4.91	7.85	0.63	0.012	43.99	OK	8.96	0.36	0.89	7.98	ОК
DMH-61	15.87	0.013	30	4.91	7.85	0.63	0.010	41.02	OK	8.36	0.39	0.91	7.60	ОК
DMH-62	22.23	0.013	30	4.91	7.85	0.63	0.033	74.51	OK	15.18	0.30	0.85	12.90	WAIVER REQUESTED
DMH-69	22.23	0.013	30	4.91	7.85	0.63	0.034	75.63	OK	15.41	0.29	0.84	12.94	WAIVER REQUESTED
OCS-01	5.03	0.013	15	1.23	3.93	0.31	0.007	5.48	OK	4.47	0.92	1.14	5.09	ОК
OCS-02	6.64	0.013	24	3.14	6.28	0.50	0.028	38.12	OK	12.14	0.17	0.70	8.49	ОК
OCS-04	6.83	0.013	18	1.77	4.71	0.38	0.022	15.62	OK	8.84	0.44	0.95	8.39	OK
OCS-05	0.56	0.013	12	0.79	3.14	0.25	0.010	3.56	OK	4.54	0.16	0.69	3.13	ОК

MADEP Calculations

Project No.	2889-01	Sheet	1
Project Description	Skyview Estates		
	Leicester, MA		
Calculated By	SM	Date	09/28/21
Checked By	MAM		

These calculations provide the TSS removal rate of the stormwater management system for runoff directed to the open detention basin

Stormwater Management BMP	TSS Removal ra	ate
Parking Lot Sweeping Hooded Catch Basins Proprietary Device (CDS Unit)	5% 25% 80%	
Average Annual Load Parking Lot Sweeping	= 100% = 5%	Removal Rate
	95%	TSS Load Remains
TSS Load Remaining Hooded Catch Basins	= 95% = 25%	Removal Rate
	71.3%	TSS Load Remains
TSS Load Remaining Proprietary Device (CDS Unit)	= 71.3% = <u>80%</u>	Removal Rate
	14.3%	% TSS Load Remains
Percentage of TSS Remaining	- Initial TSS	Load = Final TSS Removal Rate
100% _ 14.3%	= 85.8%	

For this drainage area, this system as designed will remove an estimated 86% of the annual TSS load and therefore will meet the TSS removal standard.

Project No.	2889-01	Sheet	2
Project Description	Skyview Estates		
	Leicester, MA		
Calculated By	SM	Date	09/28/21
Checked By	MAM		

These calculations provide the TSS removal rate of the stormwater management system for runoff directed to the retain-it detention systems

Stormwater Management BMP	TSS F	Removal rate	
Parking Lot Sweeping Hooded Catch Basins Retain-It Advanced Sedimentation		5% 25% 80%	
Average Annual Load Parking Lot Sweeping	= = =	100% 5%	Removal Rate
		95%	TSS Load Remains
TSS Load Remaining Hooded Catch Basins	= = =	95% 25%	Removal Rate
		71.3%	TSS Load Remains
TSS Load Remaining Retain-It Advanced Sedimentation	= = =	71.3% 80% 14.3%	Removal Rate % TSS Load Remains
Percentage of TSS Remaining	-	Initial TSS Loa	d = Final TSS Removal Rate
100% _ 14.3%	=	85.8%	

For this drainage area, this system as designed will remove an estimated 86% of the annual TSS load and therefore will meet the TSS removal standard.

Project No.	2889-01	Sheet	1 of 1	
Project Description	Skyview Estates	-		
	Leicester, MA			
Calculated By	JG	Date	04/29/22	
Checked By	MAM			

TOTAL RECHARGE FOR ENTIRE PROJECT

Standard # 3: Groundwater Recharge

Proposed recharge system: Dry Well

In accordance with MADEP – Volume 2, Technical Guide for Compliance with Massachusetts Stormwater Management Standards, dated January 2008

0.60 inches	A soils require a Volume to recharge of
0.35 inches	B soils require a Volume to recharge of
0.25 inches	C soils require a Volume to recharge of
0.10 inches	D soils require a Volume to recharge of
= 0.25 in	Weighted Groundwater Recharge Depth

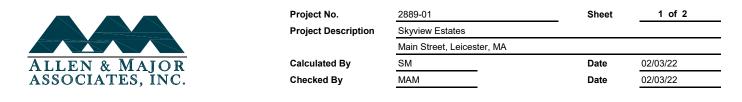
Impervious area within: A-soils =	0	sf
Impervious area within: B-soils =	14,898	sf
Impervious area within: C-soils =	401,275	sf
Impervious area within: D-soils =	0	sf

Total Site Volume required to be recharged =

416,172 sf x 1" / 12 x 0.25 in = **8,794 cf**

	-		ovided by = volume with ch grouping of homes	-	wells me=	1	96
=	8,820	c.f. ⁻	Total Volume Recharged	>	8,7	94	cf (OK)
	Unit #01	=	Drywell #01	Unit	#28	=	Drywell #26
	Unit #01	=	Drywell #02	Unit	#28	=	Drywell #27
	Unit #02	=	Drywell #03	Unit	#32	=	Drywell #28
	Unit #02	=	Drywell #04	Unit	#32	=	Drywell #29
	Unit #03	=	Drywell #05	Unit	#33	=	Drywell #30
	Unit #04	=	Drywell #06	Unit	#33	=	Drywell #31
	Unit #05	=	Drywell #07	Unit	#33	=	Drywell #32
	Unit #06	=	Drywell #08	Unit	#34	=	Drywell #33
	Unit #07	=	Drywell #09	Unit	#34	=	Drywell #34
	Unit #08	=	Drywell #10	Unit	#35	=	Drywell #35
	Unit #09	=	Drywell #11	Unit	#35	=	Drywell #36
	Unit #10	=	Drywell #12	Unit	#36	=	Drywell #37
	Unit #11	=	Drywell #13	Unit	#36	=	Drywell #38
	Unit #12	=	Drywell #14	Unit	#37	=	Drywell #39
	Unit #12	=	Drywell #15	Unit	#37	=	Drywell #40
	Unit #13	=	Drywell #16	Unit	#38	=	Drywell #41
	Unit #13	=	Drywell #17	Unit	#39	=	Drywell #42
	Unit #14	=	Drywell #18	Unit	#39	=	Drywell #43
	Unit #15	=	Drywell #19	Unit	#39	=	Drywell #44
	Unit #15	=	Drywell #20	Unit	#39	=	Drywell #45

