Parker Environmental Corporation

Creative Solutions for a Complicated Environment

September 02, 2021

Town of Leicester
Planning Board
3 Washburn Square 01524
Attn: Michelle Buck
Town Planner/Director Inspectional Services

RE: Fill Management Plan 1439 Main Street

Leicester, MA

Dear Ms. Buck:

Parker Environmental Corporation (PEC), is pleased to provide the following in support of the application for Special Permit for Earth Filling and the associated Fill Management Plan (FMP), to the Town of Leicester Planning Board, on behalf of Old School Financial, Inc..

Section 11(6)(b)

The Special Permit Regulations state that the Soil Management Plan be stamped by a Massachusetts Licensed Site Professional, ("LSP").

See cover page of the FMP.

The Special Permit Regulations states that the LSP shall specifically state the following: "The subject plan has been designed to meet the requirements of Leicester's Earth Filling Bylaws and Regulations, and any other applicable Federal or State regulations pertaining to the transport and use of earth for fill. It is my professional opinion that this plan and the proposed regulated activity, once executed and completed, will be substantially protective of human health, public safety, and the environment."

See Section 1.1 of the FMP

The Special Permit Regulations state that a Soil Management Plan shall require that "Massachusetts Contingency Plan Bill-of-Lading ("BOL") documents and procedures (310 CMR 40.0030) will exclusively be used for the transport and acceptance of earth materials for fill". 310 CMR 40.0030 is specifically written to address the Management Procedures for Remediation Waste under 310 CMR 40.0000.

1439 Main Street Leicester, MA FMP Special Permit

While the optional use of a BOL is sometimes used by parties performing soil transportation for material not requiring a BOL, this Fill Management Plan specifically excludes the use of material meeting the definition of "Remediation Waste" under 310 CMR 40.0000. In addition, the requirement to use a BOL may lead to confusion with both the public and other interested parties regarding the material brought to the Site.

It is the opinion of PEC that a Massachusetts Department of Environmental Protection (MassDEP) Material Shipping Record (MSR) is a more appropriate documentation vehicle to document the transportation of fill materials brought to the Site.

Section 11(6)(b)i

See Section 2.1 of the FMP

Section 11(6)(b)ii

See Section 4.0 of the FMP

Section 11(6)(b)iii

See Section 4.0 of the FMP

Section 11(6)(b)iv

See Section 1.4 of the FMP

Section 11(6)(b)v

See Section 5.0 of the FMP

Section 11(6)(b)vi

See Section 1.3 of the FMP

Section 11(6)(b)vii

Not Applicable – sentence run-over from previous item in By-Law

Section 11(6)(b)viii

See Section 7.0 of the FMP

Section 11(6)(b)ix

See Section 3.5 of the FMP

Section 11(6)(b)x

See Section 1.2.7 of the FMP

Section 11(6)(b)xi

See Section 1.1 of the FMP

Section 11(6)(b)xii

See Section 1.2 of the FMP

1439 Main Street Leicester, MA FMP Special Permit

Section 11(6)(b)xiii

See Section 1.5 of the FMP

If you have any questions, please feel free to contact us

Sincerely

Parker Environmental Corporation

Scott Parker LSP

Cc: Matt Schold, Old School Financial via email

Kevin Gervais, Lighthouse Environmental Management LLC, via email

Ref:PEC/Project Files/160401 Lighthouse Env/Leicester Main St/Final Doc/2021 09 02 FMP Planning Board cover letter

Parker Environmental Corporation

Creative Solutions for a Complicated Environment

Fill Management Plan 1439 Main Street Assessor Map 229, Lot 158 Leicester, Massachusetts

September 2021

Lighthouse Environmental Management, LLC

Prepared by:
Parker Environmental Corporation
97 Walnut Street
Clinton, MA 01510
978-273-4263
sparker@parkerenv.com

Prepared for: Old School Financial Inc. Matt Schold 77 Chickering Road Spencer, MA

September 2021

Scott

K

PARKER

No. 9099

Scott Parker, LSP President

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Table of Contents

1.0	Gener	al Background	1
1.1	Intro	oduction	1
1.2	Part	ies Involved	1
1.	2.1	Project Location:	1
1.	2.2	Project Proponents	2
1.	2.3	Soil Acceptance, Approvals, and Management/Oversight of Filling Operations:	2
1.	2.4	Property Owner:	2
1.	2.5	Project Daily Filling Operations Manager:	2
1.	2.6	Independent LSP Review and Approval of Submittal Packages:	2
1.	2.7	Emergency Contact:	2
1.3	Qua	lifications of Applicant Personnel	3
1.4	Site	Security and Site Control	3
1.5	Envi	ironmental Monitoring Plan	3
1.6	Site	Description	3
2.0	Soil Ac	ceptance Criteria	4
2.1	Esta	blishment of Local Background	4
3.0	Soil Ch	nemical Testing Requirements	6
3.1	Req	uired Test Parameters	6
3.2	Test	Data Quality and Usability	8
3.3	Field	d Screening Requirement	8
3.4	Visu	ıal Requirement	8
3.5	QA/	QC Requirement	9
4.0	Soil Su	bmittal and Approval Process	10
5.0	Site Ad	ccess	11
6.0	Overw	eight Truck Policy	12
7.0	Dust a	nd Sediment Control Plan	12

Attachments

Attachment A - Figures

Figure 1 – Site Locus

Figure 2 – Site Map

Figure 3 – Grading Plan

Figure 4 – MassDEP Receptor Map

Attachment B -

Table 1 - Acceptance Criteria Table

Table 2 – Background Arsenic Analytical Summary

Attachment C - Laboratory Analytical Reports

Attachment D – Additional Information

- MassDEP Policy WSC#-13-500, "Similar Soils Provision Guidance"
- MassDEP Jar Headspace Screening Procedure (MADEP Policy #WSC-94-400
- Lighthouse Profile Form
- Historical Aerial Photos
- USGS Report

1.0 General Background

1.1 Introduction

This Fill Management Plan was prepared by Parker Environmental Corporation on behalf of Lighthouse Environmental Management, LLC (LEM) in support of a Fill Project located at 1439 Main Street in Leicester, Massachusetts. The subject plan has been designed to meet the requirements of Leicester's Earth Filling Bylaws and Regulations, and any other applicable Federal or State regulations pertaining to the transport and use of earth for fill. It is my professional opinion that this plan and the proposed regulated activity, once executed and completed, will be substantially protective of human health, public safety, and the environment.

The site locus is shown on **Figure 1** and a Site Plan is included as **Figure 2** in Attachment A. The location and proposed final grading of the proposed fill area is shown on **Figure 3**.

Anticipated sources of fill material include large volumes of excess soil from excavation and construction projects in Massachusetts with elevated levels of naturally occurring arsenic. The intended fill materials include native and reworked sand, gravel, rock and clay with elevated levels of naturally occurring arsenic. It is anticipated that completion of the fill Project will involve importation of approximately 95,000 cubic yards of material, and take approximately 5 years to complete based on available sources of fill materials.

Soil intended for reuse in the filling operation must meet Acceptance Criteria established for this location. Testing of soil prior to acceptance and/or additional documentation of the soil source(s) with background information is required and is described herein.

This plan has been discussed with local and various municipal officials from the Town of Leicester. These discussions provided relevant information regarding the filling operations associated with the Fill Project described within this plan. Therefore, these officials have general awareness of this project and ongoing site activities.

1.2 Parties Involved

Several parties will be involved with the placement of fill material associated with the Main St Leicester Fill Project.

1.2.1 Project Location:

1439 Main Street
Property ID 26A B28 0
Leicester, Massachusetts 01524

Fill Management Plan 1439 Main Street Leicester, MA

1.2.2 Project Proponents

Old School Financial Inc.

1 Charlesview Road

Hopedale, MA

508-612-8777 scholddev@gmail.com

1.2.3 Soil Acceptance, Approvals, and Management/Oversight of Filling Operations:

Lighthouse Environmental Management, LLC

184 Stone Street

Clinton, Massachusetts 01510Phone: 617-699-5245

Kevin Gervais, President Pradeep Singh, Manager

Email: pradeep@lighthousemgmt.com

1.2.4 Property Owner:

Old School Financial Inc.

1 Charlesview Road

Hopedale, MA

508-612-8777 scholddev@gmail.com

1.2.5 Project Daily Filling Operations Manager:

Lighthouse Environmental Management, LLC

184 Stone Street

Clinton, Massachusetts 01510

1.2.6 Independent LSP Review and Approval of Submittal Packages:

Scott Parker, LSP,

Parker Environmental Corporation

97 Walnut Clinton, MA 01510

Phone: 978-273-4263

1.2.7 Emergency Contact:

Lighthouse Environmental Management, LLC

184 Stone Street

Clinton, Massachusetts 01510

Phone: 617-699-5245 Kevin Gervais, President

1.3 Qualifications of Applicant Personnel

Pursuant to the Town of Leicester Zoning By-laws dated June 02, 2020, the qualification of the personnel responsible for adhering to the By-Law and the requirements of the Fill Management Plan are hereby included as follows:

The Operations Manager, Lighthouse Environmental Management, and the Independent LSP, Parker Environmental Corporation are currently operating three locations with a Massachusetts Department of Environmental Protection Administrative Consent Order for Similar Soils filling.

In addition, PEC is retained by the Town of Clinton as an independent reviewer for all soil transported to the Town of Clinton Landfill requiring compliance with MassDEP Corrective Action Design Permit number XX253162.

1.4 Site Security and Site Control

The property owner and LEM currently maintain a system of security cameras at the Site operating 24-hours a day. In addition, natural vegetative barriers are present along the west, south and east property lines. The northern property boundary will be barricaded using jobsite trailers and equipment when personnel are not present at the Site.

1.5 Environmental Monitoring Plan

Fugitive dust will be controlled as described in Section 7.0 of the FMP.

1.6 Site Description

The fill operations associated with the Main Street Leicester Fill Project will occur at 1439 Main Street in Leicester, Massachusetts. The proposed fill area includes 7 acres of a 9.83-acre parcel located south of Main Street - MA Rt 9. The property slopes steeply downward to the south and east from Main Street and primarily cleared with the southern portion still wooded. See Figures 1, 2 and 3 included in Attachment A.

The property is located in a commercial/residential portion of Leicester with a commercial business located immediately adjacent to the project area to the northwest. To the west are residential properties.

The Main Street Leicester Fill Project site is readily accessed from Main Street – MA Rt 9.

The Leicester Assessor's Office records identify the property as Property ID 26A B28 0. The Assessor's Office indicates that the parcel is owned by Old School Financial Inc. The site consists of an irregular-shaped parcel of land with a total plan area of approximately 9.83 acres zoned HB-1 – Highway Business-Industrial 1. Properties to the west and south are zone R-1 – residential 1.

Residential properties serviced by private wells are located immediately to the west along Mt. Pleasant Avenue property. The nearest public water supply wells are two non-community groundwater wells.

Fill Management Plan 1439 Main Street Leicester, MA

Well 2151000- 06G located approximately 1,200 feet to the southeast of the property line and well 2151010-01G located 1,900 feet northwest of the property line. A Zone II Public Water Supply Protection area is located approximately 750 feet to the southeast and is shown on **Figure 4 included in Attachment A**. Other resource areas were not identified within the Project Fill Area. There are no wetlands identified in the vicinity of the proposed work.

A review of the Massachusetts Natural Heritage & Endangered Species Program (NHESP) online database was conducted. The proposed fill area is not located within a mapped Priority Habitat for Rare Species or an Estimated Habitat for Rare Species.

2.0 Soil Acceptance Criteria

Soil Acceptance Criteria have been established for various constituents in soil intended for use as fill material at the Main Street Leicester Fill Project in compliance with the MassDEP Policy WSC#-13-500, "Similar Soils Provision Guidance". A copy of this document is included in Attachment D for reference. The Acceptance Criteria were established to be protective of surrounding natural resource areas including nearby private wells (<500'), nearby wetland areas, construction workers at the site, visitors, and surrounding residents.

2.1 Establishment of Local Background

As documented in the United States Geological Survey (USGS) Scientific Investigations Report 2011-5013, "Arsenic and Uranium in Water from Private Wells Completed in Bedrock of East-Central Massachusetts—Concentrations, Correlations with Bedrock Units, and Estimated Probability Maps", arsenic is prevalent in groundwater in the Central Massachusetts area, particularly, in Leicester, as seen on Figure 1 of the USGS report, showing documented concentrations of arsenic in public bedrock wells. A copy of the report is included in Attachment D for reference.

In order evaluate local "background" concentrations of arsenic at the Site, SPE Materials collected a series of soil samples from test pits excavated at the Site, in September 2016, April 2021, July 2021 and August 2021. The locations of the test pits can be found on Figure 2 included in Attachment A. Test pits were excavated to depths of 5 feet and 15 feet. A grab sample was collected and submitted to Alpha Labs for analysis for Total Arsenic. Samples collected in August 2021 were also analyzed for total lead in order to confirm the presence of elevated arsenic was not associated with previous application of lead arsenate pesticides historically used in New England in orchards and leading to increased concentrations of both lead and arsenic in soil.

The results of these analyses are included in Table 2 included in Attachment B. As can be seen from these results arsenic was reported to be present in the samples at concentrations ranging from 9.04 mg/kg to 117 mg/kg. In addition, the samples collected in August 2021 did not show elevated concentrations of lead correlating to elevated concentrations of arsenic. Based on this evaluation, the maximum background concentration of arsenic has been established at 117 mg/kg. The laboratory

Fill Management Plan 1439 Main Street Leicester, MA

reports are included in Attachment D.

As part of historical research of the former uses of the property and in order to determine whether the property had been historically used as a commercial apple orchard, which may have contributed to the elevated levels of arsenic identified in the soil samples collected from the property, historical aerial photos were obtained from EDR Lightbox showing the Site dating back to 1938. A copy of these photos is included in Attachment D. As can be seen from these photos, the property does not appear to show the presence of a commercial orchard on the property.

The acceptance criteria of less than 117 mg/kg for arsenic is applicable only to soil containing naturally occurring arsenic that meets the notification exemption defined in 310 CMR 40.0317(22), which applies to arsenic in Boston Blue Clay or arsenic in an area documented by the U.S. Geological Survey or in other scientific literature as an area of elevated arsenic measured in soil or groundwater that (a) is consistently present in the environment at and in the vicinity of the sampling location; (b) is solely attributable to natural geologic or ecologic conditions; and (c) has not been mobilized or transferred to another environmental medium or increased in concentration in an environmental medium as a result of anthropogenic activities.

Ash and/or Solid Waste must only be present in de-minimus quantities not to exceed 5% by volume. Any soil with arsenic detected equal to or greater than 20 mg/kg that does not meet the exemption defined in 310 CMR 40.0317(22) and is subsequently not exempt from reporting to MassDEP, will be treated as "remediation waste" and not accepted at the site. All soil originating from out of state shall have a maximum arsenic concentration less than 20 mg/kg to be considered for acceptance. No exemptions apply for out of state soils.

The proposed Main Street Leicester Fill Project is located within 500 feet of residential property and therefore RCS-1 standards apply. Accordingly, in consideration of the Similar Soils Policy, the less than RCS-1 Acceptance Criteria Acceptance Criteria have been established and are presented in "Table 1 – Summary of Soil Acceptance Criteria" included in Attachment B.

3.0 Soil Chemical Testing Requirements

3.1 Required Test Parameters

Test parameters required on soil to be considered for acceptance include:

- Volatile Organic Compounds (EPA 8260) Low-Level
- Semi-volatile Organic Compounds (EPA 8270 full list)
- Metals: MCP 14 metals
- PCBs (<0.1 reporting limit)
- Total Petroleum Hydrocarbons (summation of EPH Fractions may be substituted)
- Hexavalent Chromium if Total Chromium > 100 mg/kg
- pH/Corrosivity
- Specific Conductance (conductivity) (may be excluded or limited based on site history)
- Field Screening for Total Organic Vapors (PID following MassDEP Jar Headspace Screening Procedure based upon an isobutylene response factor)
- Herbicides (may be excluded or limited based on site history)
- Pesticides (may be excluded or limited based on site history)
- Ignitibility/Flash point (may be excluded or limited based on site history)
- Reactive Cyanide (may be excluded or limited based on site history)
- Reactive Sulfide (may be excluded or limited based on site history)
- TCLP for any analyte exceeding EPA TCLP Trigger Values (20 times rule)
- Others as deemed prudent based on soil source site history

Current and appropriate versions of applicable methods are to be used in accordance with MassDEP Compendium of Analytical Methods. Detection limits for analyses must be appropriate for comparison to Acceptance Criteria. Generator and Qualified Environmental Professional/LSP must ascertain data is appropriate for use as intended.

Required Chemical Testing and Frequency

Testing is required at the minimum frequencies below for reuse at the Fish Road Reclamation Project site:

	General Source/Origin Description	Minimum Test Profile Frequency
1	Naturally Deposited Soil containing no fill materials. Excludes soil from sources meeting Categories 2, 3, 4, 5 or 6 criteria below.	1 test profile per 1,000 cubic yards (1,500-1,700 tons) for initial review.
2	Naturally Deposited Soil from areas of known or suspected naturally occurring high background levels of constituents and containing no fill materials. Excludes soil from sources meeting Categories 3, 4, 5 or 6 criteria below.	1 test profile per 1,000 cubic yards (1,500-1,700 tons) for initial review.
3	Naturally Deposited Marine Soils and Boston Blue Clay containing no fill materials. Excludes soil from sources meeting Categories 5 or 6 criteria below.	1 test profile per 1,000 cubic yards (1,500-1,700 tons) for initial review.
4	Fill Materials: Soil, sediments, rock and/or stone obtained off site that was used to fill holes or depressions, create mounds, or otherwise artificially change the grade or elevation of real property. This category includes, but is not limited to urban and non-urban fill, and any natural soil/fill mixture.	1 test profile per 500 cubic yards (750- 850 tons) for initial review. Additional test parameters such as cyanide and asbestos may be required.
5	Soil from Industrial, Commercial or Manufacturing site with history of any of the following: tannery, textiles, chemical/paint production, circuit board manufacturing, plating/metal finishing, foundry operations, coal gasification, dry cleaning, salvage yards, pesticide/ herbicide use, storage or distribution. An LSP, LSRP or LEP must provide a report detailing why such soils conform to the Fish Road Reclamation Project.	1 test profile per 500 cubic yards (750- 850 tons) for initial review. Additional test parameters based on site history may be required.
6	Soil from sources not otherwise described above where historic test data indicate potential exceedance of any SSAC or where past use or storage of OHM at more than household quantities.	1 test profile per 500 cubic yards (750- 850 tons) for initial review. Additional test parameters based on historic test data may be required.
7	Rock: Blasted or excavated ledge or bedrock.	One test for perchlorate per 500 cy, unless Generator demonstrates that no perchlorate blasting agents were used. One geochemical characterization profile per 500 cy including Acid Base Accounting and Net Acid Generation Potential unless Generator demonstrates that the rock is not known or suspected to contain sulfide minerals.

For acceptance purposes, soil density will be considered 1.5 tons per cubic yard for soil sampled from a stockpile, and no greater than 1.7 ton per cubic yard for soil sampled in-situ via borings or test pits. Further technical justification will be required for acceptance of soil with assumed density greater than 1.7 ton per cubic yard.

3.2 Test Data Quality and Usability

Test data provided for review and acceptance must be considered current. If aged data (greater than 1 year old) is to be utilized for acceptance, a statement from the qualified environmental professional making the submittal must be provided indicating site conditions have not changed since collection of data and that no documented releases that may impact site conditions have occurred since data was collected.

All analytical testing must report a laboratory detection limit that is less than applicable Acceptance Criteria for a given constituent. Consistent with the Compendium of Analytical Methods and 310 CMR 40.000, the use of routine volatile organic compound test methods with typical reporting limits is sufficient as long as technical justification is provided by the LSP-of-Record that the soil being tested is unlikely to contain the less common compounds such as 1,4 dioxane based on Site history and other relevant site-specific information. Prior to submittal, the environmental professional making the submittal must perform a QA/QC evaluation of the data to document that data is representative and usable for its intended purpose.

3.3 Field Screening Requirement

Soil must be field screened for Total Organic Vapors following the MassDEP Jar Headspace Screening Procedure (MADEP Policy #WSC-94-400 included Attachment D, modified to be based upon an isobutylene response factor rather a Benzene standard). Soil must be field screened at the time of excavation, stockpiling or load out to the Main Street Leicester Fill Project at a frequency of 1 field screening test per approximately 50 cubic yards of soil. Soil must contain less than 5 parts per million volume (ppmv) total organic vapors (TOV) above ambient background by the jar headspace screening procedure to meet Acceptance Criteria. Natural organic soils which exhibit TOV screening levels above 5 ppmv may be considered for acceptance on a case-by-case basis provided the following: results of analytical testing, particularly VOC analysis, identifies no exceedances of acceptance criteria; source of elevated TOV screening levels can be attributed to a source other than oil or hazardous material (such as hydrogen sulfide interference on PID). All soil proposed for reuse shall not have an unpleasant odor.

3.4 Visual Requirement

Soil will exhibit no indication of staining or other discoloration indicative of a release or impact of oil or hazardous material or other nuisance conditions. Soil and fill materials approved for use at the property shall contain no more than 5% Asphalt, Brick and Concrete ("ABC") material. Any such ABC material must measure less than 6 inches in any dimension and acceptance of such soil will be considered on a case-by-case basis. Soil and fill materials approved for use at the property may contain de-minimus

quantities, not to exceed 5%, of ash and/or Solid Waste (e.g. Municipal Solid Waste and/or Construction and Demolition Waste) as defined in 310 CMR 16.00 and 310 CMR 19.000. The acceptance of Remediation Waste, as defined at 310 CMR 40.0006, is prohibited.

3.5 QA/QC Requirement

Lighthouse Environmental Management, may on a random basis select a load arriving to the Main Street Leicester Fill Project for a QAQC Inspection and instruct the driver to dump in the designated QAQC, quarantine area. LEM will inspect the load visually, screen the soil with a PID and collect a soil sample for laboratory analysis. Loads arriving with material not meeting acceptance criteria or determined to contain contaminants at levels at or exceeding acceptance criteria based on QAQC sampling will be rejected and removed from the site at the expense of the Generator of that material. Loads not meeting acceptance criteria at the time of delivery to the project site due to debris, odors, or other nonconformance with Acceptance Criteria will be rejected prior to off-loading or reloaded immediately by LEM. Such loads will be removed from the project site immediately in the truck they were delivered in. Should QA/QC testing indicate soil as delivered is not below Acceptance Criteria, then the Generator of that soil and the party contracting with LEM for placement of soil at the site will promptly remove such soil from the project site. Should the Generator and/or contracting party not promptly remove unacceptable soil, LEM will promptly act to remove that soil from the project site. LEM will pursue cost recovery from the Generator and/or the contracting party for all costs associated with removal from the site if soil is not below all Acceptance Criteria. Additional soil will not be accepted from a source where soil failed a random QA/QC test or soil was rejected from the site upon arrival until an appropriate resolution is reached.

4.0 Soil Submittal and Approval Process

A Soil Submittal Package must be provided by representatives of each soil source/origin for review and approval by representatives of the Main Street Leicester Fill Project.

A complete package is to be provided to: Lighthouse Environmental Management, LLC 184 Stone Street Clinton, Massachusetts 01510 Pradeep Singh, Manager

Email: pradeep@lighthousemgmt.com

A complete LSP/QEP Opinion package should include the following information:

- Description of generating Site including:
 - o Address;
 - o current use of the property;
 - o history of known uses of the property;
 - o description of surrounding area;
- Site Plan showing location(s) of excavation(s) and sample locations;
- Description of material proposed to be shipped including observations of soil quality and type, boring or well logs or test pit logs if appropriate;
- Description of representative sampling process including:
 - Number and location of composite sample subsample locations; for stockpile sampling,
 a 5-8 subset sample composite is recommended;
 - field PID screening results;
 - o method of selection of VOC sample for laboratory analysis;
- Tabulated analytical results with comparison to Main Street Leicester Fill Project SAC;
- Laboratory analytical results;
- Completed and signed Material Shipping Record;
- Completed and signed Lighthouse Profile form included in Attachment D;
- A specific declaration/Opinion that the material proposed to be sent to the Main Street Leicester Fill Project meets the requirements described herein;
- Other considerations:

 Based on Generator/LSP/QEP knowledge, any other testing or considerations that are appropriate to characterize the material such as dioxins, asbestos, herbicides and pesticides, (if herbicides and pesticides are not deemed necessary, the text of the opinion should state this and why)

After initial approval is gained, the package will be sent to the Site LSP for review. Characterization results from each candidate property will be reviewed to confirm that the soil meets the requirements set forth in this plan.

The Site LSP will then prepare an acknowledgement and approval letter to the owner and Lighthouse confirming the acceptance of the soil for confirmatory signature by Lighthouse. The letter will specify the approved quantity, the quantity to be shipped, dates, restrictions (if any), and other pertinent items. The letter will be forwarded by Lighthouse to the generator. LEM will perform a preliminary review to establish whether the submittal is complete and soil is appropriate for reuse as fill material at the Main Street Fill Project site. The submittal will then be forwarded to the independent Licensed Site Professional contracted by LEM to perform the final review and approval.

Upon completion of the initial review, supplemental information, clarification, or additional delineation/frequency testing can be requested prior to acceptance. The source making the submittal must provide the information, clarification, or additional test data as requested for the approval process to proceed.

The review process will typically take from 2 to 4 business days depending on the number of submittals in the queue for review, the amount of soil requested for approval, and available capacity.

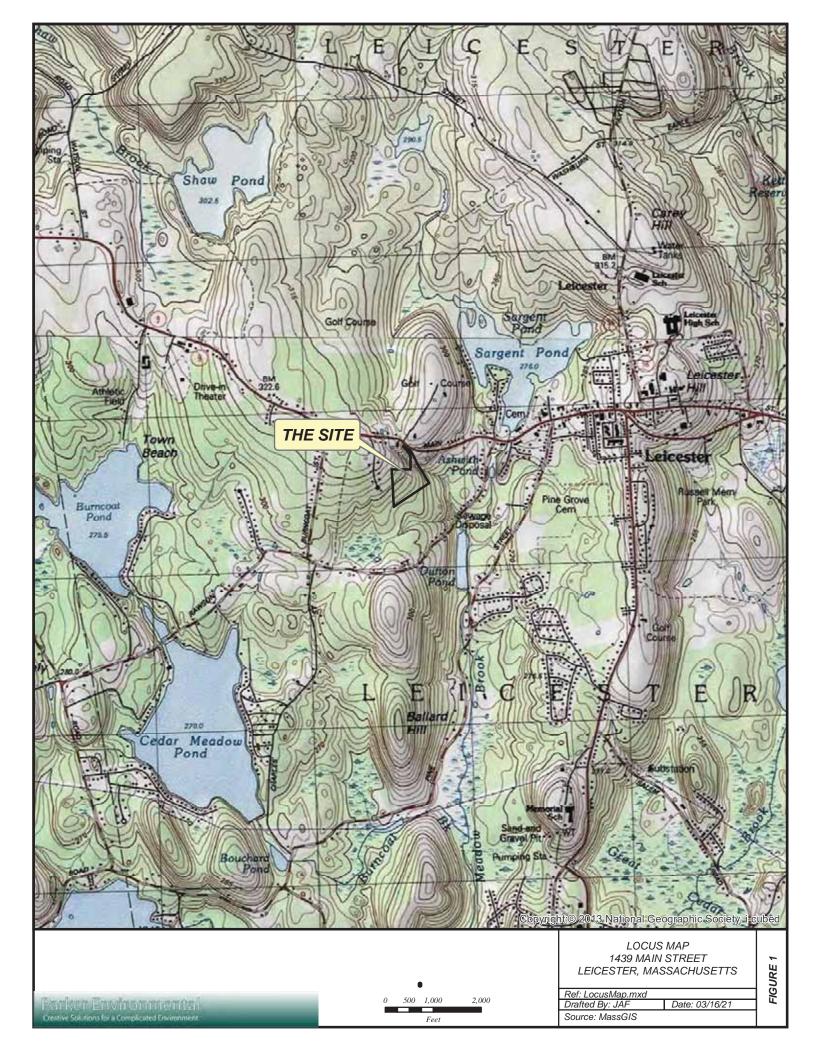
5.0 Site Access

The Main Street Project site is readily accessed from Main Street – MA Rt 9. Access to Interstate 290 is located approximately 8 miles to the east of the project site via Route 9.

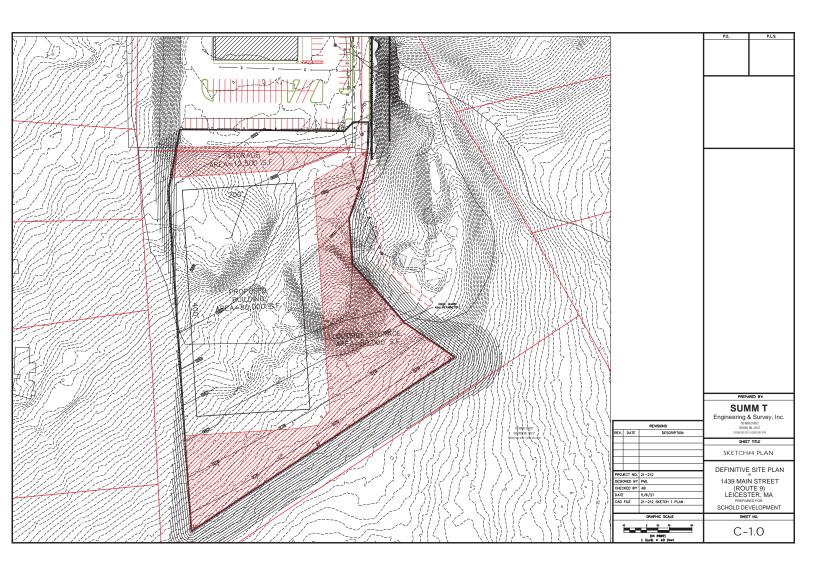
Normal operating hours are approximately 7:00 AM to 4:00 PM Monday through Friday. Some allowance can be made until 5 pm for late loads with advanced notice. Saturdays are available for an additional fee with advanced notice.