Unit #16 = Drywell #21 Unit #16 = Drywell #22 Unit #17 = Drywell #23 Unit #18 = Drywell #24 Unit #18 = Drywell #25


	Project No.	2889-01	Sheet	1 of 1
	Project Description	Skyview Estates		
		Leicester, MA		
ALLEN & MAJOR	Calculated By	JG	Date	12/14/21
ASSOCIATES, INC.	Checked By	MAM		

Standard # 3: Groundwater Recharge

Proposed recharge system: Dry Well

In accordance with MADEP – Volume 2, Technical Guide for Compliance with Massachusetts Stormwater Management Standards, dated January 2008

			A soils require a Volume to recharge of B soils require a Volume to recharge of C soils require a Volume to recharge of D soils require a Volume to recharge of	0.60 0.35 0.25 0.10	inches inches	5
Impervious area within: A-soils =	0	sf	Weighted Groundwater Recharge Depth	=	0.25 ir	n
Impervious area within: B-soils =	14,898	sf				
Impervious area within: C-soils =	401,275	sf				
Impervious area within: D-soils =	0	sf				
Total Site Volume required to be recha	arged =					
416,172 sf x 1" / 12 x	0.25 in =	8,794	cf			
Site volume recharge provided by = volu 98 Drywells at each grouping of h			rywells plume= 196			
= 19,208 c.f. Total Volume Red	charged	>	• 8,794 cf (OK)			

Outlet #
 FES-01

 Q10 =
 19.85 cfs

$$T_w = 0.6$$
 feet

 D_o =
 30 inches

<u>Design Criteria</u> Apron Dimensions

The dimensions of the apron at the outlet of the pipe shall be determined as follows:

1.) The width of the apron at the outlet of the pipe or channel shall be 3 times the diameter of the pipe of width of the channel.

W= **7.5** feet

2.) The length of the apron shall be determined from the following formula when the tailwater depth at the outlet of the pipe or channel is less than one-half the diameter of the pipe or one-half the width of the channel:

Where:

La is the length of the apron Q is the discharge from the pipe or channel D_o is the diameter of pipe of width of channel

3.) When the depth of the tailwater at the outlet of the pipe or channel is equal to or greater than one-half the diameter of the pipe or the width of the channel. Then the following formula applies:

La=3.0*Qo/ Do^1.5 +7D_o La= **32.57** feet

- 4.) Where there is no well defined channel downstream of the outlet, the width of the downstream end of the apron shall be determined as follows:
 - a. For minimum tailwater conditions where the tailwater depth is less than the elevation of the center of the pipe:

W=3*Do+La

b. For maximum tailwater conditions where the tailwater depth is greater than the elevation of the center of the pipe:

W=3*Do+0.4*La W= **20.53** feet

5.) Where there is a stable well-defined channel downstream of the apron, the bottom of the apron shall be equal to the width of the channel.

Pr	oject No.	2889-01	Sheet	2 of 2
Pr	oject Description	Skyview Estates		
		Main Street, Leicester, MA		
Ca	Iculated By	SM	Date	02/03/22
Ch	ecked By	MAM	Date	02/03/22

- 6.) The side of the apron in a well-defined channel shall be 2:1 (horizontal to vertical) or flatter. The height of the structural lining along the channel sides shall begin at the elevation equal to the top of conduit and taper down to the channel bottom through the length of the apron.
- 7.) The bottom grade of the apron shall be level (0% grade). No overfall is allowable at the end of the apron.
- 8.) The apron shall be located so that there are no bends in the horizontal alignment of the apron.

Rock Riprap

The following criteria shall be used to determine the dimensions of the rock riprap used for the apron:

1.) The median stone diameter shall be determined using the formula:

d ₅₀ =0.	.02*Q^4/3/(Tw*D _o)	
d ₅₀ =	8.11 inches	USE 8 inches
		d ₅₀ minimum 3 inches

Where:

 $d_{\rm 50}$ is the median stone diameter in feet

Tw is the tailwater depth above the invert of the pipe channel in feet Q is the discharge from the pipe or channel in cubic feet per second D_o is the diameter of the pipe or width of the channel in feet

- 2.) Fifty percent by weight of the riprap mixture shall be smaller the than median size stone designated as d_{50} . The largest stone size in the mixture shall be 1.5 times the d_{50} size.
- 3.) The quality and gradation of the rock, the thickness of the riprap lining, filter material and the quality of the stone shall meet the requirements in the Rock Riprap BMP. The minimum depth shall be 6 inches or 1.5 times the largest stone size in the mixture whichever is larger (d).

Thickness of the riprap

 $d = 1.5^{*}(1.5^{*}d_{50}(\text{largest stone size}))$

d = **18** inches*

* must use a minimum of 6"

Rock Rip Rap Gradation

p hap Gradation			
% of weight smaller			
than the given size	size of	f stone in	inches
100	12.2	to	16.2
85	10.5	to	14.6
50	8.1	to	12.2
15	2.4	to	4.1

Formulas Used (Reference NHDES Handbook, Pages 7-114, 7-115)

Project No.	
Project Description	n

2889-01	
Classian	Latate

1 of 3

Sheet

Calculated By Checked By

Skyview Estates		
Main Street, Leicester, MA		
SM	Date	02/03/2
MAM	Date	02/03/2

OPEN CHANNEL FLOW DESIGN/ANALYSIS

Stone Swale 1:

Chanr	Channel Dimensions									
Q ₅₀ (cfs)	3.63									
Bottom Width (ft)	2									
Side Slopes	4	:1								
Channel Slope ('/')	0.1052									
Channel depth (ft)	1									
Area (ft^2)	6.00									
Wetted Perimeter (ft)	10.25									
Hydraulic Radius (ft)	0.59									
P/R	17.50									
d ₅₀ (in.)	6	(see fig. 7-43)								
(R) = Hydraul	ic Radius	s = A/P								
Where: A=C	ross sec	tional area of waterway								
P=W	/etted pe	rimeter								

Rock Riprap

The following criteria shall be used to determine the dimensions of the rock riprap used for the apron:

1.) The median stone diameter shall be determined using the formula:

d ₅₀ =	6.00 inches	USE 6.00 inches
		d ₅₀ minimum 3 inches

- 2.) Fifty percent by weight of the riprap mixture shall be smaller the than median size stone designated as d₅₀. The largest stone size in the mixture shall be 1.5 times the d_{50} size.
- 3.) The quality and gradation of the rock, the thickness of the riprap lining, filter material and the quality of the stone shall meet the requirements in the Rock Riprap BMP. The minimum depth shall be 6 inches or 1.5 times the largest stone size in the mixture whichever is larger (d).

Thickness of the riprap $d = 1.5^{*}(1.5^{*}d_{50}(\text{largest stone size}))$ d = 14 inches*

* must use a minimum of 6"

Rock Rip Rap Gradation

p Rup Oradation				
% of weight smaller				
than the given size	size of	stone in	inches	
100	9.0	to	12.0	
85	7.8	to	10.8	
50	6.0	to	9.0	
15	1.8	to	3.0	

Project	No.
Proiect	Description

2889-01
Skyview Estates

MAM

Main Street, Leicester, MA

Date 02

Sheet

Date

02/03/22 02/03/22

2 of 3

Calculated By Checked By

OPEN CHANNEL FLOW DESIGN/ANALYSIS

Stone Swale 2:

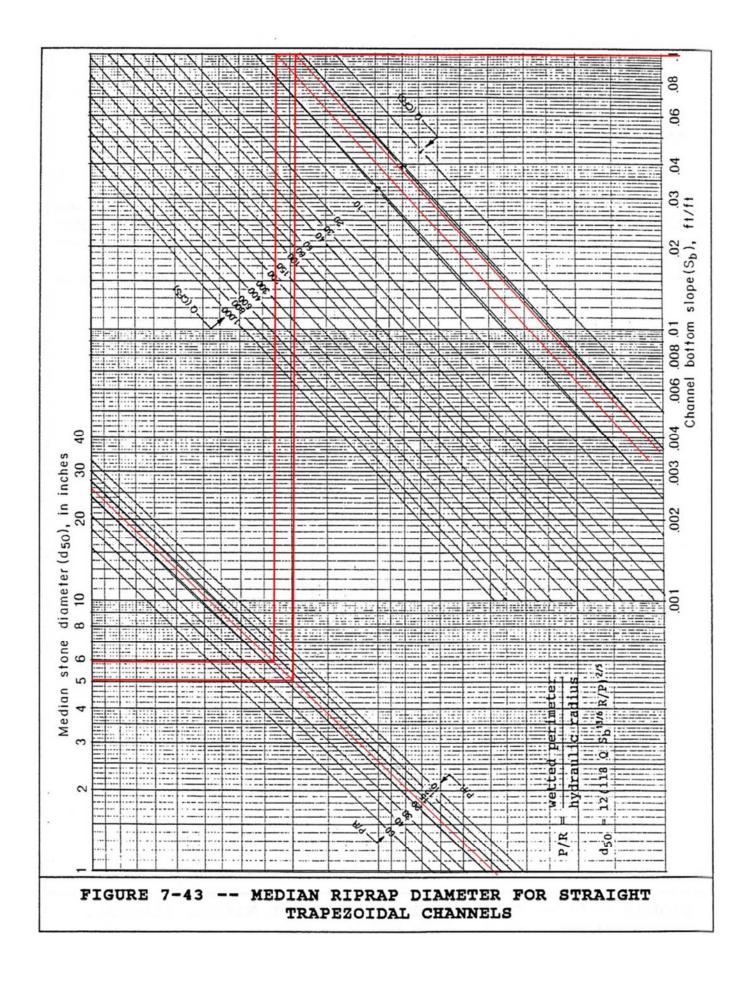
Channel Dimensions									
Q ₅₀ (cfs)	2.4								
Bottom Width (ft)	2								
Side Slopes	4	:1							
Channel Slope ('/')	0.111								
Channel depth (ft)	1								
Area (ft^2)	6.00								
Wetted Perimeter (ft)	10.25								
Hydraulic Radius (ft)	0.59								
P/R	17.50								
d ₅₀ (in.)	5.1	(see fig. 7-43)							
(R) = Hydraul	ic Radius	s = A/P							
Where: A=C	ross sec	tional area of waterway							
P=W	/etted pe	erimeter							

Rock Riprap

The following criteria shall be used to determine the dimensions of the rock riprap used for the apron:

1.) The median stone diameter shall be determined using the formula:

d ₅₀ =	5.10 inches	USE 5.10 inches
		d ₅₀ minimum 3 inches


- 2.) Fifty percent by weight of the riprap mixture shall be smaller the than median size stone designated as d_{50} . The largest stone size in the mixture shall be 1.5 times the d_{50} size.
- 3.) The quality and gradation of the rock, the thickness of the riprap lining, filter material and the quality of the stone shall meet the requirements in the Rock Riprap BMP. The minimum depth shall be 6 inches or 1.5 times the largest stone size in the mixture whichever is larger (d).

Thickness of the riprap $d = 1.5^{*}(1.5^{*}d_{50}(\text{largest stone size}))$ d = 11 inches*

* must use a minimum of 6"

Rock Rip Rap Gradation

p hup ordunion			
% of weight smaller			
than the given size	size of	stone in	inches
100	7.7	to	10.2
85	6.6	to	9.2
50	5.1	to	7.7
15	1.5	to	2.6

	Skyview Estates - Leicester, MA Allen & Major Associates, Inc.					
		Ву	mm			
Title	Inlet Grate Capacity	Chk'd	MAM			
Project	Skyview Estates - Leicester, MA	Apprv'd	MAM			
Date	March 7, 2019					
A&M Project	t: 2889-01					

GUTTER FLOW INLET GRATE CAPACITY

4.85 10 year storm

Rainfall Intensity (in/hr):