6.0 Overweight Truck Policy

Any truck entering the Main Street Leicester Fill Project exceeding 10% of the maximum allowable MassDOT gross vehicle weight will be subject to the following penalties:


- 1st offense verbal warning
- 2nd offense 1 hour penalty timeout
- 3rd offense 2 hour penalty timeout
- 4th offense In person meeting with Project Proponents and truck owners/operators to review the facility truck policy and expectations with the potential of being banned from future deliveries to this site.

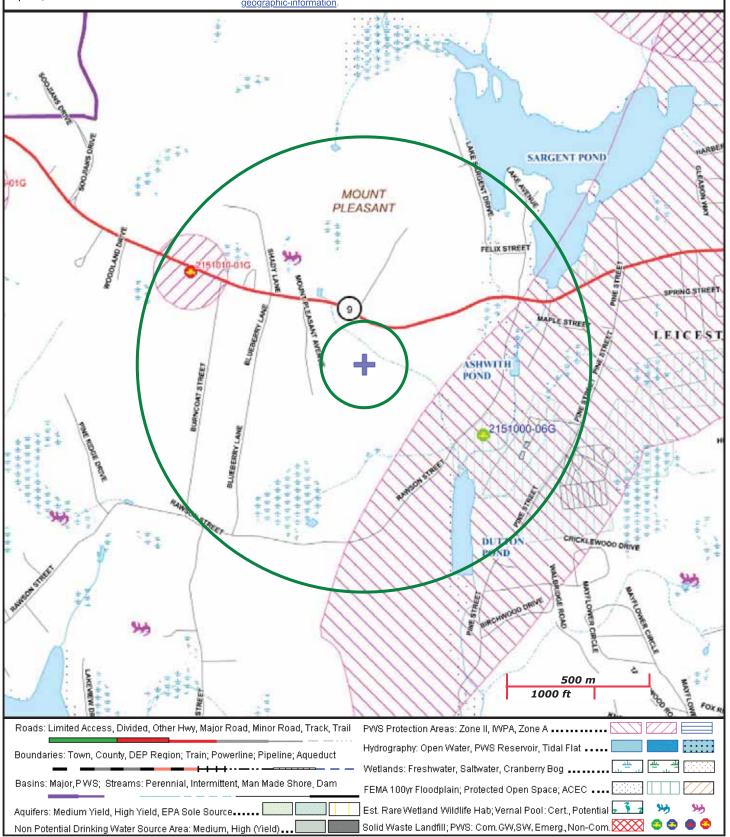
7.0 Dust and Sediment Control Plan


The Main Street Leicester Fill Project will use the following measures to mitigate dust and sediment at the project site:

- A water truck will be utilized as needed to control dust;
- Gravel tracking pad has been installed at the entrance to the site and will be replaced as needed to control sediment tracking on town roadways;
- Roads will be swept as needed to control dust and soil from tracking on to pubic roadways;
- Filling operations will be suspended when winds exceed 40 miles per hour.

ATTACHMENT A FIGURES

MassDEP - Bureau of Waste Site Cleanup


Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii

Site Information: MAIN STREET LEICESTER 1439 MAIN STREET LEICESTER, MA

NAD83 UTM Meters: 4680832mN , 258683mE (Zone: 19) April 29, 2021 The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at:

https://www.mass.gov/orgs/massgis-bureau-of-geographic-information.

ATTACHMENT B ACCEPTANCE CRITERIA TABLE

Constituent	Units	MCP RCS-1	Site Specific Acceptance Criteria
MCP Polych	nlorinated Bi	phenyls	
PCBs, Total	mg/kg	1	<0.1
Petroleu	ım Hydrocar	bons	
Total Petroleum Hydrocarbons	mg/kg	1,000	<500
OR - To	tal EPH Fract	ions	
C9-C18 Aliphatic - EPH	mg/kg	1,000	<100
C19-C36 Aliphatic - EPH	mg/kg	3,000	<300
C11-C22 Aromatic - EPH	mg/kg	1,000	<100
C5-C8 Aliphatic - VPH	mg/kg	100	<10
C9-C12 Aliphatic - VPH	mg/kg	1,000	<100
C9-C10 Aromatic - VPH	mg/kg	100	<10
Gene	eral Chemisti	у	
Specific Conductance	umhos/cm	NA	<4,000
рН	SU	NA	5-11
Flash Point	deg F	NA	>200
Cyanide, Reactive	mg/kg	NA	<500
Sulfide, Reactive	mg/kg	NA	<250
Ammenable Cyanide (1)		30	<3
Asbestos (1)		1%	ND
Dioxins (1)	mg/kg	0.000002	<0.0000002
Perchlorate Compounds (1)	mg/kg	0.1	<0.01
Per- and Polyfluor	oalkyl Subst	ances (PFAS) (1)	•
PEFLUORODECANOIC ACID (PFDA)	mg/kg	0.0003	<0.00003
PERFLUOROHEPTANOIC ACID (PFHpA)	mg/kg	0.0003	<0.00003
PERFLUOROHEXANESULFONIC ACID (PFHxS)	mg/kg	0.0003	<0.00003
PERFLUORONONANOIC ACID (PFNA)	mg/kg	0.0003	<0.00003
PERFLUOROOCTANESULFONIC ACID (PFOS)	mg/kg	0.0003	<0.00003
PERFLUOROOCTANOIC ACID (PFOA)	mg/kg	0.0003	<0.00003

Constituent	Units	MCP RCS-1	Site Specific Acceptance Criteria
MCP Semivola	l tile Organic	l Compounds	Criteria
1,1-Biphenyl	mg/kg	0.05	<0.005
Acenaphthene	mg/kg	4	<4
1,2,4-Trichlorobenzene	mg/kg	2	<0.2
Hexachlorobenzene	mg/kg	0.7	<0.07
Bis(2-chloroethyl)ether	mg/kg	0.7	<0.07
2-Chloronaphthalene	mg/kg	1000	<100
1,2-Dichlorobenzene	mg/kg	9	<0.9
1,3-Dichlorobenzene	mg/kg	3	<0.3
1,4-Dichlorobenzene	mg/kg	0.7	<0.07
3,3'-Dichlorobenzidine	mg/kg	3	<0.3
2,4-Dinitrotoluene	mg/kg	0.7	<0.07
2,6-Dinitrotoluene	mg/kg	100	<10
Azobenzene	mg/kg	50	<5
Fluoranthene	mg/kg	1000	<40
4-Bromophenyl phenyl ether	mg/kg	100	<10
Bis(2-chloroisopropyl)ether	mg/kg	0.7	<0.07
Bis(2-chloroethoxy)methane	mg/kg	500	<50
Hexachlorobutadiene		300	<3
Hexachloroethane	mg/kg	0.7	<0.07
	mg/kg	100	<10
Isophorone Naphthalene	mg/kg	4	<4
Nitrobenzene	mg/kg	500	
	mg/kg	90	<50 <9
Bis(2-ethylhexyl)phthalate	mg/kg		
Butyl benzyl phthalate	mg/kg	100	<10
Di-n-butylphthalate	mg/kg	50	<5
Di-n-octylphthalate	mg/kg	1000	<100 <1
Diethyl phthalate	mg/kg	10	
Dimethyl phthalate	mg/kg	0.7	<0.07
Benzo(a)anthracene	mg/kg	7	<7
Benzo(a)pyrene	mg/kg	2	<2
Benzo(b)fluoranthene	mg/kg	7	<7
Benzo(k)fluoranthene	mg/kg	70	<10
Chrysene	mg/kg	70	<20
Acenaphthylene	mg/kg	1000	<1
Anthracene	mg/kg	1000	<10
Benzo(ghi)perylene	mg/kg	1000	<10
Fluorene	mg/kg	1000	<10
Phenanthrene	mg/kg	10	<10
Dibenzo(a,h)anthracene	mg/kg	0.7	<0.7
Indeno(1,2,3-cd)pyrene	mg/kg	7	<7
Pyrene	mg/kg	1000	<40
Aniline	mg/kg	1000	<100
4-Chloroaniline	mg/kg	1	<0.1
Dibenzofuran	mg/kg	100	<10
2-Methylnaphthalene	mg/kg	0.7	<0.7
Acetophenone	mg/kg	1000	<100
2,4,6-Trichlorophenol	mg/kg	0.7	<0.07

Site Specific					
	Units	MCP RCS-1	Acceptance		
Constituent			Criteria		
MCP Semivolatile Organic Compounds					
2-Chlorophenol	mg/kg	0.7	<0.07		
2,4-Dichlorophenol	mg/kg	0.7	<0.07		
2,4-Dimethylphenol	mg/kg	0.7	<0.07		
2-Nitrophenol	mg/kg	100	<10		
4-Nitrophenol	mg/kg	100	<10		
2,4-Dinitrophenol	mg/kg	3	<0.3		
Pentachlorophenol	mg/kg	3	<0.3		
Phenol	mg/kg	1	<0.1		
2-Methylphenol	mg/kg	500	<50		
3-Methylphenol/4-Methylphenol	mg/kg	500	<50		
2,4,5-Trichlorophenol	mg/kg	4	<0.4		
MCI	P Total Meta	ls			
Antimony	mg/kg	20	<10		
Arsenic, Total	mg/kg	20	<20		
Arsenic, Total* Naturally occurring	mg/kg	NA	<117		
Barium, Total	mg/kg	1,000	<375		
Beryllium	mg/kg	90	<4		
Cadmium, Total	mg/kg	70	<20		
Chromium, Total	mg/kg	100	<100		
Chromium, (Tri)	mg/kg	1,000	<225		
Chromium, (Hex)	mg/kg	100	<100		
Copper	mg/kg	NE	<300		
Lead, Total	mg/kg	200	<200		
Mercury, Total	mg/kg	20	<3		
Nickel	mg/kg	600	<150		
Selenium, Total	mg/kg	400	<5		
Silver, Total	mg/kg	100	<6		
Thallium	mg/kg	8	<6		
Vanadium	mg/kg	400	<225		
Zinc	mg/kg	1,000	<500		
MCP Volatil	e Organic Co	mpounds			
Methylene chloride	mg/kg	0.1	<0.01		
1,1-Dichloroethane	mg/kg	0.4	<0.04		
Chloroform	mg/kg	0.2	<0.02		
Carbon tetrachloride	mg/kg	5	<0.05		
1,2-Dichloropropane	mg/kg	0.1	<0.01		
Dibromochloromethane	mg/kg	0.005	<0.0005		
1,1,2-Trichloroethane	mg/kg	0.1	<0.01		
Tetrachloroethene	mg/kg	1	<0.1		
Chlorobenzene	mg/kg	1	<0.1		
Trichlorofluoromethane	mg/kg	1,000	<100		
1,2-Dichloroethane	mg/kg	0.1	<0.01		
1,1,1-Trichloroethane	mg/kg	30	<3		
Bromodichloromethane	mg/kg	0.1	<0.01		
trans-1,3-Dichloropropene	mg/kg	0.01	<0.001		
cis-1,3-Dichloropropene	mg/kg	0.01	<0.001		
1,3-Dichloropropene, Total	mg/kg	0.01	<0.001		
1,1-Dichloropropene	mg/kg	0.01	<0.001		

	Units	MCP RCS-1	Site Specific Acceptance			
Constituent		<u> </u>	Criteria			
	MCP Volatile Organic Compounds					
Bromoform	mg/kg	0.1	<0.01			
1,1,2,2-Tetrachloroethane	mg/kg	0.005	<0.0005			
Benzene	mg/kg	2	<0.2			
Toluene	mg/kg	30	<3			
Ethylbenzene	mg/kg	40	<4			
Chloromethane	mg/kg	100	<10			
Bromomethane	mg/kg	0.5	<0.05			
Vinyl chloride	mg/kg	0.7	<0.07			
Chloroethane	mg/kg	100	<10			
1,1-Dichloroethene	mg/kg	3	<0.3			
trans-1,2-Dichloroethene	mg/kg	1	<0.01			
Trichloroethene	mg/kg	0.3	<0.03			
1,2-Dichlorobenzene	mg/kg	9	<0.9			
1,3-Dichlorobenzene	mg/kg	3	<0.3			
1,4-Dichlorobenzene	mg/kg	0.7	<0.07			
Methyl tert butyl ether	mg/kg	0.1	<0.01			
p/m-Xylene	mg/kg	100	<10			
o-Xylene	mg/kg	100	<10			
Xylenes, Total	mg/kg	100	<10			
cis-1,2-Dichloroethene	mg/kg	0.1	<0.01			
1,2-Dichloroethene, Total	mg/kg	0.3	<0.03			
Dibromomethane	mg/kg	500	<50			
1,2,3-Trichloropropane	mg/kg	100	<10			
Styrene	mg/kg	3	<0.3			
Dichlorodifluoromethane	mg/kg	1000	<100			
Acetone	mg/kg	6	<0.6			
Carbon disulfide	mg/kg	100	<10			
Methyl ethyl ketone	mg/kg	4	<0.4			
Methyl isobutyl ketone	mg/kg	0.4	<0.04			
2-Hexanone	mg/kg	100	<10			
Bromochloromethane	mg/kg	100	<10			
Tetrahydrofuran	mg/kg	500	<50			
2,2-Dichloropropane	mg/kg	0.1	<0.01			
1,2-Dibromoethane	mg/kg	0.1	<0.01			
1,3-Dichloropropane	mg/kg	500	<50			
1,1,1,2-Tetrachloroethane	mg/kg	0.1	<0.01			
Bromobenzene	mg/kg	100	<10			
tert-Butylbenzene	mg/kg	100	<10			
o-Chlorotoluene	mg/kg	100	<10			
p-Chlorotoluene	mg/kg	100	<10			
1,2-Dibromo-3-chloropropane	mg/kg	100	<1			
Hexachlorobutadiene	mg/kg	30	<3			

	1		Site Specific		
	Units	MCP RCS-1	Acceptance		
Constituent			Criteria		
MCP Volatil	MCP Volatile Organic Compounds				
Isopropylbenzene	mg/kg	1000	<100		
p-Isopropyltoluene	mg/kg	100	<10		
Naphthalene	mg/kg	4	<4		
n-Propylbenzene	mg/kg	100	<10		
1,2,4-Trichlorobenzene	mg/kg	2	<0.2		
1,3,5-Trimethylbenzene	mg/kg	10	<1		
1,2,4-Trimethylbenzene	mg/kg	1000	<100		
Diethyl ether	mg/kg	100	<10		
Diisopropyl Ether	mg/kg	100	<10		
1,4-Dioxane	mg/kg	0.2	<0.02		
	lerbicides ⁽²⁾				
MCPA	mg/kg	100	<10		
Dalapon	mg/kg	1,000	<100		
Dicamba	mg/kg	500	<50		
Dinoseb	mg/kg	500	<50		
2,4,5-T	mg/kg	100	<10		
2,4,5-TP (Silvex)	mg/kg	100	<10		
2,4-D	mg/kg	100	<10		
2,4-DB	mg/kg	100	<10		
Pe	esticides ⁽²⁾				
Alachlor	mg/kg	100	<10		
Aldrin	mg/kg	0.08	<0.008		
a-BHC	mg/kg	50	<5		
β-BHC	mg/kg	10	<1		
y-BHC (Lindane, y-HCH)	mg/kg	0.003	<0.0003		
δ-BHC	mg/kg	10	<1		
Chlordane	mg/kg	5	<0.5		
4,4-DDD (p,p')	mg/kg	8	<0.8		
4,4-DDE (p,p')	mg/kg	6	<0.6		
4,4-DDT (p,p')	mg/kg	6	<0.6		
Dieldrin	mg/kg	0.08	<0.008		
a-Endosulfan (I)	mg/kg	0.5	<0.05		
β-Endosulfan (II)	mg/kg	0.5	<0.05		
Endosulfan Sulfate	mg/kg		"See listed constituents"		
Endrin	mg/kg	10	<1		
Endrin Aldehyde	mg/kg	10	<1		
Endrin ketone	mg/kg	10	<1		
Heptachlor	mg/kg	0.3	< 0.03		
Heptachlor Epoxide	mg/kg	0.1	< 0.01		
Hexachlorobenzene	mg/kg	0.7	< 0.07		
Methoxychlor	mg/kg	200	<20		
Toxaphene	mg/kg	10	<1		

Table 2 Baseline Soil Sample Analytical Summary 1439 Main Street Leicester, MA

		Arsenic	Lead	
Sample Date	Client ID	Concentration	Concentration	Units
9/21/2016	SOIL SAMPLE 1-SPE	22	NA	mg/kg
9/21/2016	SOIL SAMPLE 2-SPE	48	NA	mg/kg
9/21/2016	SOIL SAMPLE 3-SPE	23	NA	mg/kg
9/21/2016	SOIL SAMPLE 4-SPE	48	NA	mg/kg
4/29/2021	SOIL #11	18.2	NA	mg/kg
4/29/2021	SOIL #12	9.73	NA	mg/kg
4/29/2021	SOIL #13	9.04	NA	mg/kg
4/29/2021	SOIL #14	30.6	NA	mg/kg
4/29/2021	SOIL #15	14.2	NA	mg/kg
4/29/2021	SOIL #16	18.4	NA	mg/kg
4/29/2021	SOIL #17	21.1	NA	mg/kg
4/29/2021	SOIL #18	28.7	NA	mg/kg
4/29/2021	SOIL #19	19.1	NA	mg/kg
4/29/2021	SOIL #20	25.4	NA	mg/kg
4/29/2021	SOIL #21	17.6	NA	mg/kg
4/29/2021	SOIL #22	22.2	NA	mg/kg
4/29/2021	SOIL #23	19.4	NA	mg/kg
4/29/2021	SOIL #24	18.8	NA	mg/kg
4/29/2021	SOIL #25	18.9	NA	mg/kg
4/29/2021	SOIL #26	17.8	NA	mg/kg
4/29/2021	SOIL #27	18.9	NA	mg/kg
4/29/2021	SOIL #28	17.5	NA	mg/kg
4/29/2021	SOIL #29	16.8	NA	mg/kg
4/29/2021	SOIL #30	19.6	NA	mg/kg
7/13/2021	School Soil #21*	91.5	NA	mg/kg
7/13/2021	School Soil #22*	117	NA	mg/kg
7/13/2021	School Soil #23*	38.3	NA	mg/kg
7/13/2021	School Soil #24*	103	NA	mg/kg
7/13/2021	School Soil #25*	37.1	NA	mg/kg
7/13/2021	School Soil #26*	89.1	NA	mg/kg
8/11/2021	Soil-801021-1	26.1	2.61	mg/kg
8/11/2021	Soil-801021-2	39	4.95	mg/kg
8/11/2021	Soil-801021-3	30.9	3.51	mg/kg
8/11/2021	Soil-801021-4	38.6	4.23	mg/kg
8/11/2021	Soil-801021-5	36.7	3.47	mg/kg
8/11/2021	Soil-801021-6	44.9	4.26	mg/kg
8/11/2021	Soil-801021-7	38.5	5.04	mg/kg
8/11/2021	Soil-801021-8	39.8	7.08	mg/kg

mg/kg - milligrams/kilogram

Samples collected in July 2021 are identified on the associated Site Plan as samples 21A through 26A $\,$

NA - Not Analyzed

^{* -} due to a misreading of the Chain of Custody, samples identified as "Schold Soil" were reported by the laboratory as "School Soil"

Parker Environmental Corporation 97 Walnut Street, Clinton, MA (978) 273-4263

Summary of Site Specific Soil Acceptance Criteria 1439 Main Street Leicester, MA

Revised September 2021

	Units	MCP RCS-1	Site Specific Acceptance
Constituent			Criteria

MCP - Massachusetts Contingency Plan

RCS-1 - Reportable Concentration for soil meeting the criteria of S-1 as defined in 310 CMR 40.0361

mg/kg - milligrams/kilogram

EPH - MassDEP Extractable Petroleum Hydrocarbons

VPH - MassDEP Volatile Petroleum Hydrocarbons

Trace levels of certain constituents may be accepted on a case-by-case basis with appropriate assessment and justification

NE - Not Established

NA - Not Applicable

 $^{^{\}left(1\right)}$ - Must analyze if considered to be a chemical of concern at generating site

 $^{^{(2)}}$ - Testing for herbicides and pesticides must be performed if Source Site is known to have stored or used herbicides or pesticides

ATTACHMENT C LABORATORY ANALYTICAL REPORTS

ANALYTICAL REPORT

Lab Number: L1629825

Client: SPE Materials Solutions, LLC

09/27/16

32A harvard Ave #6 Brookline, MA 02446

ATTN: Charlie Wilder
Phone: (508) 868-6013
Project Name: SCHOLD DEV
Project Number: Not Specified

Report Date:

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:09271619:46

Project Name:SCHOLD DEVLab Number:L1629825Project Number:Not SpecifiedReport Date:09/27/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1629825-01	SOIL SAMPLE 1-SPE	SOIL	MAIN ST LEICESTER, MA	09/21/16 10:00	09/21/16
L1629825-02	SOIL SAMPLE 2-SPE	SOIL	MAIN ST LEICESTER, MA	09/21/16 10:00	09/21/16
L1629825-03	SOIL SAMPLE 3-SPE	SOIL	MAIN ST LEICESTER, MA	09/21/16 10:00	09/21/16
L1629825-04	SOIL SAMPLE 4-SPE	SOIL	MAIN ST LEICESTER, MA	09/21/16 10:00	09/21/16

Project Name:SCHOLD DEVLab Number:L1629825Project Number:Not SpecifiedReport Date:09/27/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:SCHOLD DEVLab Number:L1629825Project Number:Not SpecifiedReport Date:09/27/16

Case Narrative (continued)

Sample Receipt

The samples were received at the laboratory above the required temperature range. The samples were delivered directly from the sampling site but were not on ice.

Metals

The WG935377-4 MS recovery, performed on L1629825-01, is outside the acceptance criteria for arsenic (51%). A post digestion spike was performed and yielded an unacceptable recovery of 62%. This has been attributed to sample matrix.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Amita Naik

Authorized Signature:

Title: Technical Director/Representative Date: 09/27/16

Nails

METALS

Project Name:SCHOLD DEVLab Number:L1629825Project Number:Not SpecifiedReport Date:09/27/16

SAMPLE RESULTS

Lab ID: L1629825-01 Date Collected: 09/21/16 10:00

Client ID: SOIL SAMPLE 1-SPE Date Received: 09/21/16
Sample Location: MAIN ST LEICESTER, MA Field Prep: Not Specified

Matrix: Soil Percent Solids: 98%

Analytical Method Dilution Date Date Prep Prepared Method **Factor Analyzed Parameter** Result Qualifier Units RL MDL Analyst

Parameter Result Qualifier Units RL MDL Factor Prepared Analyzed Method Method Analyst

Total Metals - Mansfield Lab

Arsenic, Total 22 mg/kg 0.40 -- 1 09/24/16 08:00 09/26/16 16:28 EPA 3050B 1,6010C PS

Project Name:SCHOLD DEVLab Number:L1629825Project Number:Not SpecifiedReport Date:09/27/16

SAMPLE RESULTS

Lab ID: L1629825-02 Date Collected: 09/21/16 10:00

Client ID: SOIL SAMPLE 2-SPE Date Received: 09/21/16
Sample Location: MAIN ST LEICESTER, MA Field Prep: Not Specified

Matrix: Soil Percent Solids: 80%

Analytical Method Dilution Date Date Prep Prepared Method **Factor Analyzed Parameter** Result Qualifier Units RL MDL Analyst

Parameter Result Qualifier Units RL MDL Factor Prepared Analyzed Method Analyst

Total Metals - Mansfield Lab

Arsenic, Total 48 mg/kg 0.48 -- 1 09/24/16 08:00 09/26/16 16:56 EPA 3050B 1,6010C PS

Project Name:SCHOLD DEVLab Number:L1629825Project Number:Not SpecifiedReport Date:09/27/16

SAMPLE RESULTS

Lab ID: L1629825-03 Date Collected: 09/21/16 10:00

Client ID: SOIL SAMPLE 3-SPE Date Received: 09/21/16
Sample Location: MAIN ST LEICESTER, MA Field Prep: Not Specified

Matrix: Soil Percent Solids: 95%

Analytical Method Dilution Date Date Prep Prepared Method **Factor Analyzed Parameter** Result Qualifier Units RL MDL Analyst

Total Metals - Mansfield Lab

Arsenic, Total 23 mg/kg 0.41 -- 1 09/24/16 08:00 09/26/16 17:00 EPA 3050B 1,6010C PS

Project Name:SCHOLD DEVLab Number:L1629825Project Number:Not SpecifiedReport Date:09/27/16

SAMPLE RESULTS

Lab ID: L1629825-04 Date Collected: 09/21/16 10:00

Client ID: SOIL SAMPLE 4-SPE Date Received: 09/21/16
Sample Location: MAIN ST LEICESTER, MA Field Prep: Not Specified

Matrix: Soil Percent Solids: 75%

Analytical Method Dilution Date Date Prep Prepared Method **Factor Analyzed Parameter** Result Qualifier Units RL MDL Analyst

Total Metals - Mansfield Lab

Arsenic, Total 48 mg/kg 0.52 -- 1 09/24/16 08:00 09/26/16 17:04 EPA 3050B 1,6010C PS

Project Name: SCHOLD DEV
Project Number: Not Specified

Lab Number: L1629825 **Report Date:** 09/27/16

Method Blank Analysis Batch Quality Control

Dilution Date Date Analytical Method Analyst **Result Qualifier** Units **Factor Prepared** Analyzed **Parameter** RL MDL Total Metals - Mansfield Lab for sample(s): 01-04 Batch: WG935377-1 Arsenic, Total ND mg/kg 0.40 1 09/26/16 15:55 1,6010C PS 09/24/16 08:00

Prep Information

Digestion Method: EPA 3050B

Lab Control Sample Analysis Batch Quality Control

Project Name: SCHOLD DEV
Project Number: Not Specified

Lab Number: L1629825

Report Date: 09/27/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01-04 Bato	ch: WG93537	77-2 SRM Lot	Number: [0091-540			
Arsenic, Total	103		-		80-121	-		

Matrix Spike Analysis Batch Quality Control

Project Name: SCHOLD DEV
Project Number: Not Specified

Lab Number: L1629825 **Report Date:** 09/27/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Total Metals - Mansfield Lab	Associated san	nple(s): 01-04	QC Bat	ch ID: WG935	377-4	QC Samp	le: L1629825-01	1 Client ID: SOI	L SAMP	LE 1-SPE
Arsenic, Total	22	9.77	27	51	Q	-	-	75-125	-	20

Lab Duplicate Analysis
Batch Quality Control

tch Quality Control Lab Number: L1629825

Report Date: 09/27/16

ParameterNative SampleDuplicate SampleUnitsRPDQualRPD LimitsTotal Metals - Mansfield Lab Associated sample(s): 01-04QC Batch ID: WG935377-3QC Sample: L1629825-01Client ID: SOIL SAMPLE 1-SPEArsenic, Total2220mg/kg1020

Project Name:

Project Number:

SCHOLD DEV

Not Specified

INORGANICS & MISCELLANEOUS

L1629825

Project Name: SCHOLD DEV Lab Number: **Project Number:** Not Specified

Report Date: 09/27/16

SAMPLE RESULTS

Lab ID: L1629825-01 Date Collected: 09/21/16 10:00 SOIL SAMPLE 1-SPE

Client ID: Date Received: 09/21/16 Sample Location: MAIN ST LEICESTER, MA Not Specified Field Prep:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	97.8		%	0.100	NA	1	-	09/23/16 01:26	121,2540G	VB

Project Name: SCHOLD DEV Lab Number: L1629825 **Project Number: Report Date:** Not Specified

09/27/16

SAMPLE RESULTS

Lab ID: L1629825-02 SOIL SAMPLE 2-SPE Client ID:

Sample Location: MAIN ST LEICESTER, MA

Soil Matrix:

Date Collected:

09/21/16 10:00

Date Received: 09/21/16

Not Specified Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab									
Solids, Total	79.8		%	0.100	NA	1	-	09/23/16 01:26	121,2540G	VB

L1629825

Project Name: SCHOLD DEV Lab Number: **Project Number:** Not Specified

Report Date: 09/27/16

SAMPLE RESULTS

Lab ID: L1629825-03 Date Collected: 09/21/16 10:00 SOIL SAMPLE 3-SPE

Client ID: Date Received: 09/21/16 Sample Location: MAIN ST LEICESTER, MA Not Specified Field Prep:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	95.0		%	0.100	NA	1	-	09/23/16 01:26	121,2540G	VB

Project Name: SCHOLD DEV

Lab Number:

L1629825

Project Number: Not Specified

Report Date: 09/27/16

SAMPLE RESULTS

Lab ID:

L1629825-04

Client ID: Sample Location: SOIL SAMPLE 4-SPE MAIN ST LEICESTER, MA

Matrix:

Soil

Date Collected:

09/21/16 10:00

Date Received:

09/21/16

Field Prep:

Not Specified

Dilution Date Date Analytical
Parameter Result Qualifier Units RL MDL Factor Prepared Analyzed Method Analyst

General Chemistry - Westborough Lab Solids, Total 74.5

% 0.100

NA 1 -

09/23/16 01:26

Allai

VΒ

121,2540G

Дерна

Lab Duplicate Analysis
Batch Quality Control

Lab Number: L1629825

09/27/16 Report Date:

Parameter	Native Sam	ple Dupl	licate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated samp SPE	le(s): 01-04	QC Batch ID: Wo	G934913-1 Q0	C Sample: L	1629825-01	Client ID:	SOIL SAMPLE 1-
Solids, Total	97.8		97.2	%	1		20

Project Name:

Project Number: Not Specified

SCHOLD DEV

Project Name:SCHOLD DEVLab Number:L1629825Project Number:Not SpecifiedReport Date:09/27/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	ormation	Temp					
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1629825-01A	Glass 250ml/8oz unpreserved	Α	N/A	23.9	Υ	Absent	AS-TI(180),TS(7)
L1629825-02A	Glass 250ml/8oz unpreserved	Α	N/A	23.9	Υ	Absent	AS-TI(180),TS(7)
L1629825-03A	Glass 250ml/8oz unpreserved	Α	N/A	23.9	Υ	Absent	AS-TI(180),TS(7)
L1629825-04A	Glass 250ml/8oz unpreserved	Α	N/A	23.9	Υ	Absent	AS-TI(180).TS(7)

Project Name: Lab Number: SCHOLD DEV L1629825 **Project Number:** Not Specified **Report Date:** 09/27/16

GLOSSARY

Acronyms

MS

EDL

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDI. - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound TIC

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

В - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:SCHOLD DEVLab Number:L1629825Project Number:Not SpecifiedReport Date:09/27/16

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:SCHOLD DEVLab Number:L1629825Project Number:Not SpecifiedReport Date:09/27/16

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 7

Published Date: 8/5/2016 11:25:56 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility SM 2540D: TSS

EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

															ociiai_ive	0.0927 1019.40	
Ацена	CHAIN	OF CU	STO	OY ,	AGE_	OF	Date	Rec'd	n Lab:	60	alzı	(16		ALPH	IA Job #:	L162982	5
WESTBORO, MA	MANSFIELD, MA	Projec	t Informat	оп			Rep	ort Inf	ormat	ion - D	ta Deli	verable	rs.	Billin	g Informati	on	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project I	Name: 9	chold	Nev		0	FAX		EMA	L.			a Sam	e as Client in	fo PO#:	
Client Information	on	Project I	Location: N	Vin St	1000	sterMA	0/	ADEx	1	□ Add'l	Deliverat	oles	1	1			
Client: 50_	Malarial Cloto	Project :		I giri on	BIC	Jiel 17F	Regi	ılatory	Requ	remen	s/Repo	rt Limi	ts				
ddress: 7 Q	Material Solution	Decine 1	Manager:	014	1		State	/Fed Pr	ogram		700	- 1	Criteri	a			
()	Ullara Lane	ALTHIA	Quote #:	CHI	7		MAN	ICP PR	ESUN	PTIVE	CERTA	INTY -	- CT	REAS	ONABLE C	ONFIDENCE PRO	TO
80	ton MA 0/190	THE REAL PROPERTY.		Ver	al	_	DY				Analytic						
hone: 50	8-868-8455	Turn-	Around Tin	ne			DY									see note in Commer	nts)
ax:		S-Stand	nert 🗇	RUSH		010000	DW	es ON	lo i	Ve CT F	CP (Rea	sonable	Conf	dence F	Protocols) Re	quired?	
mail: curl di	ave spematerials	Date Du		1100/1/1			Γ,	. /	/ /		//	7	7	77	111		1 3
These samples ha	ve been previously analyzed by Alp		PG:		Time:		ANALYSIS	1	/	/	/ /	//	1	11	/ / /s	AMPLE HANDLING	
	pecific Requirements/Con						3	13	/	//	/	/ /	1	//	1 1	iltration I Done	1
(Note: All CAM met	dicate in Semple Specific Commer hods for inorganic analyses require	ts which sample MS every 20 se	es and what te oil samples)	ets MS to be	performed	5	₹/	A Sellici	/	//	/ /	/	//	/ /	/ / >	Not needed	
							1/3	3/	/ /	/	/ /	11	//	11		Lab to do	1
ALPHA Lab ID			Colle	effen	Sample	lo 1.1	10	7 /	1	//	/	/ /	/	//		Lab to do	
(Lab Use Only)	Sample ID		Date	Time	Matrix	Sampler's Initials	11 7	1	/	/ /	//	/	//	//	-	Specific Comments	-
9825 - 01	Soil sample	1-SPE	9/21/16	10 AM	S	CHW	X							1			
.2	ct '	2-5/5	1/1/	t	1	1	X										
63	ų	3 CP-					X		\Box		+		$^{+}$				+
64	и	121						+-	\vdash	+		+	+	+			+
04	1000	Tore	¥	-\/_	V	V	X	+	\vdash	_	-		-	-			_
														5			
										\top			$^{+}$	+			+
								_		_		+	+	+			+
							-	_		-	-	++1	+	+			+
							_	-		_				1			
								1									
PLEASE ANSWER	R QUESTIONS ABOVE!			$ \Gamma$	Conta	iner Type		_		$\overline{}$				_	Disease and	-t stand, to 31,	1
						servative				-					pletely. Sa	nt clearly, legibly and amples can not be log	gged
SYOURP	11/	Relingui	hed By	_	Date	/Time		R	celves	Bv:		D	ate/Ti	me		around time clock wi any ambiguities are re	
MA MCP O	r CT RCP?	will	Ulke	/	9/21	16 28M		5		5	AM	91		a 14	Alhsample	s submitted are subje	
IM NO: 04-01 (res. 18-Ja	n-2010)		303-50,21		77	M		1				1.00	- Laborator		See reven	rms and Conditions. se side.	
ge 25 of 25	erouse 1 17-				1										12000	521527	

ANALYTICAL REPORT

Lab Number: L2122044

Client: SPE Materials Solutions, LLC

32A Harvard Ave. #6 Brookline, MA 02446

ATTN: Charlie Wilder Phone: (508) 868-8455

Project Name: LEICESTER MA<RCS-1 SITE

Project Number: 4222021CHARME

Report Date: 05/03/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: LEICESTER MA<RCS-1 SITE

Lab Number: L2122044 **Project Number:** 4222021CHARME Report Date: 05/03/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2122044-01	SOIL #11	SOIL	MAIN ST., LEICESTER, MA	04/29/21 10:00	04/29/21
L2122044-02	SOIL #12	SOIL	MAIN ST., LEICESTER, MA	04/29/21 10:00	04/29/21
L2122044-03	SOIL #13	SOIL	MAIN ST., LEICESTER, MA	04/29/21 10:00	04/29/21
L2122044-04	SOIL #14	SOIL	MAIN ST., LEICESTER, MA	04/29/21 10:00	04/29/21
L2122044-05	SOIL #15	SOIL	MAIN ST., LEICESTER, MA	04/29/21 10:00	04/29/21
L2122044-06	SOIL #16	SOIL	MAIN ST., LEICESTER, MA	04/29/21 10:00	04/29/21
L2122044-07	SOIL #17	SOIL	MAIN ST., LEICESTER, MA	04/29/21 10:00	04/29/21
L2122044-08	SOIL #18	SOIL	MAIN ST., LEICESTER, MA	04/29/21 10:00	04/29/21
L2122044-09	SOIL #19	SOIL	MAIN ST., LEICESTER, MA	04/29/21 10:00	04/29/21
L2122044-10	SOIL #20	SOIL	MAIN ST., LEICESTER, MA	04/29/21 10:00	04/29/21
L2122044-11	SOIL #21	SOIL	MAIN ST., LEICESTER, MA	04/29/21 10:00	04/29/21
L2122044-12	SOIL #22	SOIL	MAIN ST., LEICESTER, MA	04/29/21 10:00	04/29/21
L2122044-13	SOIL #23	SOIL	MAIN ST., LEICESTER, MA	04/29/21 10:00	04/29/21
L2122044-14	SOIL #24	SOIL	MAIN ST., LEICESTER, MA	04/29/21 10:00	04/29/21
L2122044-15	SOIL #25	SOIL	MAIN ST., LEICESTER, MA	04/29/21 10:00	04/29/21
L2122044-16	SOIL #26	SOIL	MAIN ST., LEICESTER, MA	04/29/21 10:00	04/29/21
L2122044-17	SOIL #27	SOIL	MAIN ST., LEICESTER, MA	04/29/21 10:00	04/29/21
L2122044-18	SOIL #28	SOIL	MAIN ST., LEICESTER, MA	04/29/21 10:00	04/29/21
L2122044-19	SOIL #29	SOIL	MAIN ST., LEICESTER, MA	04/29/21 10:00	04/29/21
L2122044-20	SOIL #30	SOIL	MAIN ST., LEICESTER, MA	04/29/21 10:00	04/29/21

Project Name:LEICESTER MA<RCS-1 SITE</th>Lab Number:L2122044Project Number:4222021CHARMEReport Date:05/03/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:LEICESTER MA<RCS-1 SITE</th>Lab Number:L2122044Project Number:4222021CHARMEReport Date:05/03/21

Case Narrative (continued)

Sample Receipt

The samples were received at the laboratory above the required temperature range. The samples were delivered directly from the sampling site but were not on ice.

Total Metals

The WG1493149-3 MS recovery, performed on L2122044-01, is outside the acceptance criteria for arsenic (71%). A post digestion spike was performed and yielded an unacceptable recovery of 70%. The serial dilution recovery was acceptable; therefore, the matrix test passed for the sample matrix.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/03/21

Civilin Walker Cristin Walker

METALS

Project Name:LEICESTER MA<RCS-1 SITE</th>Lab Number:L2122044Project Number:4222021CHARMEReport Date:05/03/21

SAMPLE RESULTS

 Lab ID:
 L2122044-01
 Date Collected:
 04/29/21 10:00

 Client ID:
 SOIL #11
 Date Received:
 04/29/21

Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 90%

Prep **Analytical** Dilution Date Date Method **Factor** Parameter Result Qualifier Units MDL Prepared Analyzed Method RL **Analyst**

Total Metals - Mansfield Lab

Arsenic, Total 18.2 mg/kg 0.437 -- 1 05/01/21 09:30 05/01/21 14:48 EPA 3050B 1,6010D SV

Project Name:LEICESTER MA<RCS-1 SITE</th>Lab Number:L2122044Project Number:4222021CHARMEReport Date:05/03/21

SAMPLE RESULTS

 Lab ID:
 L2122044-02
 Date Collected:
 04/29/21 10:00

 Client ID:
 SOIL #12
 Date Received:
 04/29/21

Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 91%

Prep **Analytical** Dilution Date Date Method **Factor** Parameter Result Qualifier Units MDL Prepared Analyzed Method RL **Analyst**

Total Metals - Mansfield Lab

Arsenic, Total 9.73 mg/kg 0.413 -- 1 05/01/21 09:30 05/01/21 14:43 EPA 3050B 1,6010D SV

Project Name:LEICESTER MA<RCS-1 SITE</th>Lab Number:L2122044Project Number:4222021CHARMEReport Date:05/03/21

SAMPLE RESULTS

 Lab ID:
 L2122044-03
 Date Collected:
 04/29/21 10:00

 Client ID:
 SOIL #13
 Date Received:
 04/29/21

Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 91%

Prep **Analytical** Dilution Date Date Method **Factor** Parameter Result Qualifier Units MDL Prepared Analyzed Method RL **Analyst**

Total Metals - Mansfield Lab

Arsenic, Total 9.04 mg/kg 0.430 -- 1 05/01/21 09:30 05/01/21 15:37 EPA 3050B 1,6010D SV

Project Name:LEICESTER MA<RCS-1 SITE</th>Lab Number:L2122044Project Number:4222021CHARMEReport Date:05/03/21

SAMPLE RESULTS

 Lab ID:
 L2122044-04
 Date Collected:
 04/29/21 10:00

 Client ID:
 SOIL #14
 Date Received:
 04/29/21

Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 90%

Prep **Analytical** Dilution Date Date Method **Factor** Parameter Result Qualifier Units MDL Prepared Analyzed Method RL **Analyst**

Total Metals - Mansfield Lab

Arsenic, Total 30.6 mg/kg 0.419 -- 1 05/01/21 09:30 05/01/21 15:42 EPA 3050B 1,6010D SV

Project Name:LEICESTER MA<RCS-1 SITE</th>Lab Number:L2122044Project Number:4222021CHARMEReport Date:05/03/21

SAMPLE RESULTS

 Lab ID:
 L2122044-05
 Date Collected:
 04/29/21 10:00

 Client ID:
 SOIL #15
 Date Received:
 04/29/21

Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 91%

Prep **Analytical** Dilution Date Date Method **Factor** Parameter Result Qualifier Units MDL Prepared Analyzed Method RL **Analyst**

Total Metals - Mansfield Lab

Arsenic, Total 14.2 mg/kg 0.414 -- 1 05/01/21 09:30 05/01/21 15:47 EPA 3050B 1,6010D SV

Project Name:LEICESTER MA<RCS-1 SITE</th>Lab Number:L2122044Project Number:4222021CHARMEReport Date:05/03/21

SAMPLE RESULTS

 Lab ID:
 L2122044-06
 Date Collected:
 04/29/21 10:00

 Client ID:
 SOIL #16
 Date Received:
 04/29/21

Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 91%

Prep **Analytical** Dilution Date Date Method **Factor** Parameter Result Qualifier Units MDL Prepared Analyzed Method RL **Analyst**

 Parameter
 Result
 Qualifier
 Units
 RL
 MDL
 1 detail
 Frepared
 Analyse

 Total Metals - Mansfield Lab

 Arsenic, Total
 18.4
 mg/kg
 0.420
 - 1
 05/01/21 09:30 05/01/21 15:52 EPA 3050B
 1,6010D
 SV

Project Name:LEICESTER MA<RCS-1 SITE</th>Lab Number:L2122044Project Number:4222021CHARMEReport Date:05/03/21

SAMPLE RESULTS

 Lab ID:
 L2122044-07
 Date Collected:
 04/29/21 10:00

 Client ID:
 SOIL #17
 Date Received:
 04/29/21

Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 91%

Prep **Analytical** Dilution Date Date Method **Factor** Parameter Result Qualifier Units MDL Prepared Analyzed Method RL **Analyst**

Total Metals - Mansfield Lab

Arsenic, Total 21.1 mg/kg 0.424 -- 1 05/01/21 09:30 05/01/21 15:57 EPA 3050B 1,6010D SV

Project Name:LEICESTER MA<RCS-1 SITE</th>Lab Number:L2122044Project Number:4222021CHARMEReport Date:05/03/21

SAMPLE RESULTS

 Lab ID:
 L2122044-08
 Date Collected:
 04/29/21 10:00

 Client ID:
 SOIL #18
 Date Received:
 04/29/21

Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 90%

Prep **Analytical** Dilution Date Date Method **Factor** Parameter Result Qualifier Units Prepared Analyzed Method RL MDL **Analyst**

Total Metals - Mansfield Lab

Arsenic, Total 28.7 mg/kg 0.428 -- 1 05/01/21 09:30 05/01/21 16:02 EPA 3050B 1,6010D SV

Project Name:LEICESTER MA<RCS-1 SITE</th>Lab Number:L2122044Project Number:4222021CHARMEReport Date:05/03/21

SAMPLE RESULTS

 Lab ID:
 L2122044-09
 Date Collected:
 04/29/21 10:00

 Client ID:
 SOIL #19
 Date Received:
 04/29/21

Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 87%

Prep **Analytical** Dilution Date Date Method **Factor** Parameter Result Qualifier Units MDL Prepared Analyzed Method RL **Analyst**

Total Metals - Mansfield Lab

Arsenic, Total 19.1 mg/kg 0.438 -- 1 05/01/21 09:30 05/01/21 16:08 EPA 3050B 1,6010D SV

Project Name:LEICESTER MA<RCS-1 SITE</th>Lab Number:L2122044Project Number:4222021CHARMEReport Date:05/03/21

SAMPLE RESULTS

 Lab ID:
 L2122044-10
 Date Collected:
 04/29/21 10:00

 Client ID:
 SOIL #20
 Date Received:
 04/29/21

Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 92%

Prep **Analytical** Dilution Date Date Method **Factor** Parameter Result Qualifier Units MDL Prepared Analyzed Method RL **Analyst**

Total Metals - Mansfield Lab

Arsenic, Total 25.4 mg/kg 0.420 -- 1 05/01/21 09:30 05/01/21 16:22 EPA 3050B 1,6010D SV

Project Name:LEICESTER MA<RCS-1 SITE</th>Lab Number:L2122044Project Number:4222021CHARMEReport Date:05/03/21

SAMPLE RESULTS

 Lab ID:
 L2122044-11
 Date Collected:
 04/29/21 10:00

 Client ID:
 SOIL #21
 Date Received:
 04/29/21

Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 80%

Prep **Analytical** Dilution Date Date Method **Factor** Parameter Result Qualifier Units **Prepared** Analyzed Method RL MDL **Analyst**

Total Metals - Mansfield Lab

Arsenic, Total 17.6 mg/kg 0.490 -- 1 05/01/21 09:30 05/01/21 16:28 EPA 3050B 1,6010D SV

Project Name:LEICESTER MA<RCS-1 SITE</th>Lab Number:L2122044Project Number:4222021CHARMEReport Date:05/03/21

SAMPLE RESULTS

 Lab ID:
 L2122044-12
 Date Collected:
 04/29/21 10:00

 Client ID:
 SOIL #22
 Date Received:
 04/29/21

Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 82%

Prep **Analytical** Dilution Date Date Method **Factor** Parameter Result Qualifier Units MDL Prepared Analyzed Method RL **Analyst**

Total Metals - Mansfield Lab

Arsenic, Total 22.2 mg/kg 0.465 -- 1 05/01/21 09:30 05/01/21 16:33 EPA 3050B 1,6010D SV

Project Name:LEICESTER MA<RCS-1 SITE</th>Lab Number:L2122044Project Number:4222021CHARMEReport Date:05/03/21

SAMPLE RESULTS

 Lab ID:
 L2122044-13
 Date Collected:
 04/29/21 10:00

 Client ID:
 SOIL #23
 Date Received:
 04/29/21

Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 81%

Prep **Analytical** Dilution Date Date Method **Factor** Parameter Result Qualifier Units **Prepared** Analyzed Method RL MDL **Analyst**

Total Metals - Mansfield Lab

Arsenic, Total 19.4 mg/kg 0.484 -- 1 05/01/21 09:30 05/01/21 16:38 EPA 3050B 1,6010D SV

Project Name:LEICESTER MA<RCS-1 SITE</th>Lab Number:L2122044Project Number:4222021CHARMEReport Date:05/03/21

SAMPLE RESULTS

 Lab ID:
 L2122044-14
 Date Collected:
 04/29/21 10:00

 Client ID:
 SOIL #24
 Date Received:
 04/29/21

Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 83%

Prep **Analytical** Dilution Date Date Method **Factor** Parameter Result Qualifier Units **Prepared** Analyzed Method RL MDL **Analyst**

Total Metals - Mansfield Lab

Arsenic, Total 18.8 mg/kg 0.452 -- 1 05/01/21 09:30 05/01/21 16:43 EPA 3050B 1,6010D SV

Project Name:LEICESTER MA<RCS-1 SITE</th>Lab Number:L2122044Project Number:4222021CHARMEReport Date:05/03/21

SAMPLE RESULTS

 Lab ID:
 L2122044-15
 Date Collected:
 04/29/21 10:00

 Client ID:
 SOIL #25
 Date Received:
 04/29/21

Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 83%

Dilution Date Date Prep Analytical
arameter Result Qualifier Units RI MDI Factor Prepared Analyzed Method Method Analyst

Parameter Result Qualifier Units RL MDL **Analyst** Total Metals - Mansfield Lab Arsenic, Total 18.9 mg/kg 0.466 1 05/01/21 09:30 05/01/21 16:48 EPA 3050B 1,6010D SV

Project Name:LEICESTER MA<RCS-1 SITE</th>Lab Number:L2122044Project Number:4222021CHARMEReport Date:05/03/21

SAMPLE RESULTS

 Lab ID:
 L2122044-16
 Date Collected:
 04/29/21 10:00

 Client ID:
 SOIL #26
 Date Received:
 04/29/21

Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 80%

Prep **Analytical** Dilution Date Date Method **Factor** Parameter Result Qualifier Units MDL **Prepared** Analyzed Method RL **Analyst**

Total Metals - Mansfield Lab

Arsenic, Total 17.8 mg/kg 0.479 -- 1 05/01/21 09:30 05/01/21 16:53 EPA 3050B 1,6010D SV

Project Name:LEICESTER MA<RCS-1 SITE</th>Lab Number:L2122044Project Number:4222021CHARMEReport Date:05/03/21

SAMPLE RESULTS

 Lab ID:
 L2122044-17
 Date Collected:
 04/29/21 10:00

 Client ID:
 SOIL #27
 Date Received:
 04/29/21

Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 83%

Prep **Analytical** Dilution Date Date Method **Factor** Parameter Result Qualifier Units MDL **Prepared** Analyzed Method RL **Analyst**

Total Metals - Mansfield Lab

Arsenic, Total 18.9 mg/kg 0.454 -- 1 05/01/21 09:30 05/01/21 16:58 EPA 3050B 1,6010D SV

Project Name:LEICESTER MA<RCS-1 SITE</th>Lab Number:L2122044Project Number:4222021CHARMEReport Date:05/03/21

SAMPLE RESULTS

 Lab ID:
 L2122044-18
 Date Collected:
 04/29/21 10:00

 Client ID:
 SOIL #28
 Date Received:
 04/29/21

Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 81%

Prep **Analytical** Dilution Date Date Method **Factor** Parameter Result Qualifier Units MDL **Prepared** Analyzed Method RL **Analyst**

Total Metals - Mansfield Lab

Arsenic, Total 17.5 mg/kg 0.484 -- 1 05/01/21 09:30 05/01/21 17:04 EPA 3050B 1,6010D SV

Project Name:LEICESTER MA<RCS-1 SITE</th>Lab Number:L2122044Project Number:4222021CHARMEReport Date:05/03/21

SAMPLE RESULTS

 Lab ID:
 L2122044-19
 Date Collected:
 04/29/21 10:00

 Client ID:
 SOIL #29
 Date Received:
 04/29/21

Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 82%

Prep **Analytical** Dilution Date Date Method **Factor** Parameter Result Qualifier Units MDL **Prepared** Analyzed Method RL

Parameter Result Qualifier Units RL MDL Factor Prepared Analyzed Method Method Analyst

Total Metals - Mansfield Lab

Arsenic, Total 16.8 mg/kg 0.468 -- 1 05/01/21 09:30 05/01/21 17:09 EPA 3050B 1,6010D SV

Project Name:LEICESTER MA<RCS-1 SITE</th>Lab Number:L2122044Project Number:4222021CHARMEReport Date:05/03/21

SAMPLE RESULTS

 Lab ID:
 L2122044-20
 Date Collected:
 04/29/21 10:00

 Client ID:
 SOIL #30
 Date Received:
 04/29/21

Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 79%

Prep **Analytical** Dilution Date Date Method **Factor** Parameter Result Qualifier Units **Prepared** Analyzed Method RL MDL **Analyst**

Total Metals - Mansfield Lab

Arsenic, Total 19.6 mg/kg 0.494 -- 1 05/01/21 09:30 05/01/21 17:24 EPA 3050B 1,6010D SV

Project Name: LEICESTER MA<RCS-1 SITE

Project Number: 4222021CHARME

Lab Number:

L2122044

Report Date:

05/03/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfield	Lab for sample(s):	01-20 Ba	atch: W	G14931	49-1				
Arsenic, Total	ND	mg/kg	0.400		1	05/01/21 09:30	05/01/21 15:27	1,6010D	SV

Prep Information

Digestion Method: EPA 3050B

Lab Control Sample Analysis Batch Quality Control

Lab Number: L2122044

Project Number: 4222021CHARME Report Date: 05/03/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Total Metals - Mansfield Lab Associated sample	e(s): 01-20 Bato	ch: WG1493	3149-2 SRM Lo	ot Number:	D109-540				
Arsenic, Total	93		-		70-130	-			

Project Name:

LEICESTER MA<RCS-1 SITE

Matrix Spike Analysis Batch Quality Control

Project Name: LEICESTER MA<RCS-1 SITE

Project Number: 4222021CHARME

Lab Number: L2122044

Report Date: 05/03/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield La	b Associated sar	mple(s): 01 - 20	QC Bat	tch ID: WG149	3149-3	QC San	nple: L2122044-	01 CI	ient ID: SC	OIL #11		
Arsenic, Total	18.2	10.4	25.6	71	Q	-	-		75-125	-		20

L2122044

Lab Duplicate Analysis

Batch Quality Control

Lab Number: LEICESTER MA<RCS-1 SITE

Project Number: 4222021CHARME 05/03/21 Report Date:

Parameter	Native Sample	Duplicate Samp	ole Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-2	20 QC Batch ID:	WG1493149-4 QC Sar	mple: L2122044-01	Client ID:	SOIL #11	
Arsenic, Total	18.2	16.9	mg/kg	7		20

Project Name:

INORGANICS & MISCELLANEOUS

Project Name: LEICESTER MA<RCS-1 SITE Lab Number: L2122044

Project Number: 4222021CHARME Report Date: 05/03/21

SAMPLE RESULTS

Lab ID: L2122044-01 Date Collected: 04/29/21 10:00

Client ID: SOIL #11 Date Received: 04/29/21 Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	90.2		%	0.100	NA	1	-	04/30/21 16:44	121,2540G	SB

Project Name: LEICESTER MA<RCS-1 SITE Lab Number: L2122044

Project Number: 4222021CHARME Report Date: 05/03/21

SAMPLE RESULTS

Lab ID: L2122044-02 Date Collected: 04/29/21 10:00

Client ID: SOIL #12 Date Received: 04/29/21 Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
Solids, Total	90.9		%	0.100	NA	1	-	04/30/21 16:44	121,2540G	SB

Project Name: LEICESTER MA<RCS-1 SITE Lab Number: L2122044

Project Number: 4222021CHARME Report Date: 05/03/21

SAMPLE RESULTS

Lab ID: L2122044-03 Date Collected: 04/29/21 10:00

Client ID: SOIL #13 Date Received: 04/29/21 Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	90.9		%	0.100	NA	1	-	04/30/21 16:44	121,2540G	SB

Project Name: LEICESTER MA<RCS-1 SITE Lab Number: L2122044

Project Number: 4222021CHARME Report Date: 05/03/21

SAMPLE RESULTS

Lab ID: L2122044-04 Date Collected: 04/29/21 10:00

Client ID: SOIL #14 Date Received: 04/29/21 Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab									
Solids, Total	89.7		%	0.100	NA	1	-	04/30/21 16:44	121,2540G	SB

Project Name: LEICESTER MA<RCS-1 SITE Lab Number: L2122044

Project Number: 4222021CHARME Report Date: 05/03/21

SAMPLE RESULTS

Lab ID: L2122044-05 Date Collected: 04/29/21 10:00

Client ID: SOIL #15 Date Received: 04/29/21 Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab									
Solids, Total	90.7		%	0.100	NA	1	-	04/30/21 16:44	121,2540G	SB

Project Name: LEICESTER MA<RCS-1 SITE Lab Number: L2122044

Project Number: 4222021CHARME Report Date: 05/03/21

SAMPLE RESULTS

Lab ID: L2122044-06 Date Collected: 04/29/21 10:00

Client ID: SOIL #16 Date Received: 04/29/21 Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	90.8		%	0.100	NA	1	_	04/30/21 16:44	121,2540G	SB

Project Name: LEICESTER MA<RCS-1 SITE

Project Number: 4222021CHARME

Lab Number:

L2122044

Report Date: 05/03/21

SAMPLE RESULTS

Lab ID: L2122044-07

Client ID: SOIL #17

Sample Location: MAIN ST., LEICESTER, MA

Date Collected:

04/29/21 10:00

Date Received:

04/29/21

Field Prep:

Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	91.1		%	0.100	NA	1	-	04/30/21 16:44	121,2540G	SB

Project Name: LEICESTER MA<RCS-1 SITE Lab Number: L2122044

Project Number: 4222021CHARME Report Date: 05/03/21

SAMPLE RESULTS

Lab ID: L2122044-08 Date Collected: 04/29/21 10:00

Client ID: SOIL #18 Date Received: 04/29/21 Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	89.7		%	0.100	NA	1	-	04/30/21 16:44	121,2540G	SB

Project Name: LEICESTER MA<RCS-1 SITE Lab Number: L2122044

Project Number: 4222021CHARME Report Date: 05/03/21

SAMPLE RESULTS

Lab ID: L2122044-09 Date Collected: 04/29/21 10:00

Client ID: SOIL #19 Date Received: 04/29/21 Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	87.0		%	0.100	NA	1	-	04/30/21 16:44	121,2540G	SB

Project Name: LEICESTER MA<RCS-1 SITE Lab Number: L2122044

Project Number: 4222021CHARME Report Date: 05/03/21

SAMPLE RESULTS

Lab ID: L2122044-10 Date Collected: 04/29/21 10:00

Client ID: SOIL #20 Date Received: 04/29/21 Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	91.9		%	0.100	NA	1	-	04/30/21 16:44	121,2540G	SB

Project Name: LEICESTER MA<RCS-1 SITE Lab Number: L2122044

Project Number: 4222021CHARME Report Date: 05/03/21

SAMPLE RESULTS

Lab ID: L2122044-11 Date Collected: 04/29/21 10:00

Client ID: SOIL #21 Date Received: 04/29/21 Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
Solids, Total	80.1		%	0.100	NA	1	-	04/30/21 16:44	121,2540G	SB

L2122044

Project Name: Lab Number: LEICESTER MA<RCS-1 SITE

Project Number: 4222021CHARME **Report Date:** 05/03/21

SAMPLE RESULTS

Lab ID: L2122044-12 Date Collected: 04/29/21 10:00

Client ID: SOIL #22 Date Received: 04/29/21 Not Specified Sample Location: MAIN ST., LEICESTER, MA Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	81.5		%	0.100	NA	1	-	04/30/21 16:44	121,2540G	SB