Structure I.D.	Contributing Area (Acres)	Runoff Coefficient (C)	Q10 Year Storm (Q=CiA)	Q10 + bypass	Longitudinal Cross Slope (SL)	Transverse Cross Slope (ST)	Width of Grate Perpendicular to Flow (GW)	Depth of Flow (d)	Top Width of Flow (Zd)	Velocity (V), fps	Gutter Flow Ratio (Eo)	Site Flow Ratio (Rs)	Grate Efficiency (%)	Intercepted Flow	Bypass Flow	Bypass Flow to
CB-01	0.191	0.85	0.79	0.79	0.0200	0.117	2.00	0.22	1.88	3.82	1.00	0.25	100%	0.79	0.00	-
CB-02	0.191	0.85	0.79	0.79	0.0200	0.117	2.00	0.22	1.88	3.82	1.00	0.25	100%	0.79	0.00	-
CB-03	0.191	0.85	0.79	0.79	0.0200	0.117	2.00	0.22	1.88	3.82	1.00	0.25	100%	0.79	0.00	CB-03
CB-04	0.250	0.88	1.06	1.06	0.0200	0.117	2.00	0.25	2.11	4.12	1.00	0.23	100%	1.06	0.00	CB-01
CB-05	0.250	0.88	1.06	1.07	0.0200	0.117	2.00	0.25	2.11	4.12	1.00	0.23	100%	1.06	0.00	CB-02
CB-09	0.715	0.77	2.67	2.67	0.0200	0.117	2.00	0.35	2.98	5.20	0.95	0.16	96%	2.53	0.14	CB-08
CB-20	0.755	0.84	3.07	3.21	0.0200	0.120	2.00	0.38	3.13	5.48	0.93	0.16	94%	3.00	0.21	CB-04
CB-21	0.755	0.84	3.07	3.29	0.0200	0.120	2.00	0.38	3.16	5.52	0.93	0.15	94%	3.06	0.23	CB-05
CB-26	0.278	0.93	1.25	4.61	0.0200	0.100	2.00	0.40	4.02	5.74	0.84	0.12	86%	3.87	0.74	CB-25
CB-27	0.278	0.93	1.25	1.99	0.0200	0.100	2.00	0.29	2.94	4.65	0.95	0.17	96%	1.90	0.10	CB-24
CB-50	0.703	0.91	3.10	3.20	0.0200	0.080	2.00	0.32	4.03	4.95	0.84	0.13	86%	2.68	0.52	CB-52
CB-51	0.703	0.91	3.10	3.62	0.0200	0.080	2.00	0.34	4.22	5.10	0.82	0.12	84%	2.96	0.66	CB-53
CB-55	0.829	0.93	3.74	8.84	0.0200	0.063	2.00	0.43	6.88	6.00	0.60	0.08	63%	5.30	3.55	CB-57
CB-56	0.829	0.93	3.74	7.28	0.0200	0.063	2.00	0.40	6.40	5.72	0.63	0.08	66%	4.60	2.69	CB-58
CB-57	0.188	0.93	0.85	3.53	0.0200	0.063	2.00	0.31	4.88	4.77	0.76	0.11	78%	2.66	0.87	-
CB-58	0.188	0.93	0.85	1.71	0.0200	0.063	2.00	0.23	3.72	3.98	0.87	0.15	89%	1.49	0.22	-

**Bypass flow to sump catch basin. See separate sheet.

GUTTER FLOW EQUATIONS

Depth of Flow (d): = [Q * St / 37*(SL)^.5]^.375

Top Width of Flow (Zd): =
$$(d / ST)$$

Velocity of Flow (V): = (Kc / n)* (SL^0.5 * St^0.67 * Zd^0.67)

Gutter Flow Ratio (Eo): = 1-(1-GW/Zd)^2.67

Site Flow Ratio (Rs): = 1/[1 + (0.15V^1.8) / (SxL* L^2.3)]

Grate Efficiency: = Rf * Eo + Rs(1 - Eo)

Intercepted Flow (Qi): = (Q - Qb)

Bypass Flow (Qb): = Q[Zd - GW / Zd]^2.66

Skyview Estates - Le	eicester, MA					
Allen & Major Assoc	Computatio	Computation Sheet				
Title Project Date A&M Project Number:	<i>Inlet Grate Capacity</i> Skyview Estates - Leicester, MA 2/4/2022 2889-01	Rainfall Intensity (in/hr): Single Grate Open Area (s.f.):	4.85 2.55	10 year storm	By Chk'd Apprv'd	mm MAM MAM
SUMP CATCH BASINS (at a low point, not gutter flow)		Orifice Coefficient: gravitational constant (fps ²): Perimeter of single CB (ft):	0.6 32.2 8	(unless along a	curb)	

Structure I.D.	Contributing Area (acres)	Average CN value	C*A	Q10 Year Storm	Orifice Flow Ponding depth (ft)	Perimeter of grate for weir flow	Weir Flow Ponding Depth (ft)	Total depth of ponding (ft)	CB Rim Elevation	Peak Elevation
CB-22	1.184	0.87	1.030	5.0	0.17	8.0	0.33	0.33	904.73	905.06
CB-23	1.184	0.87	1.030	5.0	0.17	8.0	0.33	0.33	904.73	905.06
CB-24	0.523	0.88	0.460	2.2	0.03	8.0	0.19	0.19	910.51	910.70
CB-25	0.523	0.88	0.460	2.2	0.03	8.0	0.19	0.19	910.61	910.80
CB-52	0.709	0.91	0.645	3.1	0.06	8.0	0.24	0.24	921.29	921.53
CB-53	0.709	0.91	0.645	3.1	0.06	8.0	0.24	0.24	921.27	921.51
CB-54	0.709	0.91	0.645	3.1	0.06	8.0	0.24	0.24	920.60	920.84

**Includes bypass flow from upstream strucutres Orifice Equation: Q = C*A*(2*g*h)^.5 Solve for h yields: $(Q/(C*A))^2/(2*g)$

Weir Flow Equation: $Q=3.3*P(h)^{1.5}$ Solve for h yields: $(Q/(3.3*P))^{0.667}$

Overlay District Calculations

Subcat WRPOD

Link

Routing Diagram for 2889-01 - Proposed HydroCAD-WRPOD_rev3 Prepared by Allen & Major Associates, Inc, Printed 12/2/2022 HydroCAD® 10.20-2f s/n 02881 © 2022 HydroCAD Software Solutions LLC

Area Listing (all nodes)