Project Name: LEICESTER MA<RCS-1 SITE Lab Number: L2122044

Project Number: 4222021CHARME Report Date: 05/03/21

SAMPLE RESULTS

Lab ID: L2122044-13 Date Collected: 04/29/21 10:00

Client ID: SOIL #23 Date Received: 04/29/21 Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	Vestborough Lab)								
Solids, Total	81.2		%	0.100	NA	1	-	04/30/21 16:44	121,2540G	SB

Project Name: LEICESTER MA<RCS-1 SITE Lab Number: L2122044

Project Number: 4222021CHARME Report Date: 05/03/21

SAMPLE RESULTS

Lab ID: L2122044-14 Date Collected: 04/29/21 10:00

Client ID: SOIL #24 Date Received: 04/29/21 Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	83.2		%	0.100	NA	1	-	04/30/21 16:44	121,2540G	SB

Project Name: LEICESTER MA<RCS-1 SITE Lab Number: L2122044

Project Number: 4222021CHARME Report Date: 05/03/21

SAMPLE RESULTS

Lab ID: L2122044-15 Date Collected: 04/29/21 10:00

Client ID: SOIL #25 Date Received: 04/29/21 Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	82.5		%	0.100	NA	1	-	04/30/21 16:44	121,2540G	SB

Project Name: LEICESTER MA<RCS-1 SITE Lab Number: L2122044

Project Number: 4222021CHARME Report Date: 05/03/21

SAMPLE RESULTS

Lab ID: L2122044-16 Date Collected: 04/29/21 10:00

Client ID: SOIL #26 Date Received: 04/29/21 Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	79.6		%	0.100	NA	1	-	04/30/21 16:44	121,2540G	SB

Project Name: Lab Number: LEICESTER MA<RCS-1 SITE

L2122044 Project Number: 4222021CHARME **Report Date:** 05/03/21

SAMPLE RESULTS

Lab ID: L2122044-17 Date Collected: 04/29/21 10:00

Client ID: SOIL #27 Date Received: 04/29/21 Not Specified Sample Location: MAIN ST., LEICESTER, MA Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - '	Westborough Lab)								
Solids, Total	82.7		%	0.100	NA	1	-	04/30/21 16:44	121,2540G	SB

Project Name: LEICESTER MA<RCS-1 SITE Lab Number: L2122044

Project Number: 4222021CHARME Report Date: 05/03/21

SAMPLE RESULTS

Lab ID: L2122044-18 Date Collected: 04/29/21 10:00

Client ID: SOIL #28 Date Received: 04/29/21 Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	80.7		%	0.100	NA	1	-	04/30/21 16:44	121,2540G	SB

Project Name: LEICESTER MA<RCS-1 SITE Lab Number: L2122044

Project Number: 4222021CHARME Report Date: 05/03/21

SAMPLE RESULTS

Lab ID: L2122044-19 Date Collected: 04/29/21 10:00

Client ID: SOIL #29 Date Received: 04/29/21 Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	82.1		%	0.100	NA	1	-	04/30/21 16:44	121,2540G	SB

Project Name: LEICESTER MA<RCS-1 SITE Lab Number: L2122044

Project Number: 4222021CHARME Report Date: 05/03/21

SAMPLE RESULTS

Lab ID: L2122044-20 Date Collected: 04/29/21 10:00

Client ID: SOIL #30 Date Received: 04/29/21 Sample Location: MAIN ST., LEICESTER, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	79.4		%	0.100	NA	1	-	04/30/21 16:44	121,2540G	SB

Lab Duplicate Analysis
Batch Quality Control

Lab Number: L2122044 05/03/21 Report Date:

RPD **RPD Limits Parameter** Native Sample **Duplicate Sample** Units Qual General Chemistry - Westborough Lab Associated sample(s): 01-20 QC Batch ID: WG1493027-1 QC Sample: L2122044-01 Client ID: SOIL #11 Solids, Total 90.2 % 20 90.0 0

Project Name:

Project Number:

LEICESTER MA<RCS-1 SITE

4222021CHARME

Serial_No:05032114:09

Lab Number: L2122044 **Report Date:** 05/03/21

Project Name: LEICESTER MA<RCS-1 SITE

Project Number: 4222021CHARME

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

A Absent

Container l	Information		Initial	Final	Temp			Frozen	
Container l	ID Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2122044-01A	Bag	Α	NA		14.6	Υ	Absent		AS-TI(180)
L2122044-01X	Glass 60ml unpreserved split	А	NA		14.6	Υ	Absent		TS(7)
L2122044-02A	Bag	Α	NA		14.6	Υ	Absent		AS-TI(180)
L2122044-02X	Glass 60ml unpreserved split	Α	NA		14.6	Υ	Absent		TS(7)
L2122044-03A	Bag	Α	NA		14.6	Υ	Absent		AS-TI(180)
L2122044-03X	Glass 60ml unpreserved split	Α	NA		14.6	Υ	Absent		TS(7)
L2122044-04A	Bag	Α	NA		14.6	Υ	Absent		AS-TI(180)
L2122044-04X	Glass 60ml unpreserved split	Α	NA		14.6	Υ	Absent		TS(7)
L2122044-05A	Bag	Α	NA		14.6	Υ	Absent		AS-TI(180)
L2122044-05X	Glass 60ml unpreserved split	Α	NA		14.6	Υ	Absent		TS(7)
L2122044-06A	Bag	Α	NA		14.6	Υ	Absent		AS-TI(180)
L2122044-06X	Glass 60ml unpreserved split	Α	NA		14.6	Υ	Absent		TS(7)
L2122044-07A	Bag	Α	NA		14.6	Υ	Absent		AS-TI(180)
L2122044-07X	Glass 60ml unpreserved split	Α	NA		14.6	Υ	Absent		TS(7)
L2122044-08A	Bag	Α	NA		14.6	Υ	Absent		AS-TI(180)
L2122044-08X	Glass 60ml unpreserved split	Α	NA		14.6	Υ	Absent		TS(7)
L2122044-09A	Bag	Α	NA		14.6	Υ	Absent		AS-TI(180)
L2122044-09X	Glass 60ml unpreserved split	Α	NA		14.6	Υ	Absent		TS(7)
L2122044-10A	Bag	Α	NA		14.6	Υ	Absent		AS-TI(180)
L2122044-10X	Glass 60ml unpreserved split	Α	NA		14.6	Υ	Absent		TS(7)
L2122044-11A	Bag	Α	NA		14.6	Υ	Absent		AS-TI(180)
L2122044-11X	Glass 60ml unpreserved split	Α	NA		14.6	Υ	Absent		TS(7)
L2122044-12A	Bag	Α	NA		14.6	Υ	Absent		AS-TI(180)

Page 52 of 60

*Values in parentheses indicate holding time in days

Project Name: LEICESTER MA<RCS-1 SITE

Project Number: 4222021CHARME

Serial_No:05032114:09 *Lab Number:* L2122044 *Report Date:* 05/03/21

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2122044-12X	Glass 60ml unpreserved split	Α	NA		14.6	Υ	Absent		TS(7)
L2122044-13A	Bag	Α	NA		14.6	Υ	Absent		AS-TI(180)
L2122044-13X	Glass 60ml unpreserved split	Α	NA		14.6	Υ	Absent		TS(7)
L2122044-14A	Bag	Α	NA		14.6	Υ	Absent		AS-TI(180)
L2122044-14X	Glass 60ml unpreserved split	Α	NA		14.6	Υ	Absent		TS(7)
L2122044-15A	Bag	Α	NA		14.6	Υ	Absent		AS-TI(180)
L2122044-15X	Glass 60ml unpreserved split	Α	NA		14.6	Υ	Absent		TS(7)
L2122044-16A	Bag	Α	NA		14.6	Υ	Absent		AS-TI(180)
L2122044-16X	Glass 60ml unpreserved split	Α	NA		14.6	Υ	Absent		TS(7)
L2122044-17A	Bag	Α	NA		14.6	Υ	Absent		AS-TI(180)
L2122044-17X	Glass 60ml unpreserved split	Α	NA		14.6	Υ	Absent		TS(7)
L2122044-18A	Bag	Α	NA		14.6	Υ	Absent		AS-TI(180)
L2122044-18X	Glass 60ml unpreserved split	Α	NA		14.6	Υ	Absent		TS(7)
L2122044-19A	Bag	Α	NA		14.6	Υ	Absent		AS-TI(180)
L2122044-19X	Glass 60ml unpreserved split	Α	NA		14.6	Υ	Absent		TS(7)
L2122044-20A	Bag	Α	NA		14.6	Υ	Absent		AS-TI(180)
L2122044-20X	Glass 60ml unpreserved split	Α	NA		14.6	Υ	Absent		TS(7)

Project Name: Lab Number: LEICESTER MA<RCS-1 SITE L2122044 **Report Date: Project Number:** 4222021CHARME 05/03/21

GLOSSARY

Acronyms

LOQ

MS

RPD

SRM

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile NR

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples. STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:LEICESTER MA<RCS-1 SITE</th>Lab Number:L2122044Project Number:4222021CHARMEReport Date:05/03/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:LEICESTER MA<RCS-1 SITE</th>Lab Number:L2122044Project Number:4222021CHARMEReport Date:05/03/21

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Serial_No:05032114:09

Project Name:LEICESTER MA<RCS-1 SITE</th>Lab Number:L2122044Project Number:4222021CHARMEReport Date:05/03/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial No:05032114:09

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Дерна	CHAIN (NAME OF TAXABLE PARTY.	NAME OF TAXABLE PARTY.		AGE_	of 2		ec'd in La	The second second	4/2	No control in the	and the	The real Property lies		Job#: 62/2204	14
WESTBORO, MA TEL: 508-898-9220	MANSFIELD, MA TEL: 508-822-9300	Proje	ct Informa	AND DESCRIPTION OF THE PARTY OF			1	t Inform	ation - C	ata Del	iverabl	es	Till rest	U.S. T.	nformation	
FAX: 508-898-9193	FAX: 508-822-3288	200000	Name: e	cester	MA C	RCS-1	SI TEL FA	<	XEM!				X S	ame as	Client info PO#:	
Client Informati	on the second second	Projec	Location://	Ali St	10100	chrus	O AD	Ξx	-	Delivera	-	1				
Client: Cha	me Materials	Projec	# 422	20211	Char	110	Regula	tory Rec	luiremei	its/Repo	ort Lim	its		A STATE OF THE STA		
Address: D	Bux 87-		Manager.	CHW	1		State /F	ed Progra	ım			Criter	ria			
51.	Han MA 01591) ALPH	A Quote #:		-		MA MC	P PRES	JMPTIV	CERT	AINTY	ст	REA	SON	ABLE CONFIDENCE PROT	0
Phone: 500	868 8455	Turn	-Around Ti	me				□ No		P Analyt			1000			
Fax:	000 - 100	1000					☐ Yes	□ No				1			3? (If yes see note in Comments tocols) Required?	s)
Email: Claratio	a classes and il	, (D) Stan	dard	RUSH	confirmed if pre-a	pproved)	U 100	10 1	7 7	/ (No	asonao	7	7	7 /	ocois/ Nequired :	
MALLIE	echo/me mort lia.	Date I		10	Time:		8	100	/ /	//		/	//	/ /	SAMPLE HANDLING	o T
THE RESERVE AND ADDRESS OF THE PARTY OF THE	ve been previously analyzed by Alp Decific Requirements/Con		7\7	MY_			1 3/	7	/ /	/ /	//	/ /	/	/	Filtration	Å
If MS is required, in	dicate in Sample Specific Commer nods for inorganic analyses require	nts which sam	ples and what t		e performed	1.	ANALYSIS		//		//.	//	//	//	Done Not needed Lab to do Preservation Lab to do	# 0 T
ALPHA Lab ID (Lab Use Only)	Sample ID		Coll	ection Time	Sample Matrix	Sampler's Initials	17	//	//		/ /	/	//	/ /	(Piezze specify bolow) Sample Specific Comments	_ [
22044 21	Soil	-11	429	loam	S	CHW	X	11	11	11				1		
752	c)	12	1	ì	1	I i	X									
23	U	13				Π	X									
704	И	14				1					\top				-11	
75	N	15				11	8		11	\Box				1		+
704	U	16					1									
77	U	17					1									T
708	(,	18					3									
29	C1	19					7				T					1
-10	ι ι .	20	V	V	V	V	4						П			
PLEASE ANSWER	QUESTIONS ABOVE!			' T	Conta	ainer Type									Please print clearly, legibly and	com-
S YOUR P	POJECT -			2	Pr	eservative									pletely. Samples can not be log in and turnaround time clock will	gged
	CT RCP?	Relinq	disped By:	1		e/Tinje	-	Rece	ved By:			Date.	/Time		start until any ambiguities are re	esolvi
	UI KUP (I I/II)	NN /	KIVING	NO	G F	29/21	a	010	1	1	- 1	10/17			All samples submitted are subje	act to
VIII CIVICI	- W	V .	1	W-12910	110	29/21	000	w	- a	~	7	296	112	CY	Alpha's Terms and Conditions.	

Дірна	CHAIN	F CL	JSTO	DY ,	PAGE_2	_0F Z	Date	Rec'd in	ı Lab:	L	1/22	1/2	ı	AL	РНА	Job#: LZ 12204L	1
WESTBORO, MA TEL: 506-898-9220	MANSFIELD, MA TEL: 508-822-9300	4.0	t Informa	CONTROL OF THE PARTY OF THE PAR	自体的		and the same	ort Info	ormati	on - Da	ta Deli	verabl	es	Bil	ling l	Information	
FAX: 508-898-9193	FAX: 506-822-3288	Project	Name:LP10	rester MI	AZR	05/364	01	AX	/	EMAI				Ø s	ame a	as Client info PO#:	
Client Informatio	on the second	Project	Location: /	way St	Lerces	FERMA	100	DEx	-	□ Add¹ I		1120	- /		WITH THE		
Client: CAR (M	1º Materials	Project		222021			0000	latory i		rement	s/Repo	rt Lim	its				
ddress: Pf	WX 82	Project	Manager:	CH	W		SHAPON!	/Fed Pro	CONTRACTOR N	DISTRICT OF	9/00/2000	-	Criter	NAME OF TAXABLE PARTY.	ewano.		
Sut	on MA OIJ90	ALPHA	Quote #;	- 1			MAN	ICP PR	ESUM	IPTIVE	CERTA	INTY .	СТ	RE/	ASON	NABLE CONFIDENCE PROT	٥.
Phone: 508	-868-8455	Turn-	Around Ti	me			1000000	es □N		Are MCP Is Matrix				100		G? (If yes see note in Comments	4
ax:		□ Stand	1	- Journal			10000	s 🗆 N			Section 1997	The second				otocols) Required?	
These samples have	La (MC Ma H (i v)s.L ve been previously analyzed by Alph pecific Requirements/Com	Date D	ue:	RUSH (m)	Time:	uppravod)	ANALYSIS	PET	1	7	17	//	7	//	7	SAMPLE HANDLING	The same of
If MS is required , inc	ilcate in Sample Specific Comment lods for inorganic analyses require	s which same	oles and what soil samples)		,	_	AWA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	//	///	//		//	//	//	Done Not needed Lab to do Preservation Lab to do Gillada specify belavy	TOTAL STREET,
(Lab Use Only)	Sample ID		Date	Time	Sample Matrix	Sampler's Initials	17	-/	/	//	//		/	//	/ /	Sample Specific Comments	
2044-11	Soil-	121	14/29	10 qui	5	CHW	X								T		
-/2	6 L	122					X										T
73	u J	=73				1	X	7							7		t
-14	v f	724				Π	X		П		†		H		7		1
-15	9 1	+25					1	+			1		H	+	+		+
-16	ас						X	+		-	+	+	H	7	+		t
77	V 4	127				1		-		-	+	+	\vdash	-	+		+
-18	и и	- 6			1	1	X	-			++	+			+		+
19		9 29		.1		1	X	-				+		+	-		+
-20	n &		1	H	1	1/1	/					+	H	+	1111		+
DI EASE ANSWED	QUESTIONS ABOVE!	20	1 7	V	Cont	ainer Type	1	+	H	-	-	+	\vdash	-	4		
	~~	ř	2 10			eservative	1		1	-		+		-	\dashv	Please print clearly, legibly and c pletely. Samples can not be logg	jed
S YOUR PI		Relingu	Ished, By	0		e/Time		R	eceived	f Bv:			,Date/	Time	-	in and turnaround time clock will start until any ambiguities are res	
	CT RCP?	1	1 1 1 1	11/-	110	0/71		10ler	PARIACI				xald		1246	All samples submitted are subject	

Friday, July 16, 2021

Attn: Natalie Lewis Alpha Analytical Lab 8 Walkup Drive Westborough, MA 01581

Project ID: L2137541 SDG ID: GCI74521

Sample ID#s: CI74521 - CI74526

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301

CT Lab Registration #PH-0618

MA Lab Registration #M-CT007

ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003

NY Lab Registration #11301

PA Lab Registration #68-03530

RI Lab Registration #63

UT Lab Registration #CT00007

VT Lab Registration #VT11301

Environmental Laboratories, Inc. 587 East Middle Tumpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

July 16, 2021

SDG I.D.: GCI74521

Project ID: L2137541

Client Id	Lab Id	Matrix
SCHOOL SOIL #21	CI74521	SOIL
SCHOOL SOIL #22	CI74522	SOIL
SCHOOL SOIL #23	CI74523	SOIL
SCHOOL SOIL #24	CI74524	SOIL
SCHOOL SOIL #25	CI74525	SOIL
SCHOOL SOIL #26	CI74526	SOIL

587 East Middle Tumpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 16, 2021

FOR: Attn: Natalie Lewis

Alpha Analylical Lab 8 Walkup Drive

Westborough, MA 01581

 Sample Information
 Custody Information
 Date
 Time

 Matrix:
 SOIL
 Collected by:
 07/13/21
 14:00

 Location Code:
 ALPHA
 Received by:
 SW
 07/15/21
 14:17

Rush Request: 72 Hour Analyzed by: see "By" below

P O #:

Laboratory Data

SDG ID: GCI74521

Phoenix ID: CI74521

Project ID: L2137541

Client ID: SCHOOL SOIL #21

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Arsenic	91.5	0.69	mg/Kg	1	07/16/21	TH	SW6010D	
Sample Disposal Total Metals Digest	Completed Completed				07/15/21 07/15/21	M/AG/BF	SW3050B	

Massachusetts does not offer certification for Soil/Solid matrices.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

July 16, 2021

587 East Middle Tumpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 16, 2021

FOR: Attn: Natalie Lewis

Alpha Analytical Lab 8 Walkup Drive

Westborough, MA 01581

 Sample Information
 Custody Information
 Date
 Time

 Matrix:
 SOIL
 Collected by:
 07/13/21
 14:00

 Location Code:
 ALPHA
 Received by:
 SW
 07/15/21
 14:17

Rush Request: 72 Hour Analyzed by: see "By" below

P O #:

Laboratory Data

SDG ID: GCI74521

Phoenix ID: CI74522

Project ID: L2137541

Client ID: SCHOOL SOIL #22

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Arsenic	117	0.68	mg/Kg	1	07/16/21	TH	SW6010D	
Sample Disposal Total Metals Digest	Completed Completed				07/15/21 07/15/21	M/AG/BI	F SW3050B	

Massachusetts does not offer certification for Soil/Solid matrices.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

July 16, 2021

587 East Middle Tumpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 16, 2021

FOR: Attn: Natalie Lewis

Alpha Analylical Lab 8 Walkup Drive

Westborough, MA 01581

 Sample Information
 Custody Information
 Date
 Time

 Matrix:
 SOIL
 Collected by:
 07/13/21
 14:00

 Location Code:
 ALPHA
 Received by:
 SW
 07/15/21
 14:17

Rush Request: 72 Hour Analyzed by: see "By" below

P O #:

Laboratory Data SDG ID: GCI74521

Phoenix ID: CI74523

Project ID: L2137541

Client ID: SCHOOL SOIL #23

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	By Reference	
Arsenic	38.3	0.60	mg/Kg	1	07/16/21	TH SW6010D	
Sample Disposal Total Metals Digest	Completed Completed				07/15/21 07/15/21	M/AG/BF SW3050B	

Massachusetts does not offer certification for Soil/Solid matrices.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

July 16, 2021

587 East Middle Tumpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 16, 2021

FOR: Attn: Natalie Lewis

Alpha Analytical Lab 8 Walkup Drive

Westborough, MA 01581

 Sample Information
 Custody Information
 Date
 Time

 Matrix:
 SOIL
 Collected by:
 07/13/21
 14:00

 Location Code:
 ALPHA
 Received by:
 SW
 07/15/21
 14:17

Rush Request: 72 Hour Analyzed by: see "By" below

P O #:

Laboratory Data SDG ID: GCI74521

Phoenix ID: CI74524

Project ID: L2137541

Client ID: SCHOOL SOIL #24

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	By Reference	
Arsenic	103	0.67	mg/Kg	1	07/16/21	TH SW6010D	
Sample Disposal Total Metals Digest	Completed Completed				07/15/21 07/15/21	M/AG/BF SW3050B	

Massachusetts does not offer certification for Soil/Solid matrices.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

July 16, 2021

587 East Middle Tumpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 16, 2021

FOR: Attn: Natalie Lewis

Alpha Analytical Lab 8 Walkup Drive

Westborough, MA 01581

 Sample Information
 Custody Information
 Date
 Time

 Matrix:
 SOIL
 Collected by:
 07/13/21
 14:00

 Location Code:
 ALPHA
 Received by:
 SW
 07/15/21
 14:17

Rush Request: 72 Hour Analyzed by: see "By" below

P O #:

Laboratory Data

SDG ID: GCI74521

Phoenix ID: CI74525

Project ID: L2137541

Client ID: SCHOOL SOIL #25

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	By Reference	
Arsenic	37.1	0.65	mg/Kg	1	07/16/21	TH SW6010D	
Sample Disposal Total Metals Digest	Completed Completed				07/15/21 07/15/21	M/AG/BF SW3050B	

Massachusetts does not offer certification for Soil/Solid matrices.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

July 16, 2021

587 East Middle Tumpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 16, 2021

FOR: Attn: Natalie Lewis

Alpha Analylical Lab 8 Walkup Drive

Westborough, MA 01581

 Sample Information
 Custody Information
 Date
 Time

 Matrix:
 SOIL
 Collected by:
 07/13/21
 14:00

 Location Code:
 ALPHA
 Received by:
 SW
 07/15/21
 14:17

Rush Request: 72 Hour Analyzed by: see "By" below

P O #:

Laboratory Data SDG ID: GCI74521

Phoenix ID: CI74526

Project ID: L2137541

Client ID: SCHOOL SOIL #26

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	By Reference	
Arsenic	89.1	0.64	mg/Kg	1	07/16/21	TH SW6010D	
Sample Disposal Total Metals Digest	Completed Completed				07/15/21 07/15/21	M/AG/BF SW3050B	

Massachusetts does not offer certification for Soil/Solid matrices.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

July 16, 2021

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

July 16, 2021

QA/QC Data

SDG I.D.: GCI74521

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	Rec Limits	RPD Limits	
QA/QC Batch 583672 (mg/kg), ICP Metals - Soil	QC San	ple No	: CI73869	(CI7452	21, CI74	1522, C	174523,	CI7452	24, CI74	4525, C	174526))		
Arsenic Comment:	BRL	0.67	3.86	3.87	0.30	106	102	3.8	92.3			75 - 125	35	

Additional: LCS acceptance range is 80-120% MS acceptance range 75-125%.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

July 16, 2021

Friday, July 16, 2021 Criteria: None

Sample Criteria Exceedances Report

GCI74521 - ALPHA

~ Result Criteria Phoenix Analyte

Analysis Units

R.L. Criteria

Criteria

*** No Data to Display ***

Acode

SampNo

State: MA

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

587 East Middle Tumpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

July 16, 2021 SDG I.D.: GCI74521

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 12, 2021

FOR: Attn: Mr. Charles Wilder

Charme Materials Solutions, LLC

PO Box 82

Sutton, MA 01590

Sample Information Custody Information Date <u>Time</u> 08/11/21 SOIL Collected by: 10:00 Matrix: **CHARME** Received by: CP Location Code: 08/11/21 16:02 Rush Request: 24 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GCI95147

Phoenix ID: CI95147

SCHOLD LEICESTER MA Project ID:

Client ID: SOIL 81021-1

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Arsenic	26.1	0.68	mg/Kg	1	08/12/21	EK	SW6010D
Lead	2.61	0.34	mg/Kg	1	08/12/21	EK	SW6010D
Percent Solid	92		%		08/11/21	AR	SW846-%Solid
Total Metals Digest	Completed				08/11/21	M/AG	SW3050B

Massachusetts does not offer certification for Soil/Solid matrices.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

August 12, 2021

Official Report Release To Follow

Ver 1 Page 1 of 8

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 12, 2021

FOR: Attn: Mr. Charles Wilder

Charme Materials Solutions, LLC

PO Box 82

Sutton, MA 01590

Sample Information Custody Information Date <u>Time</u> 08/11/21 SOIL Collected by: 10:00 Matrix: **CHARME** Received by: CP Location Code: 08/11/21 16:02 Rush Request: 24 Hour Analyzed by: see "By" below

P.O.#: Laboratory Data

SDG ID: GCI95147

Phoenix ID: CI95148

Project ID: SCHOLD LEICESTER MA

Client ID: SOIL 81021-2

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Arsenic	39.0	0.69	mg/Kg	1	08/12/21	EK	SW6010D
Lead	4.95	0.34	mg/Kg	1	08/12/21	EK	SW6010D
Percent Solid	89		%		08/11/21	AR	SW846-%Solid
Total Metals Digest	Completed				08/11/21	M/AG	SW3050B

Massachusetts does not offer certification for Soil/Solid matrices.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

August 12, 2021

Official Report Release To Follow

Ver 1 Page 2 of 8

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 12, 2021

FOR: Attn: Mr. Charles Wilder

Charme Materials Solutions, LLC

PO Box 82

Sutton, MA 01590

Sample Information Custody Information Date <u>Time</u> 08/11/21 SOIL Collected by: 10:00 Matrix: **CHARME** Received by: CP Location Code: 08/11/21 16:02 Rush Request: 24 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GCI95147

Phoenix ID: CI95149

SCHOLD LEICESTER MA Project ID:

Client ID: SOIL 81021-3

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Arsenic	30.9	0.78	mg/Kg	1	08/12/21	EK	SW6010D
Lead	3.51	0.39	mg/Kg	1	08/12/21	EK	SW6010D
Percent Solid	88		%		08/11/21	AR	SW846-%Solid
Total Metals Digest	Completed				08/11/21	M/AG	SW3050B

Massachusetts does not offer certification for Soil/Solid matrices.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

August 12, 2021

Official Report Release To Follow

Ver 1 Page 3 of 8

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 12, 2021

FOR: Attn: Mr. Charles Wilder

Charme Materials Solutions, LLC

PO Box 82

Sutton, MA 01590

Sample Information Custody Information Date <u>Time</u> 08/11/21 SOIL Collected by: 10:00 Matrix: **CHARME** Received by: CP Location Code: 08/11/21 16:02 Rush Request: 24 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GCI95147

Phoenix ID: CI95150

SCHOLD LEICESTER MA Project ID:

Client ID: SOIL 81021-4

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Arsenic	38.6	0.71	mg/Kg	1	08/12/21	EK	SW6010D
Lead	4.23	0.36	mg/Kg	1	08/12/21	EK	SW6010D
Percent Solid	89		%		08/11/21	AR	SW846-%Solid
Total Metals Digest	Completed				08/11/21	M/AG	SW3050B

Massachusetts does not offer certification for Soil/Solid matrices.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

August 12, 2021

Official Report Release To Follow

Ver 1 Page 4 of 8

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 12, 2021

FOR: Attn: Mr. Charles Wilder

Charme Materials Solutions, LLC

PO Box 82

Sutton, MA 01590

Sample Information Custody Information Date <u>Time</u> 08/11/21 SOIL Collected by: 10:00 Matrix: **CHARME** Received by: CP Location Code: 08/11/21 16:02 Rush Request: 24 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GCI95147

Phoenix ID: CI95151

SCHOLD LEICESTER MA Project ID:

Client ID: SOIL 81021-5

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Arsenic	36.7	0.79	mg/Kg	1	08/12/21	EK	SW6010D
Lead	3.47	0.40	mg/Kg	1	08/12/21	EK	SW6010D
Percent Solid	89		%		08/11/21	AR	SW846-%Solid
Total Metals Digest	Completed				08/11/21	M/AG	SW3050B

Massachusetts does not offer certification for Soil/Solid matrices.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

August 12, 2021

Official Report Release To Follow

Ver 1 Page 5 of 8

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 12, 2021

FOR: Attn: Mr. Charles Wilder

Charme Materials Solutions, LLC

PO Box 82

Sutton, MA 01590

Sample Information Custody Information Date <u>Time</u> 08/11/21 SOIL Collected by: 10:00 Matrix: **CHARME** Received by: CP Location Code: 08/11/21 16:02 Rush Request: 24 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GCI95147

Phoenix ID: CI95152

SCHOLD LEICESTER MA Project ID:

Client ID: SOIL 81021-6

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Arsenic	44.9	0.74	mg/Kg	1	08/12/21	EK	SW6010D
Lead	4.26	0.37	mg/Kg	1	08/12/21	EK	SW6010D
Percent Solid	86		%		08/11/21	AR	SW846-%Solid
Total Metals Digest	Completed				08/11/21	M/AG	SW3050B

Massachusetts does not offer certification for Soil/Solid matrices.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

August 12, 2021

Official Report Release To Follow

Ver 1 Page 6 of 8

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 12, 2021

FOR: Attn: Mr. Charles Wilder

Charme Materials Solutions, LLC

PO Box 82

Sutton, MA 01590

Sample Information Custody Information Date <u>Time</u> 08/11/21 SOIL Collected by: 10:00 Matrix: **CHARME** Received by: CP Location Code: 08/11/21 16:02 Rush Request: 24 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GCI95147

Phoenix ID: CI95153

SCHOLD LEICESTER MA Project ID:

Client ID: SOIL 81021-7

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Arsenic	38.5	0.84	mg/Kg	1	08/12/21	EK	SW6010D
Lead	5.04	0.42	mg/Kg	1	08/12/21	EK	SW6010D
Percent Solid	75		%		08/11/21	AR	SW846-%Solid
Total Metals Digest	Completed				08/11/21	M/AG	SW3050B

Massachusetts does not offer certification for Soil/Solid matrices.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

August 12, 2021

Official Report Release To Follow

Ver 1 Page 7 of 8

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 12, 2021

FOR: Attn: Mr. Charles Wilder

Charme Materials Solutions, LLC

PO Box 82

Sutton, MA 01590

Sample Information Custody Information Date <u>Time</u> 08/11/21 SOIL Collected by: 10:00 Matrix: **CHARME** Received by: CP Location Code: 08/11/21 16:02 Rush Request: 24 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GCI95147

Phoenix ID: CI95154

SCHOLD LEICESTER MA Project ID:

Client ID: SOIL 81021-8

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Arsenic	39.8	0.73	mg/Kg	1	08/12/21	EK	SW6010D
Lead	7.08	0.37	mg/Kg	1	08/12/21	EK	SW6010D
Percent Solid	82		%		08/11/21	AR	SW846-%Solid
Total Metals Digest	Completed				08/11/21	M/AG	SW3050B

Massachusetts does not offer certification for Soil/Solid matrices.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

August 12, 2021

Official Report Release To Follow

Ver 1 Page 8 of 8 Thursday, August 12, 2021 Criteria: MA: S1

Sample Criteria Exceedances Report GCI95147 - CHARME

Page 1 of 1

State:	MA		GOISSIAI - OTIAINILE				RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
CI95147	AS-SM	Arsenic	MA / CMR 310.40.1600 / S1 (mg/kg)	26.1	0.68	20	20	mg/Kg
CI95147	AS-SM	Arsenic	MA / SOIL S-1 STANDARDS / S-1 Soil & GW-1	26.1	0.68	20	20	mg/Kg
CI95148	AS-SM	Arsenic	MA / CMR 310.40.1600 / S1 (mg/kg)	39.0	0.69	20	20	mg/Kg
CI95148	AS-SM	Arsenic	MA / SOIL S-1 STANDARDS / S-1 Soil & GW-1	39.0	0.69	20	20	mg/Kg
CI95149	AS-SM	Arsenic	MA / CMR 310.40.1600 / S1 (mg/kg)	30.9	0.78	20	20	mg/Kg
CI95149	AS-SM	Arsenic	MA / SOIL S-1 STANDARDS / S-1 Soil & GW-1	30.9	0.78	20	20	mg/Kg
CI95150	AS-SM	Arsenic	MA / CMR 310.40.1600 / S1 (mg/kg)	38.6	0.71	20	20	mg/Kg
CI95150	AS-SM	Arsenic	MA / SOIL S-1 STANDARDS / S-1 Soil & GW-1	38.6	0.71	20	20	mg/Kg
CI95151	AS-SM	Arsenic	MA / CMR 310.40.1600 / S1 (mg/kg)	36.7	0.79	20	20	mg/Kg
CI95151	AS-SM	Arsenic	MA / SOIL S-1 STANDARDS / S-1 Soil & GW-1	36.7	0.79	20	20	mg/Kg
CI95152	AS-SM	Arsenic	MA / CMR 310.40.1600 / S1 (mg/kg)	44.9	0.74	20	20	mg/Kg
CI95152	AS-SM	Arsenic	MA / SOIL S-1 STANDARDS / S-1 Soil & GW-1	44.9	0.74	20	20	mg/Kg
CI95153	AS-SM	Arsenic	MA / CMR 310.40.1600 / S1 (mg/kg)	38.5	0.84	20	20	mg/Kg
CI95153	AS-SM	Arsenic	MA / SOIL S-1 STANDARDS / S-1 Soil & GW-1	38.5	0.84	20	20	mg/Kg
CI95154	AS-SM	Arsenic	MA / CMR 310.40.1600 / S1 (mg/kg)	39.8	0.73	20	20	mg/Kg
CI95154	AS-SM	Arsenic	MA / SOIL S-1 STANDARDS / S-1 Soil & GW-1	39.8	0.73	20	20	mg/Kg

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

		<u>6</u> ,																								
Cooler Yes No	ontact Options:	Compressione		This section MUST be	completed with Bottle Quantities.	→ →	THE SELLING	idags lugs	MOS SUSCES TO SUSCES		/	/	/	,	/	•	\ 			Cxcel	Ž(☐ GIS/Key ☐ EQuIS	Other Data Package	Tier II Checklist	Phoenix Std Report	* SURCHARGE APPLIES
Coolant:	Fax:		Cester MA Project P.O.	Ma Me This	90	_		CLEGIA SOL	\$ 77 th 04											MA MCP Certification		SW Protection GW-2 S-110%.CALC	À		I/C DEC Sw Protection Other	State where samples were collected:
CHAIN OF CUSTODY RECORD	East Middle Turnpike, P.O. Box 370, Manchester, CT 06040 Fmall: info@nbnenixlahs.com Fax (RR0) 645-0823	60)	Schr(0,10,1		0. S & WAR															Residential)	<u>] [</u>	U (Comm/Industrial) U GW P Direct Exposure SW F	GA Leachability GA M	GB Leachability GB M	GA-GW I/C DE Objectives	GB-GW State v
CHAIN OF CI	East Middle Turnpike, P.O. Box Fmail: info@ohoenixlabs.com	Client Services	Project:	Report to:	QUOTE #		21 Analysis		Time	X	y	\$<	> <	×	<u> </u>	Jagar X	Y X X		i de	-7/ Comme			Turnaround Time:	1 Day*	3 Days*	Other Surcharge Applies
	587	Inc.	(1/2/1)	7400	7411	5455	entification Date:	ce Water WW =Waste Wate SD=Solid W =Wipe OIL =	Sample Date 7	8-11-21	- -		7.Q	80		5 8-11-21 [5 8-11-21 [1			/S.c.o. 8/	2	DANNE W	Tur			<u> </u>
	HNIX S	Laboratories,	Charme, mark	7501200		000000	Client Sample - Information - Identification	Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Soild W=Wipe OIL=Oil B=Bulk L=Liquid X =	Customer Sample Identification	1-12	5×8 81021-2	S=281021-3	58:28 81021-4	Sia 8102/-5	S+281021-6	5008 81021-7	Soil 81021-8			Accepted by:			Comments, Special Requirements or Regulations:		ストノア	"MS/MSD are considered site samples and will be billed as such in accordance with the prices quoted.
	PHO	Environmental	Customer:	Address:			Sampler's Signature	Matrix Code: DW=Drinking Water RW=Raw Water SE B=Bulk L=Liquid X *	PHOENIX USE ONLY SAMPLE #	95/47	05148	95/49	95150	95151	95159	95/52	95154			Keiinguisnen by			Comments, Special			*MS/MSD are considere the prices quoted.

Alpha John Number Project Information	180		Ü	hoontra	Subcontract Chain of Custody		XVVV	2
Project Information Project Information Regulatory Requirements/Report Limit			Phoen 587 E. Manch	ix Environmast Middle 1	nental Laboratories Umpike 96040		Alpha Jo L213754	b Number
State Federal Program: Project Location: MA Project Location: Manager, Nathalie Lewis Regulatory Criteria: Transcription Project Specific Requirements and/or Regulatory Criteria: Regulatory Criteria: Project Specific Requirements and/or Requirements Regulatory Criteria: Project Specific Requirements and/or Requirements Regulatory Criteria: Project Specific Requirements and/or Requirements Regulatory Criteria: Regulatory Criteria: Project Specific Requirements and/or Requirements Regulatory Criteria: Regul	Client Inf	ormation		roject Inf	ormation	Regulatory Rec	uirements/Report	imits
Project Specific Requirements and/or Report Requirements Project Specific Requirements and/or Report Requirements Project Specific Requirements and/or Report Requirements	Client: Alpha Analytical Address: Eight Walkup Dr Westborough, M	Labs ive IA 01581-1019	Project Location: M Project Manager: N Turnaroun	IA Jathalie Lev d & Delive	vis erables Information	State/Federal Program: Regulatory Criteria:	80.5	
Project Specific Requirements and/or Report Requirements Project Specific Requirements and/or Report to include Method Blank, LCS/LCSD: Send all results/reports to subreports@alphalab.com Only Arsenic Analysis Analysis Collection Sample Analysis Analysis Collection Solid Metals 6010 School, Solid Solid Metals 6010 School, Solid Solid Metals 6010 Metals 6010	Phone: 508,439,5170 Email: nlewis@alphalal	b.com	Due Date: (R Deliverables:	(HSU)				The same
Send all results/reports to subreports@alphalab.com Only Arsenic Client ID			Project Specific R	tequireme	ents and/or Report Require	ements		
Sand all results/reports to subreports@alphalab.com Only Arsenic Sample Matrix Sample Matrix Sample Matrix School Solutar Solutarian Solutari	Reference	se following Alpha Job Nun	nber on final report/de	liverables:		ort to include Method Blan	nk, LCS/LCSD:	
Cilent ID Collection Sample Analysis	Additional Comments: S	end all results/reports to su	ubreports@alphalab.c	om Only Ar	senic			
Collection Sample Analysis Sample Analysis School Soluza Origination Sample Analysis School Soluza Origination Soluza Origination Soluza Origination Ori				通過機能型	を できる できる こうしゅう こうしゅう こうしゅう こうしゅう こうしゅう こうしゅう こうしゅう こうしゅう こうしゅう しゅうしゅう しゅう	の		
SCHOOL SOIL#21 07-13-21 14:00 SOIL Metals 6010 Metals 6010 Metals 6010 SCHOOL SOIL#22 07-13-21 14:00 SOIL Metals 6010 Me	Lab ID	Client ID	Collection Date/Time	Sample Matrix	Analysis			Batch
Relinquished By: Pate/Time: Received By: Date/Time:	255 255 255 255 255 255 255 255 255 255	HOOL SOIL#21 HOOL SOIL#22 HOOL SOIL#24 HOOL SOIL#24 HOOL SOIL#24 HOOL SOIL#26	07-13-21 14:00 07-13-21 14:00 07-13-21 14:00 07-13-21 14:00 07-13-21 14:00		Metals 6010 Metals 6010 Metals 6010 Metals 6010 Metals 6010 Metals 6010			1
1 SIIIC 1115 Shell 21:5 1.15 1		Relinquished B	:A:		Date/Time:	Received By:	Date/Time	
I SIIL Shell bisit analysis		SA.	7112	, ,	17/5/120	The What		5201
Form No: AL_subcoc			1		5,60 2.31.1	X	SIIL	LIH!
	Form No: AL_subcoc					2		

*3 Day Rush per Client

ATTACHMENT D ADDITIONAL INFORMATION

Department of Environmental Protection

One Winter Street Boston, MA 02108 • 617-292-5500

DEVAL L. PATRICK Governor MAEVE VALLELY BARTLETT Secretary

> DAVID W. CASH Commissioner

Similar Soils Provision Guidance

Guidance for Identifying When Soil Concentrations at a Receiving Location Are "Not Significantly Lower Than" Managed Soil Concentrations Pursuant to 310 CMR 40.0032(3)

September 4, 2014¹
(Originally published October 2, 2013 and revised April 25, 2014²)

WSC#-13-500

The information contained in this document is intended solely as guidance. This guidance does not create any substantive or procedural rights, and is not enforceable by any party in any administrative proceeding with the Commonwealth. Parties using this guidance should be aware that there may be other acceptable alternatives for achieving and documenting compliance with the applicable regulatory requirements and performance standards of the Massachusetts Contingency Plan.

I. Purpose and Scope

The Massachusetts Contingency Plan ("MCP", 310 CMR 40.0000) establishes conditions and requirements for the management of soil excavated at a disposal site. This guidance addresses the specific requirements of 310 CMR 40.0032(3) and the criteria by which a Licensed Site Professional ("LSP") may determine that soil may be moved without prior notice to or approval from the Department. Soil managed pursuant to 310 CMR 40.0032(3) may be transported using a Bill of Lading ("BOL"), but a BOL is <u>not</u> required. Attachment 1 provides a flowchart depiction of the Similar Soil regulations and guidance.

This guidance is not applicable to the excavation and movement of soil from locations other than M.G.L. Chapter 21E disposal sites, nor to the management of soils considered Remediation Waste under the MCP.

¹ Updated to revise an inaccurate RCS-1 concentration for lead in Table 2 and an inaccurate RCS-2 concentration for selenium in Table 3.

² Updated to reflect the 2014 revisions to the Massachusetts Contingency Plan, 310 CMR 40.0000

II. Relationship to Other Local, State or Federal Requirements

This guidance is intended to clarify and more fully describe regulatory requirements contained within the MCP. Nothing in this guidance eliminates, supersedes or otherwise modifies any local, state or federal requirements that apply to the management of soil, including any local, state or federal permits or approvals necessary before placing the soil at the receiving location, including, but <u>not</u> limited to, those related to placement of fill, noise, traffic, dust control, wetlands, groundwater or drinking water source protection.

III. Requirements of 310 CMR 40.0032(3)

The requirements specified in 310 CMR 40.0032(3) are:

- (3) Soils containing oil or waste oil at concentrations less than an otherwise applicable Reportable Concentration and that are not otherwise a hazardous waste, and soils that contain one or more hazardous materials at concentrations less than an otherwise applicable Reportable Concentration and that are not a hazardous waste, may be transported from a disposal site without notice to or approval from the Department under the provisions of this Contingency Plan, provided that such soils:
 - (a) are not disposed or reused at locations where the concentrations of oil or hazardous materials in the soil would be in excess of a release notification threshold applicable at the receiving site, as delineated in 310 CMR 40.0300 and 40.1600; and
 - (b) are not disposed or reused at locations where existing concentrations of oil and/or hazardous material at the receiving site are significantly lower than the levels of those oil and/or hazardous materials present in the soil being disposed or reused.

There are therefore four requirements that must be met before the managed soil can be moved to and re-used (or disposed) at a new location without notice to or approval from MassDEP. Each requirement (A. through D.) is addressed below.

A. The Managed Soil Must Not Be a Hazardous Waste

310 CMR 40.0032(3) applies to soils containing oil or waste oil that are not otherwise a hazardous waste, and to soils containing hazardous materials that are not a hazardous waste. The MCP definition of hazardous waste (310 CMR 40.0006) refers to the definitions promulgated in the Massachusetts Hazardous Waste Regulations, 310 CMR 30.000.

Under the federal Resource Conservation and Recovery Act of 1976 ("RCRA", 42 U.S.C. §§6901 *et. seq.*), the Massachusetts Hazardous Waste Management Act (M.G.L. c.21C), and the Massachusetts Hazardous Waste Regulations (310 CMR 30.000), soil is considered to contain a hazardous waste (hazardous waste soil) if, when generated, it meets either or both of the following two conditions:

- the soil exhibits one or more of the characteristics of a hazardous waste pursuant to 310 CMR 30.120 [such as exhibiting a characteristic of toxicity under 310 CMR 30.125 and 30.155 (Toxicity Characteristic Leaching Procedure, or TCLP)]; or
- the soil contains hazardous constituents from a listed hazardous waste identified in 310 CMR 30.130 or Title 40, Chapter I, Part 261 (Identification and Listing of Hazardous Waste) of the Code of Federal Regulations.

MassDEP has published a Technical Update entitled: *Considerations for Managing Contaminated Soil: RCRA Land Disposal Restrictions and Contained-In Determinations* (August 2010, http://www.mass.gov/eea/docs/dep/cleanup/laws/contain.pdf) that focuses on the determination of whether contaminated soil must be managed as a hazardous waste subject to RCRA requirements, and the presumptive approval process an LSP/PRP can use to document such a determination.

B. The Managed Soil Must Be Less Than Reportable Concentrations (RCs).

This requirement is intended to ensure that the soil being excavated and relocated from a disposal site is <u>not</u> "Contaminated Soil" and therefore neither "Contaminated Media" nor "Remediation Waste" as those terms are defined in 310 CMR 40.0006³.

310 CMR 40.0361 sets forth two reporting categories for soil (RCS-1 and RCS-2). Reporting Category RCS-1 applies to locations with the highest potential for exposure, such as residences, playgrounds and schools, and to locations within the boundaries of a groundwater resource area. Reporting Category RCS-2 applies to all other locations.

Note that the "applicable Reportable Concentrations" referred to in 310 CMR 40.0032(3) may be the RCS-1 or RCS-2 criteria, depending upon which category would apply to the soils being excavated <u>at the original disposal site location</u>, not the RCs applicable to the soils at the receiving location (see Section III.C. below).

EXAMPLE: If soil is being excavated from a disposal site at an RCS-2 location and the soil contaminant concentrations are found to be less than the RCS-2 criteria, then the soil is not "Contaminated Soil" since the soil is less than the release notification threshold established for RCS-2 soil by 310 CMR 40.0300 and 40.1600. The RCS-2 soil in this example is not "Contaminated Soil" even if one or more constituent concentration is greater than an RCS-1 value.

Also, the language at 310 CMR 40.0032(3) specifies the *applicable* RCs. If a notification exemption (listed at 310 CMR 40.0317) applies to the OHM in soil at its original location, then the corresponding Reportable Concentration is not *applicable*. Thus 310 CMR 40.0032(3) should be read to apply to soils containing concentrations of oil or hazardous material ("OHM") less than the applicable RCs <u>or</u> covered by a notification exemption. This interpretation of the requirement is consistent with the definition of Contaminated Soil, which uses the term "notification threshold" rather than "Reportable Concentration."

<u>Contaminated Media</u> - means Contaminated Groundwater, Contaminated Sediment, Contaminated Soil, and/or Contaminated Surface Water.

Remediation Waste - means any Uncontainerized Waste, Contaminated Media, and/or Contaminated Debris that is managed pursuant to 310 CMR 40.0030. The term "Remediation Waste" does not include Containerized Waste.

³ <u>Contaminated Soil</u> - means soil containing oil and/or hazardous material at concentrations equal to or greater than a release notification threshold established by 310 CMR 40.0300 and 40.1600.

C. The Managed Soil Must Not Create a Notifiable Condition at the Receiving Location.

This requirement is intended to prevent the creation of new reportable releases that must be subsequently assessed and remediated.

If the contaminant concentrations in the soil being relocated are less than the RCS-1 criteria, then placement of the soil in any RCS-1 location would not create a new notifiable condition. There are, however, conditions that could result in a notifiable condition.

First, if the soil is excavated from an RCS-2 location (as described in the example in Section III.B. above) with contaminant concentrations <u>between</u> the RCS-1 and RCS-2 criteria, then the placement of that soil at an RCS-1 receiving location would create a notifiable condition since one or more concentrations of OHM would then exceed the RCS-1 criteria in the RCS-1 receiving location.

Second, a notification exemption that applies to the original location of the soil may not apply to the receiving location. (For example, the lead paint exemption at 310 CMR 40.0317(8) is specific to "the point of application.") In cases where a notification exemption applies only to the original location, the managed soil must be evaluated solely based on whether its OHM concentrations exceed the applicable RCs at the receiving location.

D. The Managed Soil Must Not Be Significantly More Contaminated Than the Soil at the Receiving Location.

This requirement has been referred to as the "anti-degradation provision" although it is more accurately described as the "Similar Soils Provision." 310 CMR 40.00032(3)(b) requires that the concentrations of OHM at the receiving location not be "significantly lower" than the relocated soil OHM concentrations. One could also say that the provision requires that "there is no significant difference between the relocated soil and the soil at the receiving location," or that "the soils being brought to the receiving location are similar to what is already there." This requirement embodies several considerations.

First, as a general principle, M.G.L. c.21E is intended to clean up contaminated properties and leave them better than they started -- even to clean sites to background conditions, if feasible. It would be inconsistent with this principle to then raise the ambient levels of contamination in the environment as a consequence of a response action conducted under the MCP.

Second, despite the three other requirements (A. through C. above) of 310 CMR 40.0032(3), decisions about the movement of the managed soil will be based upon sampling of soil that is likely to have significant heterogeneity. The Similar Soils Provision is an additional measure to minimize the adverse effects of soil characterization that may not be representative of such heterogeneity.

Third, none of the criteria of 310 CMR 40.0032(3) address the question of whether the soil poses a <u>risk</u> in its original or receiving location, although the hazardous waste- and notification-related requirements seem to *imply* risk-based decision making. Put simply, soil that is <u>not</u> a hazardous waste and does <u>not</u> require notification may still pose incremental risk at the receiving location. The Similar Soils Provision is intended to ensure that the managed soil does not increase risk of harm to health, safety, public welfare or the environment at the receiving location, since it will be similar to what is already there.

The "not... significantly lower" language of 310 CMR 40.0032(3)(b) can be interpreted to mean either a quantitative "not statistically different" analysis, or a semi-quantitative, albeit somewhat subjective, approach. MassDEP does not believe that a statistics-driven quantitative approach is necessary when comparing managed soil to known or assumed background conditions, given (a) the relatively low concentrations at issue and (b) the cost of such an analysis, driven by the quantity of sampling needed to show a statistical difference.

The regulations imply that the LSP must have knowledge about the concentrations of OHM in the soil at the receiving location in order to apply the Similar Soils Provision. The regulations also imply that the new soil may contain concentrations of OHM that are <u>somewhat</u> higher than those levels at the receiving location – just not "significantly" higher.

MassDEP recognizes that there may be several approaches to address this "knowledge" issue when implementing the Similar Soils Provision of the MCP.

Assume the soils at the receiving location are natural background.

Sampling of the soil at the receiving location is not necessary if it is assumed that the concentrations of OHM there are consistent with natural background conditions. MassDEP acknowledges that there is a range of background levels, and that the concentrations at any given location may be lower than the statewide levels published by the Department⁴, but the costs associated with determining site-specific background are not justified by likely differences. Further, the published "natural background" levels are similarly used in several areas of the MCP as an acceptable endpoint, including site delineation and the development of the MCP cleanup standards.

Of course, routine due diligence about the receiving location may still reveal factors that would make the location inappropriate to receive the proposed fill material. Nothing in this guidance relieves any party of the obligation to conduct such due diligence and appropriately consider and act on information thereby obtained.

⁴ See <u>Background Levels of Polycyclic Aromatic Hydrocarbons and Metals in Soil</u> (May, 2002) http://www.mass.gov/eea/docs/dep/cleanup/laws/backtu.pdf

Sample the soils at the receiving location.

The sampling plan should include a sufficient number of samples taken at locations selected to provide an understanding of the concentrations of OHM present and the distribution of OHM throughout the receiving location. In order to provide data appropriate for the Similar Soils comparison, the soil at the receiving location should be analyzed for constituents that are likely to be present there (e.g., naturally occurring metals) as well as any OHM known or likely to be present in the soil brought from the disposal site. If a receiving location has been adequately and comprehensively characterized, that data may then be used for comparison to the OHM concentrations in any subsequent soil deliveries - additional sampling is not required.

Provide Technical Justification for an Alternative Approach

There may be situations for which a different combination of analytical and non-analytical information available for both the source and receiving locations is sufficient to conclude that the nature and concentrations of OHM in the soils are not significantly different. Guidance on recognizing such conditions and the level of documentation that would be necessary to support such a technical justification is beyond the scope of this guidance.

Once the concentrations of OHM in the soils are known (or assumed consistent with this guidance), the LSP must compare the concentrations of the source and receiving locations and determine whether the concentrations at the receiving location are "significantly lower" than those in the soil proposed to be relocated from the disposal site. This comparison may be conducted in several ways, including analyses with appropriate statistical power and confidence. MassDEP has also developed a *rule-of-thumb* comparison to simplify this determination, as described in Section IV.

IV. Determining whether soils at the receiving location are "significantly lower" using a simplified approach

The simplified comparison shall be made using the <u>maximum</u> values of the OHM concentrations in both the soil at the receiving location and the soil proposed to be disposed of or reused.

Use of the maximum values is appropriate for several reasons. First, the provisions of 310 CMR 40.0032(3) include comparisons to Reportable Concentrations, and notification is triggered by any single value (i.e., maximum value) exceeding the RC. Second, soil is by its nature heterogeneous, and the use of maximum values is a means of minimizing sampling costs while addressing the expected variability of results. Third, if natural background levels are assumed at the receiving location, the MassDEP published background concentrations are upper percentile levels that are only appropriately compared to similar (e.g., maximum) values of the soil data set.

Note also that when using the maximum reported concentrations for comparison purposes, the typical or average concentration will be lower. This is important to recognize if/when the question of the risk posed by the soil is raised. For example, the RCS-1 and the Method 1 S-1 standard for arsenic are both 20 mg/kg. The Reportable Concentration is applied as a not-to-be-exceeded value, triggering the need to report the release and investigate further. However the S-1 standard is applied as an average value, considering exposure over time. At a location where the highest arsenic value found is less than 20 mg/kg, the average concentration would be well below the Method 1 S-1 standard.

The maximum concentration in the soil at the receiving location may be less than that in the proposed disposed/reused soil by some amount and not be considered "significantly lower." The question is how much lower is "significantly lower"? In this guidance, MassDEP establishes a multiplying factor to be applied to the concentration in the soil at the receiving location. The multiplying factor varies depending upon the concentration in the soil at the receiving location, as shown in Table 1.

If the concentration in soil at the receiving location for a given OHM is:	Then use a multiplying factor of:
< 10 mg/kg	10
10 mg/kg ≤ <i>x</i> <100 mg/kg	7.5
100 mg/kg ≤ <i>x</i> <1,000 mg/kg	5
≥ 1,000 mg/kg	2.5

Table 1. Receiving Soil Concentration Multiplying Factors

EXAMPLE: The soil at a receiving location that is considered RCS-1 is appropriately sampled and the maximum concentration of silver is found to be 6 mg/kg. Using Table 1, the concentration of silver at the receiving location would not be considered "significantly lower" than $10 \times 6 \text{ mg/kg} = 60 \text{ mg/kg}$. Since 60 mg/kg is less than the silver RCS-1 value of 100 mg/kg, soil containing a maximum concentration that is less than 60 mg/kg silver could be reused at this location.

EXAMPLE: The soil at a receiving location that is considered RCS-1 is assumed to be consistent with natural background. The MassDEP published natural background level for arsenic is 20 mg/kg. Using Table 1, the concentration of arsenic at the receiving location would not be considered "significantly lower" than $7.5 \times 20 \, mg/kg = 150 \, mg/kg$. However, since 150 mg/kg is greater than the arsenic RCS-1 value of 20 mg/kg, only soil containing a maximum concentration that is less than 20 mg/kg arsenic could be reused at this location. [The managed soil must not create a notifiable condition at the receiving location, see Section III.C. above.]

EXAMPLE: The soil at a receiving location that is considered RCS-2 is assumed to be consistent with natural background. The MassDEP published natural background level for benzo[a]anthracene is 2 mg/kg. Using Table 1, the concentration of benzo[a]anthracene at the receiving location would not be considered "significantly lower" than $10 \times 2 \text{ mg/kg} = 20 \text{ mg/kg}$. Since 20 mg/kg is less than the benzo[a]anthracene RCS-2 value of 40 mg/kg, soil containing a maximum concentration that is less than 20 mg/kg benzo[a]anthracene could be reused at this location. [Note that due to the lower reportable concentration, RCS-1 receiving locations could only accept soil containing less than 7 mg/kg benzo[a]anthracene.]

The multiplying factors in Table 1 and the MassDEP published natural background levels can be used to establish concentrations of OHM in soil that would be acceptable for reuse at an RCS-1 receiving location, consistent with the requirements of 310 CMR 40.0032(3). Table 2 lists such concentrations. Note that soil that meets the criteria in Table 2 could be re-used at <u>any</u> location (RCS-1 or RCS-2). Similarly, Table 3 lists concentrations of OHM in soil that would be acceptable for reuse at an RCS-2 receiving location (but *not* RCS-1 locations).

If a chemical is not listed on these tables, then MassDEP has not established a natural background concentration⁵. This guidance is limited to the use of only MassDEP-published statewide background concentrations. Therefore an alternative approach, such as sampling the receiving location and comparing maximum reported concentrations, would be appropriate to meet the requirements of 310 CMR 40.0032(3).

8

⁵ For example, MassDEP has not established natural background levels for PCBs, volatile organic compounds (VOCs) or petroleum-related constituents.