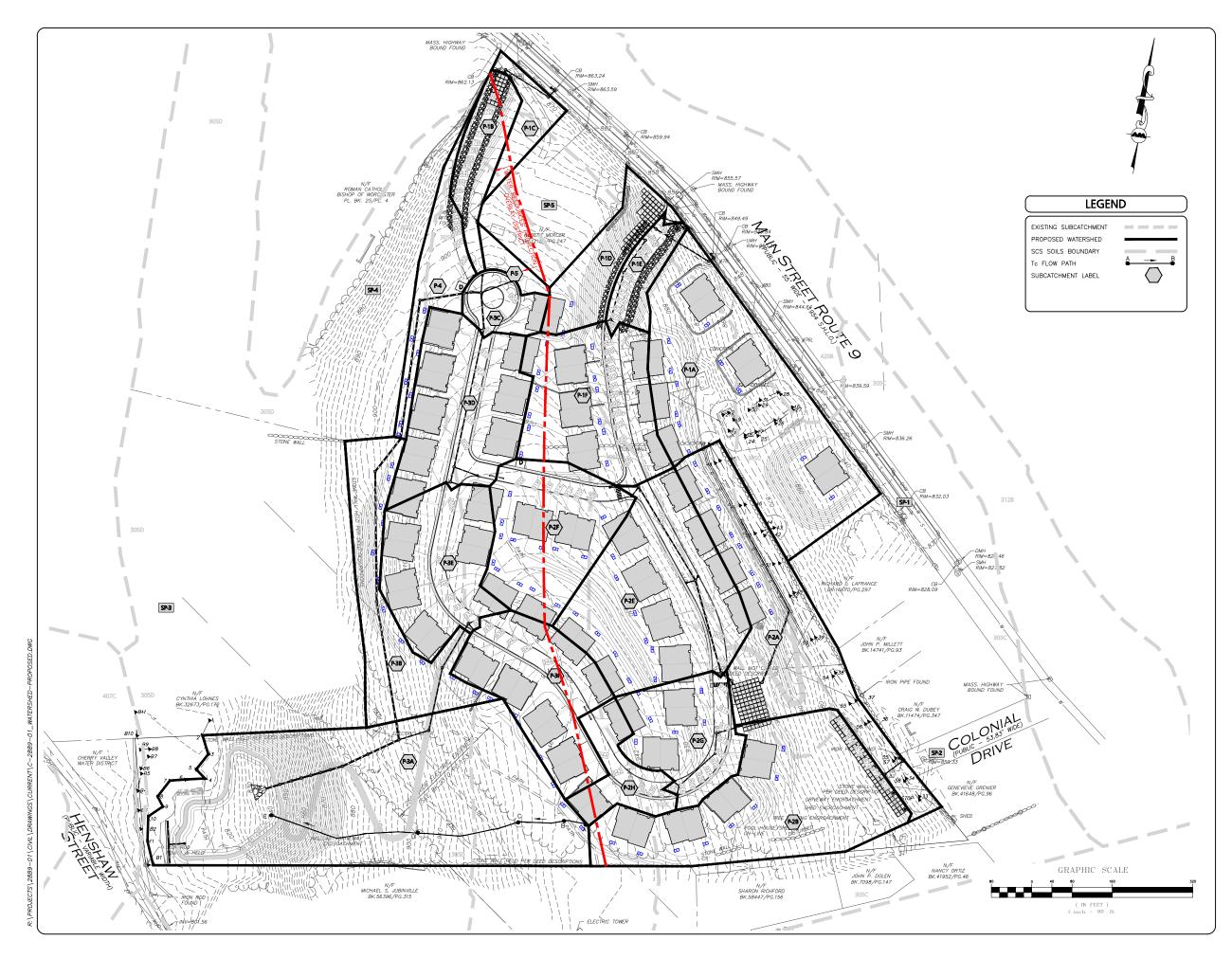
Area	CN	Description
(sq-ft)		(subcatchment-numbers)
1,130	61	>75% Grass cover, Good, HSG B (WRPOD)
339,127	74	>75% Grass cover, Good, HSG C (WRPOD)
75,736	65	Brush, Good, HSG C (WRPOD)
16,147	89	Gravel roads, HSG C (WRPOD)
555	98	Paved parking, HSG B (WRPOD)
49,711	98	Paved parking, HSG C (WRPOD)
34,831	98	Roofs, HSG C (WRPOD)
61,889	70	Woods, Good, HSG C (WRPOD)
579,126	76	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(sq-ft)	Group	Numbers
0	HSG A	
1,685	HSG B	WRPOD
577,441	HSG C	WRPOD
0	HSG D	
0	Other	
579,126		TOTAL AREA

2889-01 - Proposed HydroCAD-WRPOD_rev3 Prepared by Allen & Major Associates, Inc HydroCAD® 10.20-2f s/n 02881 © 2022 HydroCAD Software Solutions LLC

Ground Covers (all nodes)


 HSG-A (sq-ft)	HSG-B (sq-ft)	HSG-C (sq-ft)	HSG-D (sq-ft)	Other (sq-ft)	Total (sq-ft)	Ground Cover	Subcatchment Numbers
 0	1,130	339,127	0	0	340,256	>75% Grass cover, Good	WRPOD
0	0	75,736	0	0	75,736	Brush, Good	WRPOD
0	0	16,147	0	0	16,147	Gravel roads	WRPOD
0	555	49,711	0	0	50,266	Paved parking	WRPOD
0	0	34,831	0	0	34,831	Roofs	WRPOD
0	0	61,889	0	0	61,889	Woods, Good	WRPOD
0	1,685	577,441	0	0	579,126	TOTAL AREA	

Summary for Subcatchment WRPOD: Subcat WRPOD

Runoff = 20.35 cfs @ 12.01 hrs, Volume= 56,606 cf, Depth= 1.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.23"

 Area (sf)	CN	Description
49,711	98	Paved parking, HSG C
555	98	Paved parking, HSG B
1,130	61	>75% Grass cover, Good, HSG B
339,127	74	>75% Grass cover, Good, HSG C
61,889	70	Woods, Good, HSG C
75,736	65	Brush, Good, HSG C
16,147	89	Gravel roads, HSG C
 34,831	98	Roofs, HSG C
 579,126	76	Weighted Average
494,029		85.31% Pervious Area
85,097		14.69% Impervious Area