Table 2.
Limits to the Concentration of OHM In Soil for Re-Use
Assuming Natural Background Conditions at an RCS-1 Receiving Location

	Concentration In "Natural"	Rule-of-	Multiplied	RCS-1		niting ¹ Soil
OIL OR	Soil	Thumb	Value	103-1		ntration
HAZARDOUS MATERIAL	mg/kg	Multiplier	mg/kg	mg/kg		g/kg
ACENAPHTHENE	0.5	10		111g/ kg	<	4
ACENAPHTHYLENE	0.5	10	5	1	<	1
ALUMINUM	10,000	2.5	25000	•	<	25000
ANTHRACENE	1	10	10	1000	<	10
ANTIMONY	1	10	10	20	<	10
ARSENIC	20	7.5	150	20	<	20
BARIUM	50	7.5	375	1000	<	375
BENZO(a)ANTHRACENE	2	10	20	7	<	7
BENZO(a)PYRENE	2	10	20	2	<	2
BENZO(b)FLUORANTHENE	2	10	20	7	<	7
BENZO(g,h,i)PERYLENE	1	10	10	1000	<	10
BENZO(k)FLUORANTHENE	1	10	10	70	<	10
BERYLLIUM	0.4	10	4	90	<	4
CADMIUM	2	10	20	70	<	20
CHROMIUM (TOTAL)	30	7.5	225	100	<	100
CHROMIUM(III)	30	7.5	225	1000	<	225
CHROMIUM(VI)	30	7.5	225	100	<	100
CHRYSENE	2	10	20	70	<	20
COBALT	4	10	40		<	40
COPPER	40	7.5	300		<	300
DIBENZO(a,h)ANTHRACENE	0.5	10	5	0.7	<	0.7
FLUORANTHENE	4	10	40	1000	<	40
FLUORENE	1	10	10	1000	<	10
INDENO(1,2,3-cd)PYRENE	1	10	10	7	<	7
IRON	20,000	2.5	50000		<	50000
LEAD	100	5	500	200	<	200
MAGNESIUM	5,000	2.5	12500		<	12500
MANGANESE	300	5	1500		<	1500
MERCURY	0.3	10	3	20	<	3
METHYLNAPHTHALENE, 2-	0.5	10	5	0.7	<	0.7
NAPHTHALENE	0.5	10	5	4	<	4
NICKEL	20	7.5	150	600	<	150
PHENANTHRENE	3	10	30	10	<	10
PYRENE	4	10	40	1000	<	40
SELENIUM	0.5	10	5	400	<	5
SILVER	0.6	10	6	100	<	6
THALLIUM	0.6	10	6	8	<	6
VANADIUM	30	7.5	225	400	<	225
ZINC	100	5	500	1000	<	500

 $^{^{\}rm 1}$ Concentration of OHM in soil must be $\underline{\rm LESS\ THAN}$ (not equal or greater than) this value.

Table 3.
Limits to the Concentration of OHM In Soil for Re-Use
Assuming Natural Background Conditions at an RCS-2 Receiving Location

OIL OR	Concentration In "Natural" Soil	Rule-of- Thumb	Multiplied Value	RCS-2		imiting ¹ Soil centration
HAZARDOUS MATERIAL	mg/kg	Multiplier	mg/kg	mg/kg		mg/kg
ACENAPHTHENE	0.5	10	5	3000	<	5
ACENAPHTHYLENE	0.5	10	5	10	<	5
ALUMINUM	10,000	2.5	25000		<	25000
ANTHRACENE	1	10	10	3000	<	10
ANTIMONY	1	10	10	30	<	10
ARSENIC	20	7.5	150	20	<	20
BARIUM	50	7.5	375	3000	<	375
BENZO(a)ANTHRACENE	2	10	20	40	<	20
BENZO(a)PYRENE	2	10	20	7	<	7
BENZO(b)FLUORANTHENE	2	10	20	40	<	20
BENZO(g,h,i)PERYLENE	1	10	10	3000	<	10
BENZO(k)FLUORANTHENE	1	10	10	400	<	10
BERYLLIUM	0.4	10	4	200	<	4
CADMIUM	2	10	20	100	<	20
CHROMIUM (TOTAL)	30	7.5	225	200	<	200
CHROMIUM(III)	30	7.5	225	3000	<	225
CHROMIUM(VI)	30	7.5	225	200	<	200
CHRYSENE	2	10	20	400	<	20
COBALT	4	10	40		<	40
COPPER	40	7.5	300		<	300
DIBENZO(a,h)ANTHRACENE	0.5	10	5	4	<	4
FLUORANTHENE	4	10	40	3000	<	40
FLUORENE	1	10	10	3000	<	10
INDENO(1,2,3-cd)PYRENE	1	10	10	40	<	10
IRON	20,000	2.5	50000		<	50000
LEAD	100	5	500	600	<	500
MAGNESIUM	5,000	2.5	12500		<	12500
MANGANESE	300	5	1500		<	1500
MERCURY	0.3	10	3	30	<	3
METHYLNAPHTHALENE, 2-	0.5	10	5	80	<	5
NAPHTHALENE	0.5	10	5	20	<	5
NICKEL	20	7.5	150	1000	<	150
PHENANTHRENE	3	10	30	1000	<	30
PYRENE	4	10	40	3000	<	40
SELENIUM	0.5	10	5	700	<	5
SILVER	0.6	10	6	200	<	6
THALLIUM	0.6	10	6	60	<	6
VANADIUM	30	7.5	225	700	<	225
ZINC	100	5	500	3000	<	500

¹ Concentration of OHM in soil must be <u>LESS THAN</u> (not equal or greater than) this value.

V. Sampling Considerations

The soil proposed for disposal/re-use should be sampled at sufficient and adequately distributed locations so that the concentrations of the contaminants of concern in the soil are adequately characterized. This includes sampling for the purpose of MCP site assessment and sampling to characterize the soil in any given stockpile/shipment leaving the site. The factors listed below should be considered when developing and implementing such a sampling plan. Evaluation of release, source, and site specific conditions assist in developing the basis for the selection of field screening techniques, sampling methodologies, sampling frequencies, and the contaminants of concern (e.g., analytical parameters) used to characterize the soil. These include, but are not necessarily limited to the following:

- the type(s) and likely constituents known or suspected to be in the soil;
- current and former site uses, past incidents involving the spill or release of OHM, and past and present management practices of OHM at the site;
- the potential for the soil to contain listed hazardous waste or to be a characteristic hazardous waste:
- the presence or likelihood of any other OHM (e.g., chlorinated solvents, metals, polychlorinated biphenyls (PCBs), semi-volatile organic compounds (SVOCs), halogenated volatile organic compounds (VOCs));
- visual/olfactory observations, field screening, analytical data, and/or in-situ precharacterization data;
- soil matrix type naturally occurring soil or fill/soil mixtures (e.g., homogeneous or heterogeneous soil conditions);
- the identification and segregation of discrete "hot spots";
- the concentration variability in the soil;
- the volume of soil;
- the current and likely future exposure potential at the receiving location, including the
 potential for sensitive receptors, such as young children, to contact the soil (for
 example, more extensive sampling of the stockpiles would be warranted for soil
 slated to be moved to a residential setting than for soil being moved to a secure, lowexposure potential regulated receiving facility); and
- any sampling requirements stipulated by the receiving location.

The assessment of the soil, including the nature and concentrations of OHM therein, is a component of the MCP site assessment and therefore must meet all applicable performance standards, including those for environmental sample collection, analysis and data usability⁶. The assessment should address the precision, accuracy, completeness, representativeness, and comparability of the sampling and analytical results used to determine whether the soil

⁶ Additional guidance on data usability is available in Policy #WSC-07-350, MCP Representativeness Evaluations and Data Usability Assessments. http://www.mass.gov/eea/docs/dep/cleanup/laws/07-350.pdf

stockpiles meet the Similar Soils Provision requirements. The representativeness of any site assessment sampling data if used to characterize contaminant concentrations in soil to be moved and reused offsite should be carefully evaluated. Additional guidance on soil sampling considerations is available from U.S. EPA and other state environmental agencies.⁷

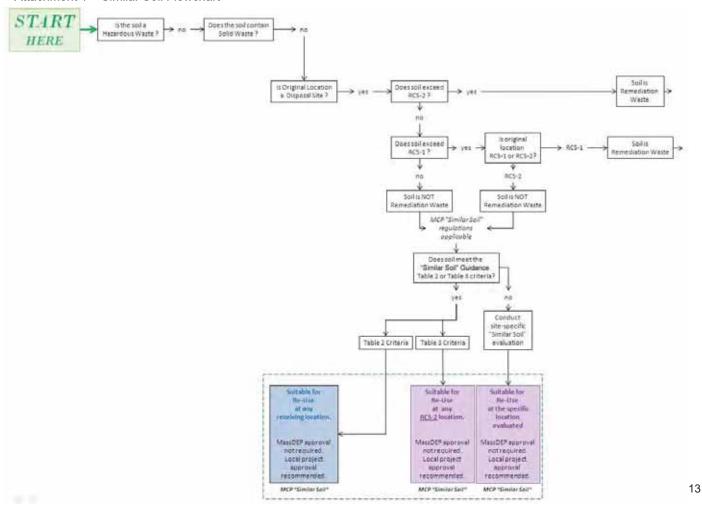
VI. Segregation and Management of Soils of Different Known Quality

Soil containing concentrations of OHM <u>equal to or greater than</u> the values listed in Table 3 cannot be managed using the streamlined approach described in this guidance. Such soil must be managed in a manner consistent with its regulatory classification, which may include management as a hazardous waste, as a remediation waste, or under a case-specific Similar Soils determination.

Segregation of soil of different quality should occur based upon *in-situ* pre-characterization sampling results. Stockpiles of soil are mixtures that would require more extensive sampling to document the effectiveness of any attempted post-excavation segregation.

The known presence of soil that exceeds the Table 3 concentrations and the subsequent segregation of soil is one factor that would indicate the need for more frequent sampling (at least in that area of soil excavation) as described in Section V.

NJDEP. 2011. <u>Alternative and Clean Fill Guidance for SRP Sites</u>. New Jersey Department of Environmental Protection Site Remediation Program http://www.state.nj.us/dep/srp/guidance/srra/fill protocol.pdf


USEPA. 1992. Supplemental Guidance to RAGS: Calculating the Concentration Term. Office of Solid Waste and Emergency Response (OSWER), Washington, DC http://www.epa.gov/oswer/riskassessment/pdf/1992 0622 concentrationterm.pdf

USEPA. 1995. <u>Superfund Program Representative Sampling Guidance Volume 1: Soil.</u> OSWER. Washington, DC.

(Note that guidance for determining the number of samples for statistical analysis is addressed in Section 5.4.1). $\underline{\text{http://www.epa.gov/tio/download/char/sf_rep_samp_guid_soil.pdf}$

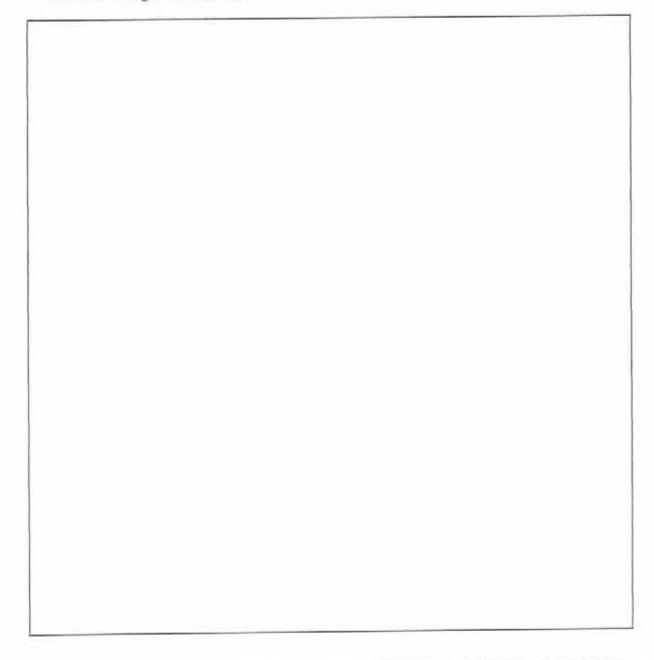
⁷ Note that the guidance below are not specific to MGL Chapter 21E disposal sites and may not reflect MCP-specific considerations to determine the suitability of soils for offsite transport and use, such as for residential and other S-1 locations.

Attachment 1 - Similar Soil Flowchart

SOIL REUSE SUBMITTAL FORM

Name:	Contact:
Address:	Phone:
City:	State, Zip:
Release Tracking No. or Site ID No. (if applicable):	
B. GENERATOR INFORMATION:	
Name:	Contact:
Address:	Phone:
City:	State, Zip:
C. CONCULTED NO INCORPORTATION.	
C. CONSULTANT INFORMATION: Company:	Contact:
	Contact: Phone:
Company;	
Company; Address:	Phone:

E. LABORATORY ANALYSIS Check the following laboratory analysis performed ∨OCs, SVOCs, TPH, PCBs MCP14 Metals TCLP (if required by total levels)	d on the material to be reused (check all that apply)
□ Conductivity	□ pH
☐ Ignitability/Flash Point	□Reactivity
☐ Pesticides	☐ Herbicides
☐ Other laboratory analysis performed:	
☐ Field screening performed (describe be	low)
☐ Attach data summary tables for all soil applicable samples F. SITE HISTORY: ☐ Check if extra sheet attached	from source and laboratory reports for only
Current Use(s):	
Past Use(s):	
Tannery Yes No Textiles Yes No Foundry Yes No Foundry Yes No Dry Cleaning Yes No Coal Gasification Yes No Machine Shop Yes No Salvage/Junk Yard Yes No Petroleum Storage Yes No Plating/metal finishing Yes No Chemical Production Yes No Circuit Board Manufacturer Yes No Herbicide or Pesticide use, storage, or dis Historic Urban Fill Soil present Yes No Reston Blue Clay present Yes No	Sposal Yes No No Arsenic or other constituents Yes No oil, ash waste, or other waste Yes No te RTN
2.	



Physical Description (sand	, gravel, silt, peat, fill, clay	etc.):	
Check if the following mater	rials are present (check all	that apply):	
□ Clay	□ Coal	□ Ash	
☐ Construction Debris	☐ Vegetative Matter	☐ Other Material:	
H. SOIL SAMPLI	NG METHODOLO	GY:	
Sampling Methods (check al	Il that apply):		
□ Grab	☐ Composite (Acc	eptance criteria based on g	grap samples)
		ated Olfactory Contam	mated
☐ Other:			
T SOIL CHADA	CTERIZATION ME	THODOLOGY:	
Soil Characterization (check		Modobook	
☐ Stockpile		☐ Other:	
No. of Samples Collected	:		
"Hotspots" identified (mat	erial not suitable for reuse	at \$178 :	
Describe how "hotspots" v	vere segregated (if applicat	nle):	
this Soil Submittal Pack Project meets the accept within the Fill Manager for reuse at this SI materials or contains ar I agree to promptly rem LIGHTHOUSE EN	used due diligence and cage and intended for intended for intended representations. There is not the first intended for in	d determined that the soil of the seuse at a g procedures, and due diliported by any releases of oil than those at levels described to the soil from the soil from the soil from the Seneral supports the soil from the General supports the support of the soil from the General supports the support of the soil from the General supports the support of the supports the supp	gence described we soil intended or hazardous bed herein. t is determined by LIGHTHOUSE cand manage
Signature of Generator:			Date:
Generator - Printed Name:			
Generator - France Pante.			

K. SITE DIAGRAM:

A site diagram is required indicating any major structures, roads, excavation area	s, soil origin, sample
locations, and stockpile locations. All sampling locations must be noted:	
□Check if Diagram is Attached	

1439 Main St

1439 Main St Leicester, MA 01524

Inquiry Number: 6566608.8

July 07, 2021

The EDR Aerial Photo Decade Package

EDR Aerial Photo Decade Package

07/07/21

Site Name: Client Name:

1439 Main St Parker Environmental

 1439 Main St
 P.O. Box 583

 Leicester, MA 01524
 Clinton, MA 01510

 EDR Inquiry # 6566608.8
 Contact: Scott Parker

Environmental Data Resources, Inc. (EDR) Aerial Photo Decade Package is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's professional researchers provide digitally reproduced historical aerial photographs, and when available, provide one photo per decade.

Search Results:

<u>Year</u>	<u>Scale</u>	<u>Details</u>	Source
2016	1"=500'	Flight Year: 2016	USDA/NAIP
2012	1"=500'	Flight Year: 2012	USDA/NAIP
2008	1"=500'	Flight Year: 2008	USDA/NAIP
1995	1"=500'	Acquisition Date: March 29, 1995	USGS/DOQQ
1985	1"=500'	Flight Date: March 16, 1985	USDA
1975	1"=500'	Flight Date: October 28, 1975	USGS
1966	1"=500'	Flight Date: March 09, 1966	USGS
1963	1"=500'	Flight Date: April 29, 1963	USGS
1952	1"=500'	Flight Date: June 18, 1952	USDA
1938	1"=500'	Flight Date: November 04, 1938	USGS

When delivered electronically by EDR, the aerial photo images included with this report are for ONE TIME USE ONLY. Further reproduction of these aerial photo images is prohibited without permission from EDR. For more information contact your EDR Account Executive.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2021 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

Prepared in cooperation with the Massachusetts Department of Environmental Protection and the Massachusetts Department of Public Health

Arsenic and Uranium in Water from Private Wells Completed in Bedrock of East-Central Massachusetts— Concentrations, Correlations with Bedrock Units, and Estimated Probability Maps

Scientific Investigations Report 2011–5013

U.S. Department of the Interior

U.S. Geological Survey

Arsenic and Uranium in Water from Private Wells Completed in Bedrock of East-Central Massachusetts—Concentrations, Correlations with Bedrock Units, and Estimated Probability Maps

Prepared in cooperation with the Massachusetts Department of Environmental Protection and the Massachusetts Department of Public Health

Scientific Investigations Report 2011–5013

U.S. Department of the Interior KEN SALAZAR, Secretary

U.S. Geological Survey Marcia K. McNutt, Director

U.S. Geological Survey, Reston, Virginia: 2011

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS

For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod

To order this and other USGS information products, visit http://store.usgs.gov

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.

Suggested citation:

Colman, J.A., 2011, Arsenic and uranium in water from private wells completed in bedrock of east-central Massachusetts—Concentrations, correlations with bedrock units, and estimated probability maps: U.S. Geological Survey Scientific Investigations Report 2011–5013, 113 p.

Contents

Acknowledge	ments	vi
Abstract		1
Introduction.		2
Purpose	and Scope	2
Health E	ffects of Arsenic and Uranium	2
Previou	s Investigations	4
Investigative	Design	4
Study A	rea	4
Samplin	g Distribution	5
Sample	Collection and the Well-User Questionnaire	5
Sample	Processing and Analytical Methods	7
Suppler	nental Data	7
Statistic	al Comparisons	7
Arsenic and	Uranium Concentrations and Correlations with Bedrock Units	7
Quality A	Assurance and Other Data Attributes	7
Re	turn Rates of the Water Samples	10
Wa	ater Use and Water Quality at Sampled Wells	10
Arsenic	Concentrations	10
Arsenic	Correlations with Bedrock Units	11
Uraniun	n Concentrations	19
Uraniun	n Correlations with Bedrock Units	20
Detailed	I Geologic Quadrangle Mapping of Bedrock Units	20
Water-0	Quality Correlations with Ancillary Constituents	22
Bedrocl	Units, Geologic Terranes, and Geologic Sources of Arsenic and Uranium	22
Maps of Estir	nated Probability for Elevated Arsenic and Uranium in Groundwater	24
Arsenic		24
Uraniun	1	26
Estimate	es of the Number of Wells that Exceed USEPA Drinking-Water Standards	26
Ar	senic	30
Ur	anium	30
Implications ¹	for New Supplies, Testing, and Treatment	30
Locating	g Future Bedrock Water Supplies	30
Directin	g Resources for Water Testing	30
Defining	Natural Background Concentrations	30
Summary		31
References (Dited	31
Appendix 1.	Abbreviations and Descriptions for Bedrock Units in and Adjacent to the Study Area	35–41
Appendix 2.	Letter to Potential Participants in the Study	43–46
Appendix 3.	Probability of Arsenic Exceeding a Given Concentration by Bedrock Unit	47–62
Appendix 4.	Arsenic Log-Normal Fit Statistics by Bedrock Unit	63–70
Appendix 5.	Probability of Uranium Exceeding a Given Concentration by Bedrock Unit	71–98
Appendix 6.	Uranium Log-Normal Fit Statistics by Bedrock Unit	99–113

Figures

1–3.	Maps showing:	
	1. Arsenic concentrations in public bedrock wells in Massachusetts, 2008	3
	2. Uranium concentrations in public bedrock wells in Massachusetts, 2008	6
	3. Bedrock units and principal faults in the project study area of	
	east-central Massachusetts	8–9
4.	Graph showing arsenic and uranium sample duplicates collected on the	1,
_	same day and after approximately 80 days, east-central Massachusetts, 2009	
5.	Map showing arsenic concentrations in east-central Massachusetts, 2009	I č
6.	Graph showing distribution of arsenic concentrations by bedrock unit, with seven or more samples, in the primary and secondary study areas, east-central Massachusetts, 2009	14
7.	Map showing arsenic concentrations, including Massachusetts Department of Environmental Protection data, showing elevated concentrations west of the Clinton-Newbury fault, east-central Massachusetts	
8.	Graph showing distribution of arsenic concentrations by rock type in the elevated-concentration area where differences in concentrations by unit were not significant, east-central Massachusetts	16
9.	Map showing arsenic concentrations inside and outside the elevated-arsenic area in bedrock units DI and Sp	17
10.	Graph showing distribution of arsenic concentrations inside and outside the elevated-arsenic area in bedrock units DI and Sp, east-central Massachusetts	18
11.	Graph showing distribution of arsenic concentrations by bedrock unit east of the Clinton-Newbury fault, east-central Massachusetts	18
12.	Map showing uranium concentrations in east-central Massachusetts, 2009	19
13.	Graph showing distribution of uranium concentrations by bedrock unit, with seven or more samples, in the primary and secondary study area, east-central Massachusetts, 2009	20
14.	Map showing details of change in geologic remapping of the Ayer, Hudson, and South Groveland 7.5-minute quadrangles compared to the statewide mapping of Zen and others (1983)	2
15.	Boxplots showing associations among constituents measured in bedrock wells in east-central Massachusetts, 2009	
16.	Graph showing cumulative probabilities for arsenic for two bedrock units east of the Clinton-Newbury fault	
17.	Map showing probabilities of arsenic concentrations in bedrock well water being greater than 10 micrograms per liter, the U.S. Environmental Protection Agency drinking-water standard for public supplies, east-central Massachusetts	
18.	Graph showing cumulative log-normal distribution functions for uranium in an elevated-concentration bedrock unit, Dfgr, and a low-concentration bedrock unit, Sb, east-central Massachusetts	
19.	Map showing probabilities of uranium concentrations in bedrock well water being greater than 30 micrograms per liter, the U.S. Environmental Protection Agency drinking-water standard for public supplies, east-central Massachusetts	
20.	Map showing inferred locations of private wells and census tracts for towns	29

Tables

1.	Chemical analytical methods used in the arsenic and uranium study, east-central	
	Massachusetts, 2009	10
2.	Quality-assurance results for arsenic, iron, manganese, and uranium	11
3.	Constituent correlation with bedrock units in statewide-scale (1:250,000) and quadrangle-scale (1:24,000), east-central Massachusetts	22
4.	Number of wells in each bedrock unit and estimates of number of wells exceeding the arsenic and uranium U.S. Environmental Protection Agency drinking-water standards for public supplies, east-central Massachusetts	29
	·	

Conversion Factors and Datums

Multiply	Ву	To obtain
	Area	
square kilometer (km²)	0.6214	square mile (mi ²)

Temperature in degrees Celsius (°C) can be converted to degrees Fahrenheit (°F) as follows: °F = $(1.8 \times ^{\circ}C) + 32$

Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius (µS/cm at 25 °C).

Concentrations of chemical constituents in water are given in micrograms per liter (µg/L).

Acronyms and Additional Abbreviations

ANOVA	analysis of variance
GIS	Geographic Information System
MDEP	Massachusetts Department of Environmental Protection
MDPH	Massachusetts Department of Public Health
MCL	maximum contaminant level
$\mu g/L$	micrograms per liter
$\mu S/cm$	microsiemens per centimeter
mL	milliliter
NWQL	National Water Quality Laboratory
USEPA	U.S. Environmental Protection Agency
USGS	U.S. Geological Survey

Acknowledgments

This investigation would not have been possible without the participation of the many well users who sent in water samples for analysis. Discussion and project planning with the late Elaine Krueger was instrumental for development of the project. Support from the Massachusetts Department of Environmental Protection and the Massachusetts Department of Public Health is greatly appreciated.

Arsenic and Uranium in Water from Private
Wells Completed in Bedrock of East-Central
Massachusetts—Concentrations, Correlations
with Bedrock Units, and Estimated
Probability Maps

By John A. Colman

Abstract

Two U.S. Environmental Protection Agency drinkingwater standards for public supplies involving groundwater contaminants that may derive from bedrock sources were promulgated between 2003 and 2006. A new arsenic drinkingwater standard, a maximum contaminant level (MCL) of 10 micrograms per liter, became effective in January 2006. The non-radon radionuclides final standard took effect in December 2003, with an MCL for uranium of 30 micrograms per liter. This investigation, conducted in cooperation with the Massachusetts Department of Environmental Protection and the Massachusetts Department of Public Health, assessed the concentration ranges of arsenic and uranium in bedrock wells with reference to the new concentration standards, and associations of arsenic and uranium with bedrock units of the wells of east-central Massachusetts. The investigation focused on east-central Massachusetts, because State public bedrock-well databases indicate that arsenic concentrations in bedrock well water are elevated in that area. The project exploited the wide areal coverage of private wells to give the first detailed look at concentration distributions of arsenic and uranium through the high-arsenic zone of Massachusetts. The results establish statistical probabilities for elevated concentrations by bedrock unit at the scale of the State geologic map (1:250,000), which can guide future well-water testing, treatment, and supply development.

Well sampling was from 478 randomly selected wells by private-well users who were sent sampling-kit bottles with instructions and a water-use questionnaire. Results indicated that 13 percent of the randomly selected wells contained water with concentrations greater than the drinking-water standard established for public wells for arsenic, and 3.5 percent were greater than the standard for uranium. Arsenic and uranium did not in general co-occur in water of a given well. Of the wells with concentrations exceeding the standards, the questionnaire results indicated that 66 percent were being used for drinking water without treatment for arsenic, and 93 percent were being used without treatment for uranium.

Statistical analysis of the results indicated that distributions of arsenic and uranium concentrations grouped by bedrock unit were log normal. Statistically significant differences were found among distributions by bedrock unit for both arsenic and uranium. However, a zone of elevated concentrations of arsenic was found in groundwater west of the Clinton-Newbury fault (a boundary between two geologic terranes), where correlation between arsenic concentrations and the bedrock units was not significant.

Increased sampling in the investigation was directed in the regions of three 1:24,000 (7.5-minute) quadrangles where recent detailed geologic mapping had been conducted. Improved correlations of arsenic and uranium with bedrock unit were measured for two of the three quadrangles compared to the correlations made for the statewide map.

Cumulative distribution frequencies of concentrations grouped by rock unit or area (zone of elevated arsenic concentration) were used to assess the probability of wells having concentrations exceeding the drinking-water standards. The probabilities were mapped and applied to the estimated number of private wells in the study area to determine the likely number of wells in the study area with concentrations exceeding the standards. For arsenic and uranium, respectively, about 5,700 and 3,300 wells were estimated to contain concentrations exceeding the standards. Estimates for arsenic may approach the total number for the State, because the study area covered the principal known area of elevated arsenic concentrations.

Introduction

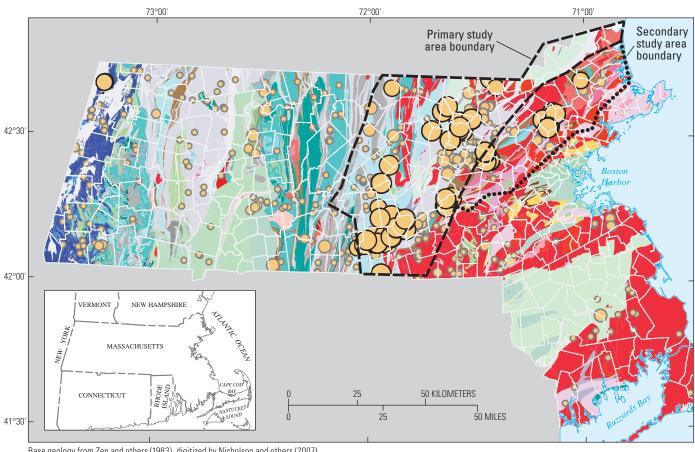
Two U.S. Environmental Protection Agency (USEPA) drinking-water standards involving groundwater contaminants that may derive from bedrock sources were promulgated between 2003 and 2006. A new maximum contaminant level (MCL) standard of 10 micrograms per liter (μ g/L) for arsenic in drinking water became effective in February 2002, with compliance required by January 2006. The non-radon radionuclides final rule took effect in December 2003, with an MCL for uranium of 30 μ g/L. The standards apply to public water supplies. In Massachusetts, the Massachusetts Department of Environmental Protection (MDEP) recommends that the standards also be used as guidelines for private supplies (Massachusetts Department of Environmental Protection, 2008).

Private water supply in Massachusetts, exclusive of the sand and gravel aquifers of the southeastern part of the State, is obtained primarily from wells drilled in bedrock (Hansen and Simcox, 1994). Bedrock water sources also are used for small commercial water supplies and, in some locations, for moderate to large municipal and industrial supplies (Hansen and Simcox, 1994; Lyford, and others 2003). Tens of thousands of private and public bedrock wells are used in the State —91,000 private bedrock wells were estimated for the bedrock geologic units investigated in this study.

Arsenic has long been known to be present in water from bedrock wells in east-central Massachusetts (Zuena and Keane, 1985; Ayotte and others, 2003; 2006), and the State straddles an arsenic belt that extends from Connecticut to New Brunswick, Canada. Elevated uranium concentrations in water from bedrock wells have been associated with igneous rock throughout New England, but also are present in water from other crystalline rock aquifers in the region (Ayotte and others, 2007). This investigation, conducted by the U.S. Geological Survey (USGS) in cooperation with the Massachusetts Department of Environmental Protection (MDEP) and the Massachusetts Department of Public Health (MDPH), was designed to assess the concentration ranges and associations of arsenic and uranium with reference to the new concentration

standards and to the classifications of the bedrock geologic units (hereafter bedrock units) in which the wells are drilled. The results can be used to establish statistical probabilities for elevated concentrations by bedrock unit, which can guide future well-water testing, treatment, and supply development.