1				
<u> </u>				
REV	DATE T:	DESCI	RIPTION	
APPLICAN	T:		RIPTION	
APPLICAN MK 26	T: (EP 770 5 SUNRIS	LLC SE HIC	SHWAY, SI	JITE 1368
APPLICAN MK 26	T: (EP 770 5 SUNRIS	LLC SE HIC		JITE 1368 570
APPLICAN MK 26	T: (EP 770 5 SUNRIS CKVILLE	LLC 5e hic Cent	GHWAY, SI ER, NY 11	570
APPLICAN MK 265 RO PROJECT:	T: SEP 770 I S SUNRIS CKVILLE SKYV	LLC SE HIC CENT	GHWAY, SI ER, NY 11	570 :S
APPLICAN MK 265 RO PROJECT:	EP 770 5 SUNRIS CKVILLE SKYV DENTI	LLC SE HIC CENT /IEW AL [GHWAY, SI ER, NY 11 ESTATE DEVELOF	570 :S
APPLICAN MK 265 RO PROJECT:	EP 770 I 5 SUNRIS CKVILLE SKYV DENTI	LLC SE HIC CENT /IEW AL [MAIN !	GHWAY, SI ER, NY 11	570 :S
APPLICAN MK 265 RO PROJECT:	EP 770 I 5 SUNRIS CKVILLE SKYV DENTI	LLC SE HIC CENT /IEW AL [MAIN !	SHWAY, SI ER, NY 11 ESTATE DEVELOF STREET	570 :S
APPLICAN MK 265 RO PROJECT:	EP 770 I 5 SUNRIS CKVILLE SKYV DENTI M LE	LLC SE HIC CENT /IEW AL [MAIN !	SHWAY, SI ER, NY 11 ESTATE DEVELOF STREET	570 :S
APPLICAN MK 261 RO PROJECT: RESI	TEP 770 I 5 SUNRIS CKVILLE SKYV DENTI NO.	LLC SE HIC CENT (IEW AL D MAIN S	SHWAY, SI ER, NY 11 ESTATE DEVELOF STREET ER, MA DATE:	570 S PMENT
APPLICAN MK 263 RO PROJECT: RESI PROJECT SCALE: DESIGNEE	T: EP 770 5 SUNRIS CKVILLE SKYV DENTI NO. BY:	LLC SE HIC CENT /IEW AL D AL D AL D SICEST 2889-01	SHWAY, SI ER, NY 11 ESTATE DEVELOF STREET ER, MA DATE:	570 S PMENT 06-23-21 1. Weischel Proposed
APPLICAN MK 261 RO PROJECT: RESI PROJECT SCALE:	T: EP 770 5 SUNRIS CKVILLE SKYV DENTI NO. BY:	LLC 5E HIC CENT /IEW AL D AL D AIN 1 :ICEST 2889-01	GHWAY, SI ER, NY 11 ESTATE DEVELOF STREET ER, MA DATE: DWG. : 63884	570 S PMENT 06-23-21 1. Weischel Proposed
APPLICAN MK 263 RO PROJECT: RESI PROJECT SCALE: DESIGNEE	T: EP 770 5 SUNRIS CKVILLE SKYV DENTI NO. BY:	LLC 5E HIC CENT /IEW AL D AL D AIN 1 :ICEST 2889-01	GHWAY, SI ER, NY 11 ESTATE DEVELOF STREET ER, MA DATE: DWG. : 63884	570 S PMENT 06-23-21 1. Weischel Proposed
APPLICAN MK 263 RO PROJECT: RESI PROJECT SCALE: DESIGNEE	T: EP 770 5 SUNRIS CKVILLE SKYV DENTI NO. BY:	LLC 5E HIC CENT /IEW AL D AL D AIN 1 :ICEST 2889-01	GHWAY, SI ER, NY 11 ESTATE DEVELOF STREET ER, MA DATE: DWG. : 63884	570 S PMENT 06-23-21 1. Weischel Proposed
APPLICAN MK 261 RO PROJECT RESI PROJECT SCALE: DESIGNEE DESIGNEE	T: EEP 770 I 5 SUNRIS CKVILLE SKYV DENTI NO. BY: 37	LLC SE HIC CENT /IEW AL C MAIN 1 LICEST 2889-01 1*- 80' SM	SHWAY, SI ER, NY 11 ESTATE DEVELOF STREET ER, MA DATE: DWG.: Cases CHECKED BY:	570 S MENT 0623-21 1_WeechedProposed MAM
APPLICAN MK 261 RO PROJECT RESI PROJECT SCALE: DESIGNED	T: EP 770 I 5 SUNRIS CKVILLE SKYV DENTI NO. D BY: 312 LLEN	LLC 5E HIC CENT /IEW AL [MAIN 1 ICEST 11- 80' 5M	EHWAY, SI ER, NY 11 ESTATE DEVELOF STREET ER, MA DATE DWG.: CABBY CHECKED BY:	570 S PMENT 0623-21 7. Weischel/Papael MAM
APPLICAN MIK 26: RO PROJECT: RESI PROJECT SCALE: DESIGNED DESIGNED A I A I A S	TE TE TE TE TE TE TE TE TE TE	LLC SE HIC CENT (IEW AL [MAIN 2 II- 80' SM N & CIA'	EHWAY, SI ER, NY 11 ESTATE DEVELOF STREET ER, MA DATE DWG.: C200 CHECKED BY: CMAJ TES, J	570 S MENT 062321 1, Washel/hopoad MAM
APPLICAN MIK 26: RO PROJECT: RESI PROJECT SCALE: DESIGNEE PREPARED I	T: EEP 770 I 5 SUNRIS CKVILLE SKYV DENTI M LE NO. 2 BY: 37 CLEEN SCOC civil engin anental con	LLC SE HIC CENT /IEW AL D MAIN 1 CICEST 2889-01 11-80 SM SM SM CIA' CIA' CIA'	EHWAY, SI ER, NY 11 ESTATE DEVELOF STREET ER, MA DATE DWG.: C2000 CHECKED BY: CHECKED BY:	570 S MENT 062321 JUMachalPapaad MAM
APPLICAN MIK 26: RO PROJECT: RESI PROJECT SCALE: DESIGNEE PREPARED I	T: EEP 770 I 5 SUNRIS CKVILLE SKYV DENTI NO. DBY: 37 CLEEN SCOC civil egin actual const	LLC SE HICCENT (IEW AL D MAIN 1 CICEST 2889-01 11- 80 SM SM SM CIA' CIA' CIA'	EHWAY, SI ER, NY 11 ESTATE DEVELOF STREET ER, MA DATE DVIG.: C2099 CHECKED BY: CHECKED BY:	570 SPMENT 0623-21 NUWARSHAF400000 MAAM MAAM
APPLICAN MIK 26: RO PROJECT: RESI PROJECT SCALE: DESIGNEE PREPARED I	T: EEP 770 I 5 SUNRIS CKVILLE SKYV DENTI M LE NO. 5 BY: 37 CLEEN SCOC civil engin antal con W W w a 100 CON W WY	LLC SE HIC CENT /IEW /IEW AL [C AL [C	EHWAY, SI ER, NY 11 ESTATE DEVELOF STREET ER, MA DATE DVIG.: C2009 CHECKED BY: CHECKED BY:	570 SPMENT 0623-21 NUWARSHAF400000 MAAM MAAM
APPLICAN MK 261 RO PROJECT: RESI PROJECT SCALE: DESIGNEE DESIGNEE DESIGNEE A I A S cnvironn	T: EEP 770 I 5 SUNRIS CKVILLE SKYV DENTI NO. BY: 37 CLLEN SOC civil engin ental con w ww. a 100 COM	LLC SE HIC CENT /IEW AL C MAIN : ICEST 288901 1'- 80' SM VIA: SM VIA: VIA: VIA: VIA: N & VIA: VI	EHWAY, SI ER, NY 11 ESTATE DEVELOF STREET ER, MA DATE DWG.: C2000 CHECKED BY: CHECKED BY:	570 S MENT 062321 1, Machidrapool MAM MAM