Purpose and Scope


Information about bedrock associations of arsenic and uranium with bedrock well water are needed in Massachusetts to guide future well-water testing, treatment, and supply development. Probability distributions of well-water contaminants by bedrock unit will indicate the likelihood of contamination at a given concentration. Maps of these probabilities can be used to determine the likelihood of the presence of elevated arsenic or uranium concentrations in water of new wells in a given location or for directing testing priorities for existing wells.

The study encompasses the east-central arsenic belt in Massachusetts (fig. 1), the location of nearly all contamination of bedrock wells in the State by arsenic from a natural source. Many but not all wells contaminated by uranium are included in the same area, although igneous rocks, and likely uranium contamination, also occur outside the arsenic belt.

The principal focus of this report is the collection and interpretation of new data from 478 private bedrock wells. The amount of existing unpublished MDEP data from public bedrock wells is large, however, and may substantially supplement the number of observations per bedrock unit. The public bedrock-well data were used for qualitative analysis of the extent of contamination of bedrock units. The newly collected data were used to compute statistics of contaminant distribution. A reporting goal is to produce maps showing the probability statistic that concentrations of arsenic or uranium in well water exceed the drinking-water standards.

Health Effects of Arsenic and Uranium

Health effects from exposure to elevated concentrations of arsenic in drinking water have been established from studies in countries with very elevated levels of arsenic in water supplies, especially Taiwan (Smith and others, 1992; Lamm and others, 2003). Inorganic arsenic is well documented as a human carcinogen of the bladder, lungs, and skin (Centeno and others, 2007). Inorganic arsenic has also been demonstrated to affect many other organ systems, including the gastrointestinal, hepatic, cardiovascular, nervous, renal, and hematopoietic systems. A recent interest in arsenic in drinking water in the northeastern part of the United States relates to possible correlations with increased rates of bladder cancer in the region (Devasa and others, 1999; Ayotte and others, 2006). Epidemiological results demonstrating links between arsenic and health problems involve concentrations greater than the current USEPA drinking-water standard by an order of magnitude or more (National Research Council, 2001). Risk levels at

Base geology from Zen and others (1983), digitized by Nicholson and others (2007), scale 1:250,000, NAD 1983, StatePlane Massachusetts Mainland FIPS 2001, Lambert Conformal Conic projection

Figure 1. Arsenic concentrations in public bedrock wells in Massachusetts, 2008. Data from the Massachusetts Department of Environmental Protection. See figure 3 and appendix 1 for explanation of bedrock units in the east-central part of Massachusetts. <, less than

the standard are determined by extrapolation from the higher exposure studies. The National Research Council review for the National Academy of Science estimated the bladder cancer risk at about 12 to 23 per 10,000 persons with lifetime consumption of drinking water at 10 μ g/L, the current public supply drinking-water standard. Lung cancer risk is estimated at about 14 to 19 per 10,000 persons at 10 μ g/L (National Research Council, 2001).

Little is known about the long-term health effects on humans of exposure to low-level environmental uranium. Studies of occupationally exposed persons, such as uranium miners, have shown that the major health effect of uranium in the body is renal (kidney) toxicity (Leggett, 1989; Taylor and Taylor, 1997).

A discussion of the health effects of uranium in New England can also consider the effects of radium and radon, which are associated with uranium in crystalline bedrock aquifers (Ayotte and others, 2007). The association arises from the radioactive decay chain of uranium, which results in radium, through several radioactive decay product precursors. Radium decays directly to short-half-lived radon (3.8 days). Decay of radon results in four short-lived daughters and then longer-lived lead (22 years). Where uranium in drinking water is measured greater than the standard, analyses for radium and radon also could be done. Depending on the analysis technique, differential costs of analyses of the radionuclides means that uranium analysis may be an inexpensive indicator (when compared to gross alpha analysis) for determining the presence or absence of other radionuclides.

Previous Investigations

Several previous water-quality investigations exist for arsenic in New England and areas of Massachusetts. Investigations of uranium are more limited and cover the entire Northeast. The first published investigation to address the concerns of arsenic concentrations in private bedrock wells of New England referred to southeastern New Hampshire (Boudette and others, 1985). Bedrock and anthropogenic sources were analyzed, and the conclusion was drawn that the source was probably anthropogenic. A similar investigation of arsenic wells in Buxton, Maine, concluded that the likely source was bedrock (Marvinney and others, 1994). A three-town investigation in southern New Hampshire, very similar to the present Massachusetts investigation, reported the percentages of arsenic samples with concentrations greater than the 10 µg/L standard by bedrock unit (Montgomery and others, 2003). Several New Englandbased investigations have evaluated the risk for arsenic occurrence in the region—number of wells affected and probability maps of concentrations greater than or equal to 5 µg/L (for example, Karagas and others, 2002; Ayotte and others, 2003; 2006). Ayotte (2006) used a logistic regression based on many geologic, hydrologic, and anthropologic statistics for the region. A nationwide investigation of contaminants in private

wells of selected aquifers included distribution plots of arsenic concentrations for the New England bedrock aquifer (DeSimone, 2009). The New England aquifer was the only aquifer investigated in the eastern United States with elevated concentrations of arsenic in private wells.

One survey of arsenic in private wells from Massachusetts is available from an investigation in Pepperell, Massachusetts (SEA Consultants, 1985). Water was analyzed from 300 wells, and 12 percent of them had concentrations that exceeded the 50-µg/L USEPA standard that was in effect at that time. Attempts to distinguish natural sources of arsenic in bedrock from anthropogenic sources, such as pesticides applied to orchards, were not successful.

Finally, a geologically based review of arsenic presence in the Northeast was published by Peters (2008). The investigation discusses arsenic presence in overburden and bedrock wells from natural and anthropogenic sources. Peters (2008) showed that arsenic concentrations were not correlated with iron concentrations in bedrock well water, and that elevated arsenic concentrations were associated with contacts between metamorphic and intrusive igneous rock.

Uranium was included in the DeSimone (2009) survey of private wells, including several overstandard samples in the New England crystalline-rock aquifers, but the study involved few samples from Massachusetts. In an investigation summarizing uranium and radon data from the northern United States, a correlation was found between uranium, radium, and radon in the New England bedrock aquifer (Ayotte and others 2007). Of the nine northern aquifers investigated, median concentrations of radon and uranium were highest and third highest, respectively, in the New England bedrock aquifer.

Investigative Design

The investigative design followed that of Montgomery and others (2003) in southeastern New Hampshire, addressing the correlations between bedrock units and concentrations of arsenic and uranium. The intent in this study was to cover the known elevated-arsenic areas in Massachusetts so that the assessment of arsenic contamination in the State would be advanced as much as possible. However, future studies may be necessary to characterize other parts of the State with limited areas of elevated arsenic.

Study Area

The primary study area (fig. 1), in east-central Massachusetts, was chosen to include the area of elevated results (greater than or equal to the USEPA drinking-water standard for public supplies, $10~\mu g/L$) of arsenic in public wells (primarily bedrock) published from the MDEP database (Ayotte and others, 2003). Data reviewed after initiation of the project (J.A. Cerutti, Massachusetts Department of Environmental Protection, written commun., 2008; Ayotte,

2006) indicated additional elevated concentrations to the east of the principal study area and one elevated value in the northwest (fig. 1). The primary study area was augmented with a secondary study area (fig. 1) to cover the elevated concentrations in the east. By including the areas of known elevated concentration, the investigation would define arsenic occurrence in the principal areas of Massachusetts where concentrations could be expected to exceed the drinkingwater standard.

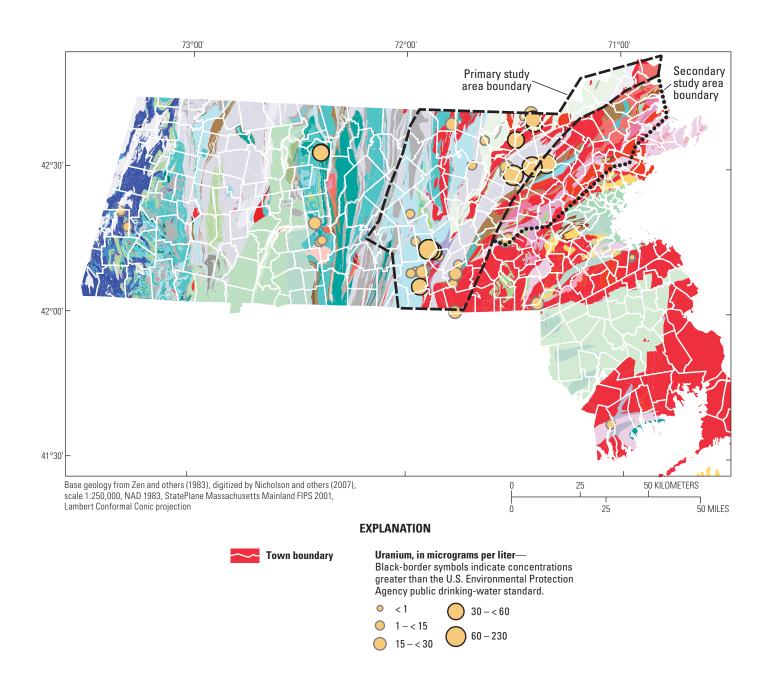
Although the project study areas were determined on the basis of concentrations of arsenic in bedrock wells, the areas were also appropriate for investigation of uranium (fig. 2). MDEP data show that the arsenic-defined areas include many of the elevated concentrations of uranium in the State. The MDEP uranium coverage is less extensive than that for arsenic, so uranium concentrations are unknown in some areas. Not all of the bedrock units that may have elevated uranium were characterized in the present investigation; however, enough elevated-concentration units were included that correlations between uranium and bedrock unit would be apparent if uranium were controlled by rock type.

The distribution of bedrock units of crystalline igneous and metamorphic rocks in the study area is complex (fig. 3). The study area is crossed by major faults that divide parts of three geologic terranes that include the Merrimack belt, the Nashoba zone and the Milford-Dedham zone (Hatch, 1991, p. v, fig. 2). The primary study area includes most of the Merrimack belt, which extends from the Connecticut Valley belt (indicated by the Merrimack belt western boundary in fig. 3) to the Clinton-Newbury fault (fig. 3), and the western half of the Nashoba zone, which extends from the Clinton-Newbury fault to the Bloody Bluff fault (fig. 3). The secondary study area includes the remainder of the Nashoba zone and the western edge of the Milford-Dedham zone, which begins at the Bloody Bluff fault and extends to the east.

Geologic units are as defined in the digitized version (Nicholson and others, 2007) of the bedrock map of Massachusetts (Zen and others, 1983). The use of these maps to define geologic units for wells is, of course, only as accurate as could be determined from a 1:250,000-scale map. There is the chance that wells near a bedrock boundary may not be correctly assigned to a bedrock unit. Bedrock wells are on the order of 100 m deep and unscreened in their bedrock portions. As such, they may encounter geologic units at depth that are different from units as mapped at the surface. But, due to the scale of the map (1:250,000), only the major rock type is shown at the location of the borehole. For example, a borehole study in a 305-m deep well in Tyngsborough, Mass., is located in the Ayer Granite bedrock unit SOad, but the borehole contains xenoliths of the host metasedimentary Berwick Formation (unit Sb) (Pierce and others, 2007). The level of detail seen in boreholes cannot be displayed on a State-scale map, and detailed studies of individual boreholes are beyond the scope of this regional study.

Sampling Distribution

Well locations were chosen for the study areas by stratified random selection across the bedrock units. Previous arsenic-concentration data (Ayotte and others, 2003; Joseph Cerutti, unpub. data, 2008) indicated that arsenic was more prevalent in the 69 bedrock units of the primary study area, so more sampling was directed at this area. One sampling objective was to collect at least seven samples per bedrock unit so that statistical inference could be made even for small units. So that large units would have coverage throughout their extent, a second objective was applied to supplement the initial seven samples by an additional one sample per 20 km² for units 20 km² and larger. The largest unit, the Paxton Formation (Sp), is 822 km², so the sampling objective for this unit was 48 wells. In the secondary area, the selection objective was 5 wells for each of the 12 bedrock units investigated.


Although a minimum of seven sites per unit in the primary study area was desired, some small units did not have this number of private wells (or even residences) available. Also, areas with public water supplies were necessarily excluded from the investigation, which left gaps in data for some units. These unavoidable exclusions of sampled areas biased the study toward areas where bedrock wells existed.

Wells were selected using randomly generated geocoordinates and matching closest Google-Earth determined locations of well addresses to well lists provided by the Massachusetts Department of Conservation and Recreation. Locations of the selected sites were moved from the street locations provided by Google Earth to positions of the building at that address using field observations of addresses and buildings, and georeferenced ORTHO photos (Massachusetts Office of Geographic Information (MassGIS), 2005).

Increased sampling in the investigation was directed in the regions of three 1:24,000 (7.5 minute) quadrangles where recent detailed geologic mapping had been conducted. Comparisons of correlations of arsenic and uranium with geologic units based on 1:250,000-scale mapping to those based on more recent 1:24,000-scale mapping could indicate the efficacy of remapping for arsenic and uranium delineation and for correlation with bedrock.

Sample Collection and the Well-User Questionnaire

Samples were collected by private well users during spring and summer of 2009, using bottles included in a sampling kit mailed to the residence at the location of the well. The kit included two labeled 125-mL bottles, a business reply Tyvek® envelope, and a questionnaire to determine water-use practices at the site, as well as to inform the bottle recipients about the program and how to collect the water sample (app. 2). Twice as many sampling kits were mailed out compared to the number required to meet the sampling

Figure 2. Uranium concentrations in public bedrock wells in Massachusetts, 2008. Data from the Massachusetts Department of Environmental Protection. See figure 3 and appendix 1 for explanation of bedrock units in the east-central part of Massachusetts. <, less than

objective for each rock type. A 50-percent return rate was expected, based on return rates from a similar investigation in New Hampshire (Montgomery and others, 2003). Well users were given 1 month to reply before a followup card was sent. If no reply had been received by 2 months after the followup card, the site was dropped from the study.

Sample Processing and Analytical Methods

All samples were collected by the residents living at the addresses selected for sampling. The samples were returned in a Tyvek® envelope by mail to the USGS office in Northborough, Mass. Samples intended for trace-constituent analysis were acidified to a pH less than 2 in the Northborough laboratory with 0.4-mL analytical-grade concentrated nitric acid (HNO3). The acidified samples were sent to the USGS National Water Quality Laboratory (NWQL) in Denver, Colo., for analysis as listed in table 1. At the laboratory, samples were subject to an in-bottle acid digestion before analysis so that results represented total constituent values.

Supplemental Data

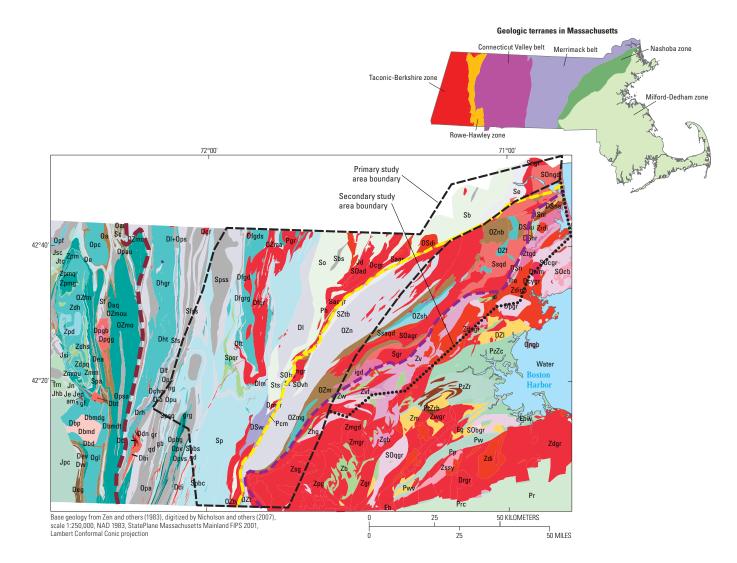
Additional data (1997 to 2007) on arsenic and uranium in bedrock wells were retrieved from the database of the MDEP (Joseph Cerutti, unpub. data, 2008) (figs. 1 and 2). The data were from analyses of water in public wells and were screened to include only data from bedrock wells. Although the results likely were relevant to the investigation, some differences prevented a simple combination of the data with that collected during this investigation. Different and multiple laboratories (State certified) were used for the analyses for MDEP data than were used for the USGS data. Greater water use may be expected from the public wells in the MDEP database compared to the private wells in the USGS database. The MDEP data were used to help define the areal distribution of arsenic and uranium but were not used in statistical summaries of occurrence of these constituents.

Statistical Comparisons

Parametric statistical tests were used, which are appropriate if normality or any other specific distribution (log normal in this investigation) can be assumed (Iman and Conover, 1983). Analysis of associations of concentration with bedrock unit was determined by one-way analysis of variance (ANOVA) on log-transformed concentration data, using the statistical software package Minitab 16®. Cumulative distribution functions with 95-percent confidence intervals were determined for concentration populations grouped by bedrock unit by fitting data to a log-normal distribution, using the statistical software package Minitab 16® with the options for distribution analysis, and arbitrary data censoring. For bedrock

units with fewer than five analyses with concentrations exceeding the analytical reporting limit, the option to assume a common scale was used in the distribution fitting.

The statistical software package SPLUS® was used to compare geologic mapping techniques and the correlation with arsenic and uranium concentrations. The comparisons were made with a multiple linear regression of log-transformed data.


Arsenic and Uranium Concentrations and Correlations with Bedrock Units

The ranges and correlations of arsenic and uranium concentrations among bedrock units are the focus of this project. The project objective is to use the correlations to guide future well-water testing, treatment, and supply development.

Quality Assurance and Other Data Attributes

During the investigation, 60 quality-assurance samples were analyzed for iron, manganese, arsenic, and uranium. The quality-assurance samples included sampling-bottle and preservation-acid blanks, a standard-reference sample, resampling, duplicate sampling, and sample splits (table 2). Qualityassurance results of the blank samples showed that possible contamination did not occur during sampling, during sample handing, or from sampling materials (the bottles and preservation acid). All concentrations measured for the four samplingbottle blanks during the study were below the reporting limits (table 1) for the respective analytes (table 2). Four samples of standard reference solution (USGS T-195) submitted to the NWOL as blind samples were generally within 5 percent of the known values. Average percent errors (average, in percent, of the absolute difference between replicate pairs divided by the average of the replicates) increased for all elements in the comparison series: split samples, duplicate samples separated by 5 minutes, and duplicate samples separated by months (average interval of 80 days). The error increase reflected variability in samples over time—small, but measureable for samples collected within 5 minutes, and larger for samples collected months apart.

Variability of concentrations over time was investigated by analysis of 48 duplicate samples. USGS personnel visited 12 randomly chosen wells where three samples were collected at each well: duplicate samples within 5 minutes and a third sample to compare with the original sample collected by the well user. Results showed that repeatability for samples collected sequentially at one visit was very good, but that substantial variation can occur for a well sampled over time (fig. 4). Sampling error from additional sources is possible in resampling over time, including the possibility of sampling from different water taps by mistake.

EXPLANATION

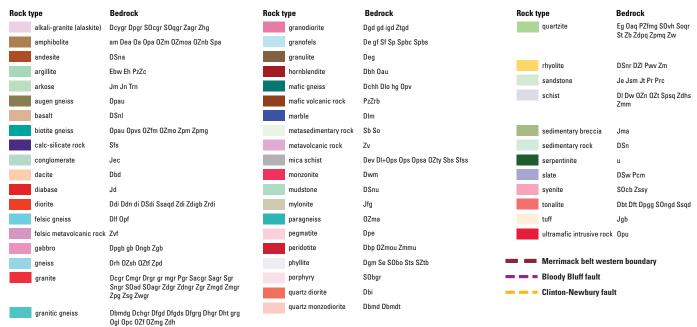


Figure 3. Bedrock units and principal faults in the project study area of east-central Massachusetts. See appendix 1 for explanation of bedrock units. Map colors from Moyer and others, 2005.

Table 1. Chemical analytical methods used in the arsenic and uranium study, east-central Massachusetts, 2009.

[NWQL, U.S. Geological Survey National Water Quality Laboratory, Denver, Colo.; NA, not applicable; °C, degrees Celsius]

Constituent	Units	Method	Reporting limit	Method reference
Acid neutralizing capacity	Milligrams per liter as calcium carbonate	Auto titrator at the USGS Northborough lab	NA	Rounds, 2006
Conductance	Microsiemens per centimeter at 25 °C	Orion conductance probe at the USGS Northborough lab	NA	Radtke and others, 2005
рН	pH log units	Initial pH from alkalinity titration at the USGS Northborough lab	NA	Ritz and Collins, 2008
Arsenic	Micrograms per liter	In-bottle acid digestion followed by collision/reaction cell inductively coupled plasma/collider mass spectrometry at NWQL	0.2	Garbarino and others, 2006; Garbarino and Struzeski, 1998
Iron	Micrograms per liter	In-bottle acid digestion followed by inductively coupled plasma-atomic emission spectroscopy at NWQL	14	Garbarino and others, 2006; Garbarino and Struzeski, 1998
Manganese	Micrograms per liter	In-bottle acid digestion followed by inductively coupled plasma/collider mass spectrometry at NWQL	0.4	Garbarino and others, 2006; Garbarino and Struzeski, 1998
Uranium	Micrograms per liter	In-bottle acid digestion followed by inductively coupled plasma/mass spectrometry at NWQL	0.02	Garbarino and others, 2006; Garbarino and Struzeski, 1998

Return Rates for the Water Samples

Of the total 1,580 sample kits sent to well users, samples from 478 wells were returned, a 30-percent return rate. The low return rate resulted in several bedrock units that had too few samples for statistical analysis.

Water Use and Water Quality at Sampled Wells

Results from the returned questionnaires indicate that 91 percent of the respondents use their well water for drinking. Many users treat the water in some way including softening, radon removal, arsenic removal, and reverse osmosis. Of the respondents with wells having arsenic concentrations exceeding the drinking-water standard, however, 66 percent were using water for drinking without treatment. Of the respondents with wells having uranium

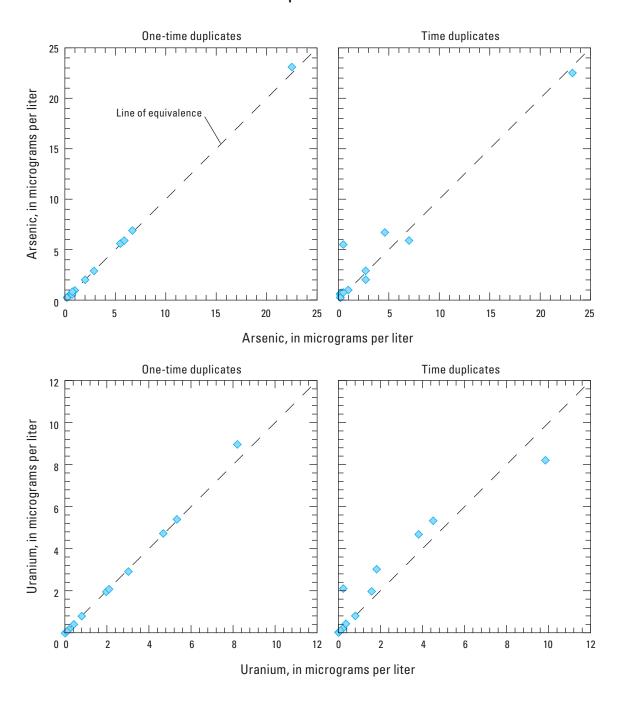
concentrations exceeding the standard, 93 percent were using water for drinking without treatment. The statistic included one respondent that was not using the water for drinking because it had not been tested. Thus, none of the respondents with wells having uranium concentrations exceeding the standard were treating the water for uranium removal.

Arsenic Concentrations

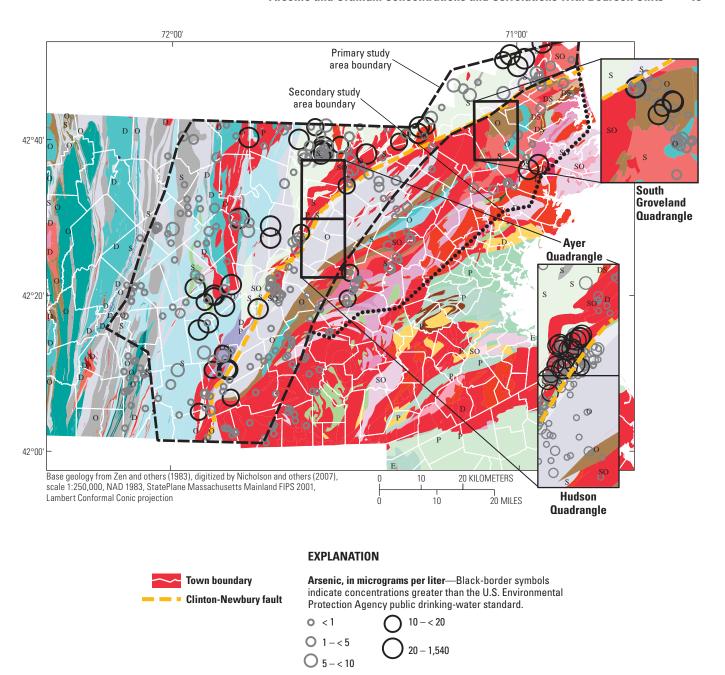
Arsenic concentrations in the complete dataset ranged from less than 0.2 μ g/L (less than the laboratory reporting limit) in 24 percent of all samples tested to 1,540 μ g/L. Of the 344 randomly selected samples (excluding intensive quadrangle sampling), 13 percent exceeded the 10 μ g/L drinking-water standard. For randomly selected samples from the primary study area, a slightly larger fraction of samples,

Table 2. Quality-assurance results for arsenic, iron, manganese, and uranium.

[USGS, U.S. Geological Survey]


Quality-assurance measure	Details	Number of samples	Result
Bottle blanks	Sample bottles had been sent out in mailers, and were preserved with acid	4	All concentrations were less than the method detection limit
Standard reference samples	USGS standard reference water sample, number T-195	4	Mean relative errors were Arsenic: 4.9 percent Iron: 2.4 percent Manganese: 0.62 percent Uranium: 5.6 percent
Sample splits	One sample split for two analyses	13	Mean relative errors were Arsenic: 3.8 percent Iron: 1.8 percent Manganese: 6.2 percent Uranium: 0.74 percent
Duplicates at one time	Samples collected sequentially on one sampling occasion	13	Mean relative errors were Arsenic: 5.8 percent Iron: 11.3 percent Manganese: 15.1 percent Uranium: 3.3 percent
Duplicates over time	Two samples collected on different sampling days	13	Mean relative errors were Arsenic: 49.5 percent Iron: 80.1 percent Manganese: 61.2 percent Uranium: 74.3 percent

15 percent, exceeded the standard. Concentrations of arsenic were not elevated in the 18 samples west of the primary study area, but some elevated concentrations were measured in the secondary study area, located east of the primary study area (fig. 5). Elevated concentrations can exist near low concentrations in the same bedrock unit, similar to distributions measured in other New England studies (Montgomery and others, 2003).


Arsenic Correlations with Bedrock Units

Arsenic concentrations in well water vary depending on the bedrock unit (fig. 6). Generally, concentrations are not narrowly distributed but rather extend above and below the median concentration for the bedrock unit by an order of magnitude or more. Although there are no bedrock units with elevated concentrations that do not also include low concentrations, there are some units with only low concentrations. One of the lowest-concentration units, Ops, is on the western edge of the study area, confirming the western limit to the elevated-concentration area in east-central Massachusetts. Each of the rock classifications of metamorphic, metamorphic with igneous intrusive, and igneous includes low-concentration and elevated-concentration units.

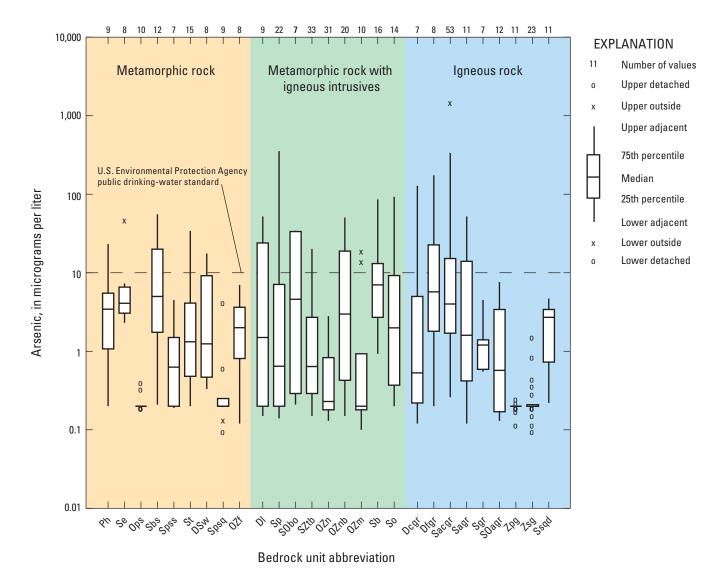

The variation within a bedrock unit indicates that median concentrations cannot be used for accurate predictions of concentrations in a unit. Concentrations in bedrock units are generally log normally distributed, so parametric statistical tests can be used to determine whether bedrock units and concentrations are related, or if distributions among bedrock units are significantly different. If a relation exists, probabilities of a bedrock well containing a given concentration may be calculated for each bedrock unit from cumulative distribution frequencies.