APPLICAN MK 261 RO PROJECT: RESI PROJECT SCALE: DESIGNEE PREPARED I A I A S CRVITORIO	T: EEP 770 I 5 SUNRIS CKVILLE SKYV DENTI NO. D BY: 37 CLEEN SOCC civil engin nental con w W w a 100 COM W WT LAN MAN & LAN	LLC SE HIC CENT /IEW AL C AL C AL C AL C CLAY SM CLAY SM CLAY SM CLAY SM CLAY SM CLAY SM CLAY SM CLAY SM CLAY SM CLAY SM CLAY SM CLAY SM CLAY SM CLAY SM SM CLAY SM SM SM SM SM SM SM SM SM SM	EHWAY, SI ER, NY 11 ESTATE DEVELOF STREET ER, MA DATE: DWG.: Ca888 CHECKED BY: CHECKED BY:	570 SPMENT 0623-21 JUMashal/Aquoad MAM MAM NAM
APPLICAN MK 261 RO PROJECT RESI PROJECT SCALE DESIGNED PROJECT SCALE DESIGNED A I A S environd	T: EP 770 I 5 SUNRIS CKVILLE SKYV DENTI DENTI NO. DBY: 31 CLLEN SOC civil engin ental con www.cas 100 cov EXCOC	LLC SE HIC CENT /IEW AL D MAIN 3 SICEST 288901 1" - 80' SM SM SM CLA' CLA' CLA' CLA' CLA' CLA' CLA' CLA'	EHWAY, SI ER, NY 11 ESTATE DEVELOF STREET ER, MA DATE DWG.: CABBH CHECKED BY. CHECKED BY. I Land surve I Land surve I Land surve I Land surve I Land surve Land Surve I Land S	570 S MENT 062321 JUMushdAqood MAM MAM MAM CRESTER, NH GRAL ROBAR, S
APPLICAN MK 261 RO PROJECT RESI PROJECT SCALE DESIGNED PROJECT SCALE DESIGNED A I A S environd	T: EP 770 I 5 SUNRIS CKVILLE SKYV DENTI DENTI NO. DBY: 31 CLLEN SOC civil engin ental con www.cas 100 cov EXCOC	LLC SE HIC CENT /IEW AL D MAIN 3 SICEST 288901 1" - 80' SM SM SM CLA' CLA' CLA' CLA' CLA' CLA' CLA' CLA'	EHWAY, SI ER, NY 11 ESTATE DEVELOF STREET ER, MA DATE DWG.: CABBH CHECKED BY. CHECKED BY. I Land surve I Land surve I Land surve I Land surve I Land surve Land Surve I Land S	570 S MENT 062321 JUMushdAqood MAM MAM MAM CRESTER, NH GRAL ROBAR, S
APPLICAN MK 261 RO PROJECT RESI PROJECT SCALE DESIGNED PROJECT SCALE DESIGNED A I A S environd	T: EP 770 I 5 SUNRIS CKVILLE SKYV DENTI DENTI NO. DBY: 31 CLLEN SOC civil engin ental con www.cas 100 cov EXCOC	LLC SE HIC CENT /IEW AL D MAIN 3 SICEST 288901 1" - 80' SM SM SM CLA' CLA' CLA' CLA' CLA' CLA' CLA' CLA'	EHWAY, SI ER, NY 11 ESTATE DEVELOF STREET ER, MA DATE DWG.: CABBH CHECKED BY. CHECKED BY. I Land surve I Land surve I Land surve I Land surve I Land surve Land Surve I Land S	570 S MENT 062321 JUMushdAqood MAM MAM MAM CRESTER, NH GRAL ROBAR, S
APPLICAN MK 261 RO PROJECT RESI PROJECT SCALE DESIGNED PROJECT SCALE DESIGNED A I A S environd	T: EP 770 I 5 SUNRIS CKVILLE SKYV DENTI DENTI NO. DBY: 31 CLLEN SOC civil engin ental con www.cas 100 cov EXCOC	LLC SE HIC CENT /IEW AL D MAIN 3 SICEST 288901 1" - 80' SM SM SM CLA' CLA' CLA' CLA' CLA' CLA' CLA' CLA'	EHWAY, SI ER, NY 11 ESTATE DEVELOF STREET ER, MA DATE DWG.: CABBH CHECKED BY. CHECKED BY. I Land surve I Land surve I Land surve I Land surve I Land surve Land Surve I Land S	570 S MENT 062321 JUMushdAqood MAM MAM MAM CRESTER, NH GRAL ROBAR, S
APPLICAN MK 261 RO PROJECT RESI PROJECT SCALE DESIGNED PROJECT SCALE DESIGNED A I A S environd	T: EP 770 I 5 SUNRIS CKVILLE SKYV DENTI NO. DENTI NO. DEV: 31 CLLEN SCOC SCOC SCOC ANDY OR C PONTIE DAG DECLARENT PONTIE DAG PONTIE DAG PONTIE PONTIE PONTIE br>PONTIE P	LLC SE HIC CENT /IEW AL D MAIN 3 SICEST 288901 1" - 80' SM SM SM CLA' CLA' CLA' CLA' CLA' CLA' CLA' CLA'	EHWAY, SI ER, NY 11 ESTATE DEVELOF STREET ER, MA DATE: DWG.: Ca888 CHECKED BY: CHECKED BY:	570 S MENT 062321 JUMushdAqood MAM MAM MAM CRESTER, NH GRAL ROBAR, S
APPLICAN MK 261 RO PROJECT RESI PROJECT SCALE DESIGNEI PROJECT SCALE DESIGNEI PROJECT SCALE DESIGNEI PROJECT SCALE DESIGNEI PROJECT SCALE DESIGNEI PROJECT SCALE DESIGNEI PROJECT SCALE DESIGNEI PROJECT SCALE DESIGNEI PROJECT SCALE DESIGNEI PROJECT SCALE DESIGNEI DESIGNEI CONVERN NC MAY ALEN A MA DRAWIN	T: EP 770 I 5 SUNRIS CKVILLE SKYV DENTI NO. DEV: SY CLLEN SOC Civil engin acntal con WW W a 100 CON WW W CON CIVIC ENGINE CON CON CON CON CON CON CON CON	LLC SE HIC CENT /IEW AL C AL C AL C SM SM SM SM SM SM SM SM SM SM SM SM SM	HWAY, SI ER, NY 11 EESTATE DEVELOF STREET ER, MA DATE: DWG.: CAMP CHECKED BY CHECKED BY	570 SPMENT 06-23-21 1. Weteched/Approved MAM MAM OR INCC. ying architecture o m S CHESTER. NH GRAL PORMAT. NATS MAY BE COLUMENTS CHESTER. NH
APPLICAN MK 261 RO PROJECT RESI PROJECT SCALE DESIGNEI PROJECT SCALE DESIGNEI PROJECT SCALE DESIGNEI PROJECT SCALE DESIGNEI PROJECT SCALE DESIGNEI PROJECT SCALE DESIGNEI PROJECT SCALE DESIGNEI PROJECT SCALE DESIGNEI PROJECT SCALE DESIGNEI PROJECT SCALE DESIGNEI DESIGNEI CONVERN NC MAY ALEN A MA DRAWIN	T: EP 770 I 5 SUNRIS CKVILLE SKYV DENTI NO. DEV: SY CLLEN SOC Civil engin acntal con WW W a 100 CON WW W CON CIVIC ENGINE CON CON CON CON CON CON CON CON	LLC SE HIC CENT /IEW AL C AL C AL C SM SM SM SM SM SM SM SM SM SM SM SM SM	EHWAY, SI ER, NY 11 ESTATE DEVELOF STREET ER, MA DATE DWG.: CABBH CHECKED BY. CHECKED BY. I Land surve I land	570 SPMENT 0623-21 1, Wassind/Approxid MAM MAM MAM I O R I N C. ying architecture o m s for Hesher Stron Hesher St

Project No.	2889-01	Sheet	1 of 1
Project Description	Skyview Estates	_	
	Leicester, MA		
Calculated By	JG	Date	04/29/22
Checked By	MAM		

RECHARGE CALCULATION FOR AREA WITHin WATERSHED OVERLAY PROTECTION DISTRICT ONLY Standard # 3: Groundwater Recharge

Proposed recharge system: Dry Well

In accordance with MADEP – Volume 2, Technical Guide for Compliance with Massachusetts Stormwater Management Standards, dated January 2008

ils require a Volume to recharge of 0.60 inche	A soils require a Volume to recharge of 0.	es
ils require a Volume to recharge of 0.35 inche	B soils require a Volume to recharge of 0.	es
ils require a Volume to recharge of 0.25 inche	C soils require a Volume to recharge of 0.	es
ils require a Volume to recharge of 0.10 inche	D soils require a Volume to recharge of 0.	es
d Groundwater Recharge Depth = 0.25 i	Veighted Groundwater Recharge Depth =	in

Impervious area within: A-soils =	0	sf
Impervious area within: B-soils =	566	sf
Impervious area within: C-soils =	171,496	sf
Impervious area within: D-soils =	0	sf

Total Site Volume required to be recharged =

172,062 sf x 1" / 12 x 0.25 in = **3,589 cf**

Site volume recharge provided by = volume within residential drywells House Drywell = 196 cf

Unit #28	Drywell #26	=	196	cf
Unit #28	Drywell #27	=	196	cf
Unit #32	Drywell #28	=	196	cf
Unit #32	Drywell #29	=	196	cf
Unit #33	Drywell #30	=	196	cf
Unit #33	Drywell #31	=	196	cf
Unit #33	Drywell #32	=	196	cf
Unit #34	Drywell #33	=	196	cf
Unit #34	Drywell #34	=	196	cf
Unit #35	Drywell #35	=	196	cf
Unit #35	Drywell #36	=	196	cf
Unit #36	Drywell #37	=	196	cf
Unit #36	Drywell #38	=	196	cf
Unit #37	Drywell #39	=	196	cf
Unit #37	Drywell #40	=	196	cf
Unit #38	Drywell #41	=	196	cf
Unit #39	Drywell #42	=	196	cf
Unit #39	Drywell #43	=	196	cf
Unit #39	Drywell #44	=	196	cf
Unit #39	Drywell #45	=	196	cf
	Total	=	3920	cf

=	3,920	c.f. Total Volume Recharged	>	3,589	cf	(OK)
---	-------	-----------------------------	---	-------	----	--------