Figure 4. Arsenic and uranium sample duplicates collected on the same day and after about 80 days, east-central Massachusetts, 2009.

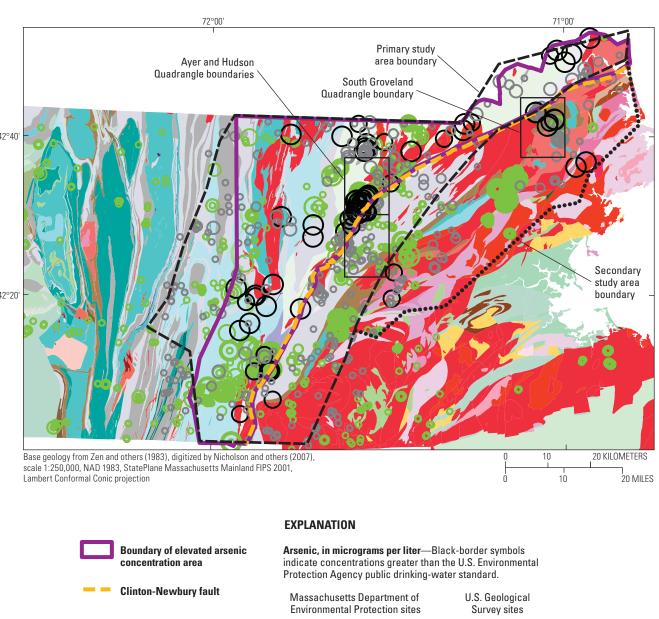
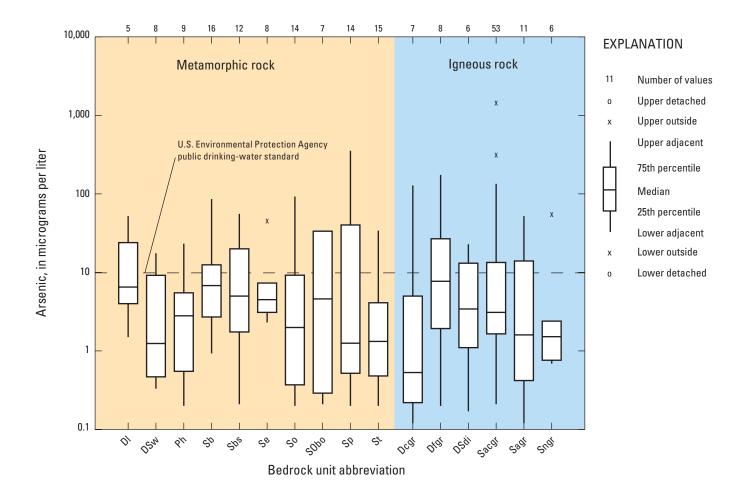

Figure 5. Arsenic concentrations in east-central Massachusetts, 2009. Sampling coverage was increased in the areas of the insert maps where geology was mapped at the 1:24,000 scale. See figure 3 and appendix 1 for explanation of bedrock units. <, less than

Figure 6. Distribution of arsenic concentrations by bedrock unit, with seven or more samples, in the primary and secondary study areas, east-central Massachusetts, 2009. See figure 3 and appendix 1 for explanation of bedrock units.

Arsenic concentrations north and west of the Clinton-Newbury fault are elevated (fig. 5). The fault marks a boundary between the Merrimack belt and Nashoba zone (fig. 3), and bedrock units do not extend across the fault boundary. The elevated arsenic concentrations extend approximately 20 km west and northwest of the fault. Within the 20-km zone, elevated concentrations were measured across a variety of bedrock unit rock types. Beyond the 20-km distance, sometimes within a rock type that has elevated concentrations near the fault, concentrations decrease. Lower concentrations of arsenic were measured in the large bedrock unit (OZn) east of the Clinton-Newbury fault. However, some elevated arsenic concentrations occur east of the fault, particularly in the OZnb unit.


An elevated-concentration area was defined as being bounded on the east by the Clinton-Newbury fault and extending westward to include all the concentrations measured greater than 10 μ g/L (fig. 7). MDEP data were combined with the USGS data to define the western part of the elevated-concentration area. One-way ANOVA analysis was used to assess the relations between concentration and bedrock unit in the elevated-concentration area. Within the elevated-concentration area, there was no statistically significant difference at the 5-percent level between log-transformed concentration distributions, grouped by bedrock unit (fig. 8).

Clinton-Newbury fault

Massachusetts Department of Environmental Protection sites < 1 < 1 < 1 < 5 < 10 < 1 < 5 < 10 < 10 < 20 < 10 < 20 < 10 < 20 < 10 < 20 < 10 < 20 < 10 < 20 < 10 < 20 < 10 < 20 < 10 < 20 < 10 < 20

Figure 7. Arsenic concentrations, including Massachusetts Department of Environmental Protection data, showing elevated concentrations west of the Clinton-Newbury fault, east-central Massachusetts. <, less than

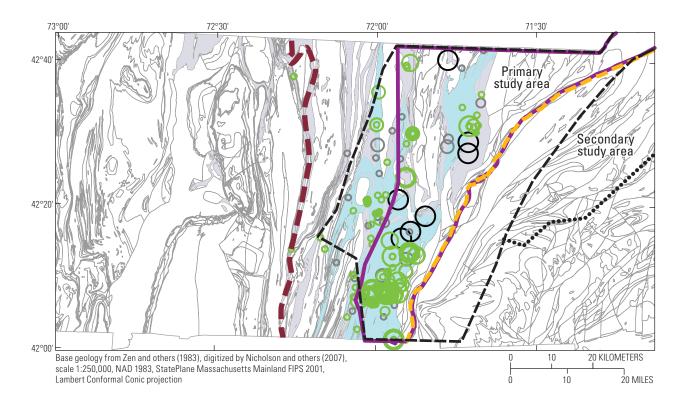


Figure 8. Distribution of arsenic concentrations by rock type in the elevated-concentration area, where differences in concentrations by unit were not significant, east-central Massachusetts. See figure 3 and appendix 1 for explanation of bedrock units.

Two of the bedrock units (Sp and Dl) inside the elevated-concentration area also extend outside the elevated-concentration area, where no concentrations exceeded the standard (fig. 9). Comparison of the data in the two units that cross the area boundary indicated that the difference across the elevated-concentration boundary, but within a bedrock unit, was statistically significant (fig. 10). These statistics indicate that the high-concentration area is within the Merrimack belt, but does not extend to the western boundary of the belt (fig. 9).

Three bedrock units with seven or more samples (Ops, Spss, and Spsq) were west or mostly west of the elevated-arsenic area. Concentrations in these bedrock units were significantly different from the grouped elevated arsenic area adjacent to the west.

A different pattern is observed east of the fault. Most striking is the difference between the bedrock unit SZtb, aligned with the Clinton-Newbury fault, and the bedrock unit OZn, adjacent to the east (fig. 5). Because of extra sampling in the area of the remapped quadrangles, there is an excellent

Bedrock unit Arsenic, in micrograms per liter—Black-border symbols indicate concentrations greater than the U.S. Environmental Sp Protection Agency public drinking-water standard. Massachusetts Department of U.S. Geological **Environmental Protection** Survey sites Boundary of elevated arsenic concentration area < 1 **Clinton-Newbury fault** Merrimack belt western boundary 5 – < 10 10 - < 2020 - 1,54020 - 354

EXPLANATION

Figure 9. Arsenic concentrations inside and outside the elevated-arsenic area in bedrock units DI and Sp. Data from the U.S. Geological Survey and the Massachusetts Department of Environmental Protection. See figure 3 and appendix 1 for explanation of bedrock units. <, less than

visual indication of arsenic concentration association with geology (inset map, fig. 5). One-way ANOVA analysis shows significant concentration differences between lower-concentration (OZn, Zhg, Zpg, Zsg, and Zw) and higher-concentration (SZtb and OZnb) units. The amphibolite-bearing rocks, OZnb, have elevated arsenic. Although not used for statistics, the MDEP dataset includes elevated concentrations in the southern parts of the amphibolite unit (fig. 7), which appears to indicate that the association is rock specific, not region specific as was found in the elevated concentration area in the west.

One-way ANOVA analysis of log-arsenic concentration in the rocks east of the Clinton-Newbury fault indicates that the arsenic concentrations in the OZnb unit are significantly higher than in the OZn unit (fig. 11). In this region east of the Clinton-Newbury fault, the mapped bedrock units indictate the distribution of arsenic concentrations. The OZnb unit extends well outside the primary study area and, as such, extends the area where elevated arsenic concentrations may be expected in Massachusetts from previous estimates (Ayotte and others, 2003).

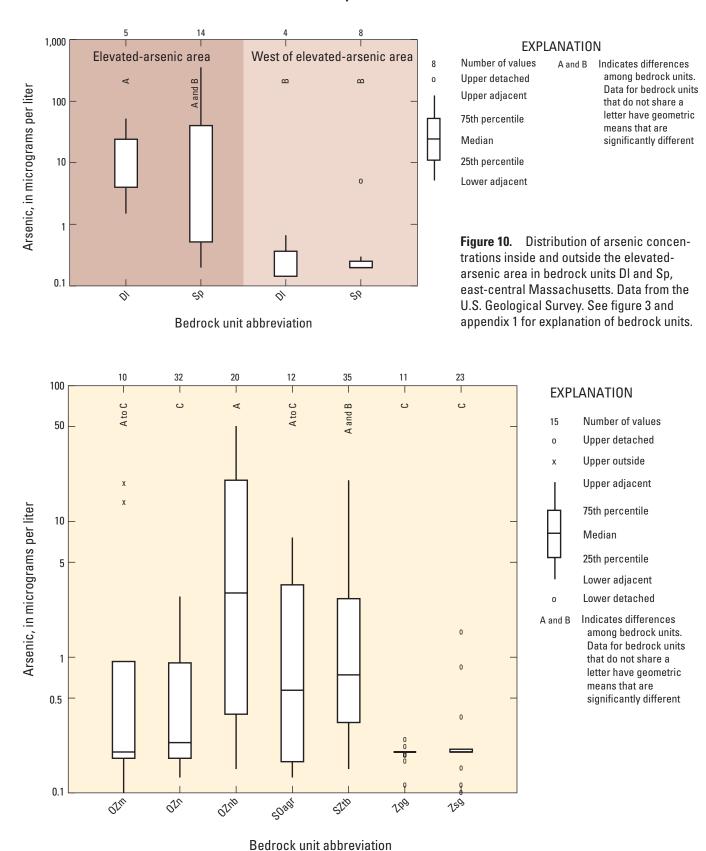
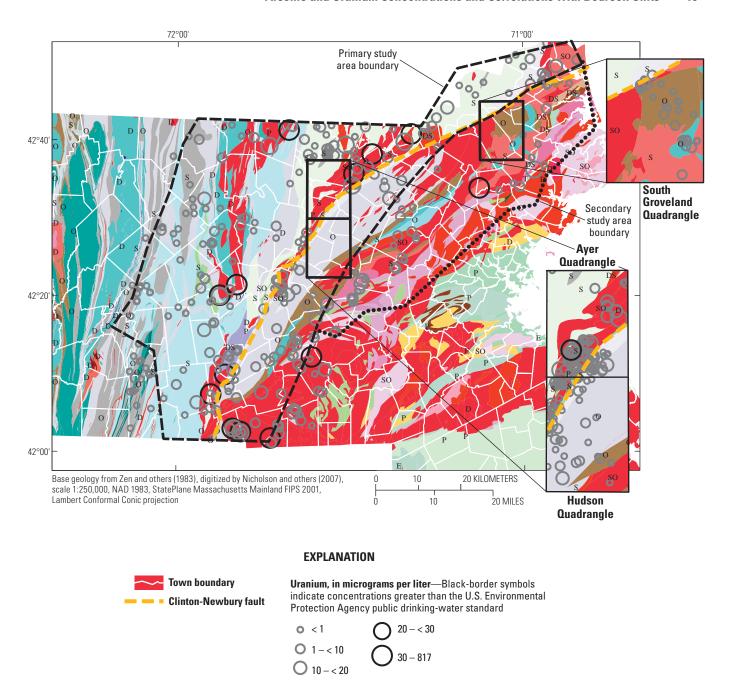



Figure 11. Distribution of arsenic concentrations by bedrock unit east of the Clinton-Newbury fault, east-central Massachusetts. See figure 3 and appendix 1 for explanation of bedrock units.

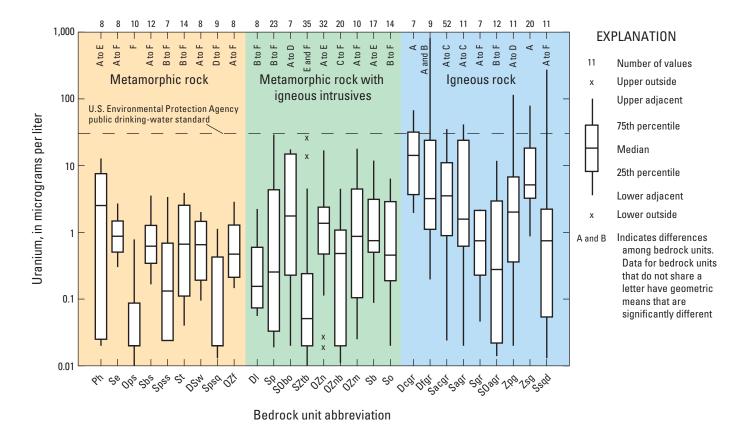


Figure 12. Uranium concentrations in east-central Massachusetts, 2009. Sampling coverage was increased in the areas of the insert maps where geology was mapped at the 1:24,000 scale. See figure 3 and appendix 1 for explanation of bedrock units. <, less than

Uranium Concentrations

Uranium concentrations ranged from less than the analytical reporting limit, $0.02~\mu g/L$, to $817~\mu g/L$. The low reporting limit allows description of uranium concentration variability in virtually all ranges of occurrence. Of 344 samples from the stratified random sampling, 12 samples (3.5 percent) exceeded the drinking-water standard of 30 $\mu g/L$.

With the samples from the intensive sampling included, concentrations in 13 of the total of 478 samples (2.7 percent) were greater than the drinking-water standard. Elevated concentrations of uranium were widely distributed across the study area (fig. 12). As with arsenic, elevated uranium concentrations can be in close proximity to low concentrations in the same unit. Some units, however, had consistently low concentrations.

Figure 13. Distribution of uranium concentrations by bedrock unit, with seven or more samples, in the primary and secondary study area, east-central Massachusetts, 2009. See figure 3 and appendix 1 for explanation of bedrock units.

Uranium Correlations with Bedrock Units

Variation of uranium concentration by bedrock unit is apparent in units sampled seven or more times, a threshold used to increase statistical significance (fig. 13). Median concentrations are generally greater in igneous rock than in metamorphic rock (fig. 13). Concentrations in metamorphic rock intruded by igneous rock were intermediate. Concentrations were lowest in the unintruded metamorphic rock. Uranium concentrations exceeded the 30 μ g/L drinkingwater standard only in the igneous units.

The visual differences (fig. 13) were confirmed by one-way ANOVA analysis applied to the log-transformed uranium concentrations for bedrock units with seven or more samples, using rock type as a discrete independent variable. Significant differences were noted in concentrations among the rock types, indicating the association of rock type with distribution of uranium concentrations. Several bedrock units west of the Clinton-Newbury fault, such as Dcgr and Dl, were significantly different from each other.

Bedrock units classified as metamorphic, but intruded by igneous rocks, occasionally might be expected to reflect the elevated igneous concentrations. Well boreholes might intersect igneous rock even though the unit was classified as metamorphic, although this investigation did not find standard exceedences in metamorphic rock intruded by igneous rock. Intruded rock, however, did include concentrations that were greater than in unintruded rock.

Detailed Geologic Quadrangle Mapping of Bedrock Units

Several of the 1:24,000 quadrangles within the study area were remapped recently (three are shown in fig. 14). Some of the contacts between bedrock units are changed on the new maps compared to the State map (Zen and others, 1983; Nicholson and others, 2007). Bedrock unit identifications of some of the polygons also have changed. Correlations between arsenic and uranium concentration and the remapped units may be stronger than that of the State map if the newly identified units more accurately represent rock boundaries and if the concentrations are controlled by bedrock unit type.

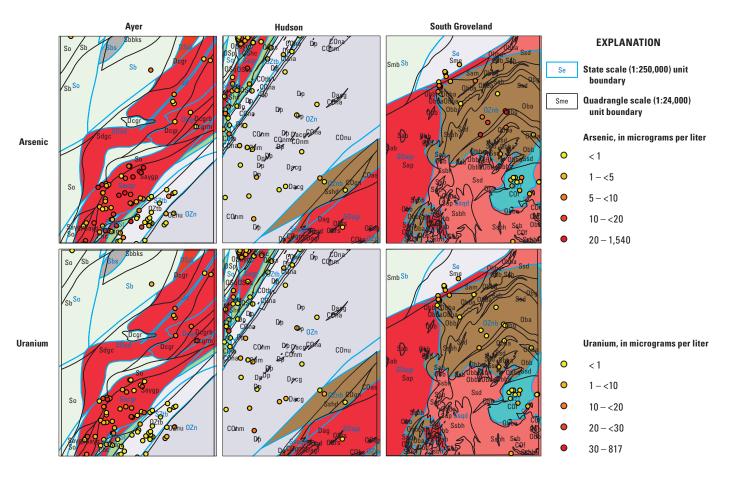


Figure 14. Details of change in geologic remapping of the Ayer, Hudson, and South Groveland 7.5-minute quadrangles compared to the statewide mapping of Zen and others (1983). <, less than

This effort reflects an attempt to test if the analysis of arsenic and uranium concentrations might be scale-dependent, as the 1:250,000 statewide map and 1:24,000 quadrangles differ significantly in scale. In New Hampshire, statewide analysis of well yield found that detailed (1:24,000) geologic maps improved the results of a predictive well-yield probability model over a statewide (1:250,000) model (Moore and others, 2002).

Correlations were compared by considering adjusted R-squared values for multiple linear regression of log concentration on bedrock unit for each pair of maps, that is, the map of Zen and others (1983) published in digital form by Nicholson and others (2007) compared to (1) the Ayer quadrangle (Kopera, 2006), (2) the Hudson quadrangle (Kopera, 2005) and (3) the South Groveland quadrangle (Castle and others, 2005) (table 3). Changes in renaming bedrock units alone would not change the value of the adjusted R-squared. Only a regrouping of well sites could change the R-squared value.

The adjusted R-squared value is a measure of the fraction of variance in the data that is explained by the regression variables. Results of the regressions indicate that no more variance of log-arsenic concentration is explained in the Ayer and Hudson quadrangles by the detailed (1:24,000) geologic mapping than by the statewide (1:250,000) mapping. For uranium, the adjusted R-squared value is about the same for the two mapping scales in the Ayer quadrangle but increases

Table 3. Constituent correlation with bedrock units in statewide scale (1:250,000) and quadrangle scale (1:24,000), east-central Massachusetts.

[As, arsenic; U, uranium]

Geologic quadrangle	Regression	Adjusted R-squared	P value
Ayer	Log As, statewide scale	0.31	0.0001
Ayer	Log As, quadrangle scale	0.15	0.0198
Ayer	Log U, statewide scale	0.59	0.0000
Ayer	Log U, quadrangle scale	0.53	0.0000
Hudson	Log As, statewide scale	0.06	0.1952
Hudson	Log As, quadrangle scale	0.04	0.2997
Hudson	Log U, statewide scale	0.16	0.0225
Hudson	Log U, quadrangle scale	0.32	0.0010
South Groveland	Log As, statewide scale	0.03	0.3375
South Groveland	Log As, quadrangle scale	0.22	0.0578
South Groveland	Log U, statewide scale	0.05	0.2673
South Groveland	Log U, quadrangle scale	0.17	0.1006

in the Hudson quadrangle with the 1:24,000 mapping. In the South Groveland quadrangle, more variance is explained with the new mapping than the old for both arsenic and uranium. One explanation for these results is the Clinton-Newbury fault that cuts though each quadrangle. In the Ayer and Hudson quadrangles, about half of the wells were in the elevated-arsenic zone where correlation with individual bedrock units was lacking. In the South Groveland quadrangle, only four wells were in the high arsenic zone, and all of these were in the same bedrock unit. Thus, arsenic would not improve with remapping for Ayer and Hudson because of a general lack of correlation by bedrock unit in much of the quadrangles. Uranium, by contrast, improved in two of the quadrangles with remapping and stayed about the same in the third. Overall, these results suggest that detailed mapping improves the ability to explain variance in uranium concentrations by bedrock unit, but that when variability in arsenic concentrations occurs at the terrane-scale, detailed mapping is less useful.

Water-Quality Correlations with Ancillary **Constituents**

Analysis of ancillary constituents, acid neutralizing capacity, iron, manganese, and conductance was used to assess geochemical associations of arsenic and uranium occurrences. This was done using two-parameter plots (fig. 15). The plot matrix shows virtually no correlations among constituents. Some constituents appear to be mutually exclusive, particularly arsenic and iron, uranium and iron, and arsenic and uranium (fig. 15). This is in contrast to the relation found in overburden samples, where arsenic and iron are commonly correlated (Stollenwerk and Colman, 2003).

Peters (2008) attributes the difference in iron-arsenic association between overburden and bedrock as reflecting the lack of organic carbon likely present in bedrock units. Iron and arsenic associate in coatings deposited from oxic weathering of arsenic minerals, such as arsenopyrite. These coatings remain in place unless reducing conditions occur, such as associated with the presence of anthropogenic organic carbon (Stollenwerk and Colman, 2003; Peters, 2008). Iron concentrations were elevated in the water of some of the tested wells. The reducing conditions associated with these wells, however, were likely associated with sediments of wetlands or lakes that are providing recharge to the bedrock.

Bedrock Units, Geologic Terranes, and Geologic Sources of Arsenic and Uranium

The MDEP and the USGS data indicate that elevated arsenic in bedrock well water is associated primarily with two terranes in Massachusetts, the Merrimack belt and the Nashoba zone (figs. 1, 3, and 5). Within the terranes of elevated arsenic concentration, arsenic appeared to be correlated with bedrock

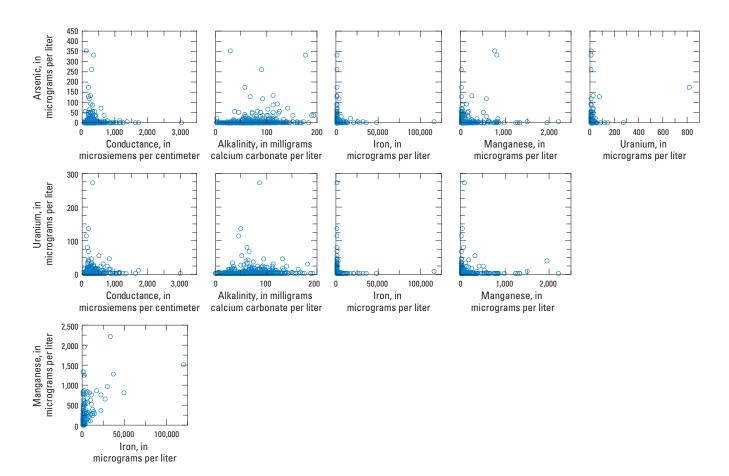


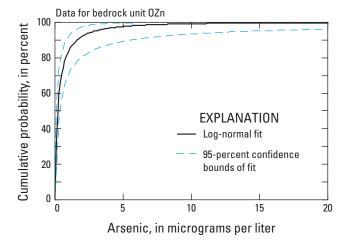
Figure 15. Associations among constituents measured in bedrock wells in east-central Massachusetts, 2009.

units in some parts of the study area and not correlated in other parts (note the elevated-concentration area of fig. 7). Sources of the arsenic in the areas that correlated with bedrock units could be in the rock protolith; however, the arsenic source in areas without bedrock correlation could have resulted from relatively equal redistribution of arsenic by metamorphic and/or metasomatic fluids from an original rock source (Henke, 2009). Although associated with the Merrimack belt, the elevated arsenic did not extend to the western border of the belt (fig. 9). The processes responsible for distributing the arsenic that is present in well water did not operate throughout the terrane.

In the Nashoba zone, where correlation between bedrock unit and arsenic concentrations was more prevalent, bedrock units with elevated arsenic extended to the Bloody Bluff fault, the eastern boundary of the zone. Two elevated arsenic concentrations were measured east of the Bloody Bluff fault in the Milford-Dedham zone, indicating that elevated arsenic concentrations are possible east of the Nashoba zone. Little previous data on arsenic in bedrock wells is available from this area where much of the water supply is public.

In the north, the elevated-arsenic area in Massachusetts abuts New Hampshire towns included in the private bedrockwell study by Montgomery and others (2003). In contrast to Massachusetts where units were grouped for concentration-probability analysis, units were grouped by fraction of samples greater than 10 μ g/L in the New Hampshire study. The different statistical approaches prevent exact comparisons of data between the two States. Clearly, however, both States have elevated arsenic concentrations in the border area.

The association of igneous rock with uranium results from its deposition during magma cooling (Keevil and others, 1944). Uranium is one of the last elements to come out of solution, and it associates with rock surfaces from which mobilization into well water can occur. A report on uranium potential in two-mica granites of New England indicates that certain


mineralized granites in New Hampshire and Massachusetts contain secondary uranyl-phosphate minerals (Boudette, 1977). Mobilization of uranium can occur in oxic conditions that are common in New England bedrock aquifers.

Maps of Estimated Probability for Elevated Arsenic and Uranium in Groundwater

Arsenic

Determination of probability of wells yielding water with arsenic concentration greater than the USEPA public drinking-water standard (10 $\mu g/L$) could help guide development of new supplies—domestic and public—and the testing of existing wells. Because of correlations of arsenic with bedrock unit and with groups of bedrock units described in a previous section on correlations, concentration distributions can be defined by bedrock unit. Cumulative distribution functions can be used to determine overstandard probabilities as well as probabilities of wells yielding water at levels of concentration greater than any given value (fig. 16). The distribution for each unit fits a log-normal distribution, and 95-percent confidence intervals based on the log-normal distribution can be computed (apps. 3 and 4).

The confidence interval of probability estimates depends on the number of samples for the bedrock unit and the concentration for which the probability is of interest. Probability distributions based on randomly selected samples of a population become more accurate as the sample size gets larger. Therefore, confidence intervals are a function of the number of samples. Finally, the probabilities can

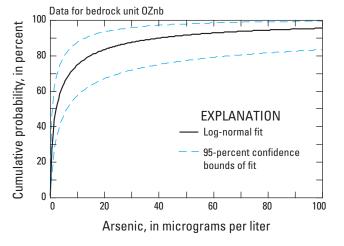
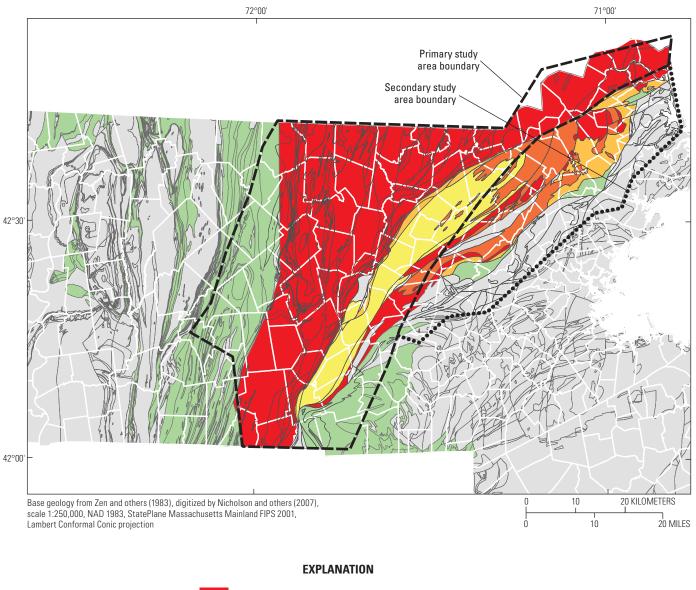
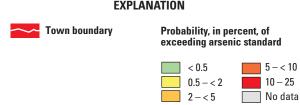




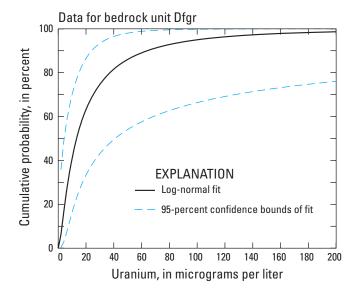
Figure 16. Cumulative probabilities for arsenic for two bedrock units east of the Clinton-Newbury fault.

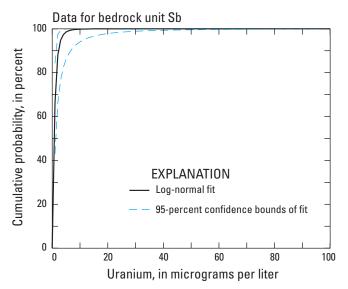
Figure 17. Probabilities of arsenic concentrations in bedrock well water being greater than 10 micrograms per liter, the U.S. Environmental Protection Agency drinking-water standard for public supplies, east-central Massachusetts. <, less than

be mapped so that areas with higher or lower probabilities of concentration than a given level (such as the USEPA drinking-water standard for public water supply) can be known (fig. 17). For example, the probability that a well in the OZn bedrock unit will contain water with an arsenic concentration greater than 10 μ g/L (equal to 100 percent minus the cumulative probability) is low—0.79 percent with 95-percent confidence interval of 0.05 to 6.6 percent (fig. 16 and app. 3). The probability that a well will contain water with arsenic concentration greater than 10 μ g/L for OZnb, an elevated-concentration unit, is 26 percent with a 95-percent confidence interval of 13 to 43 percent.

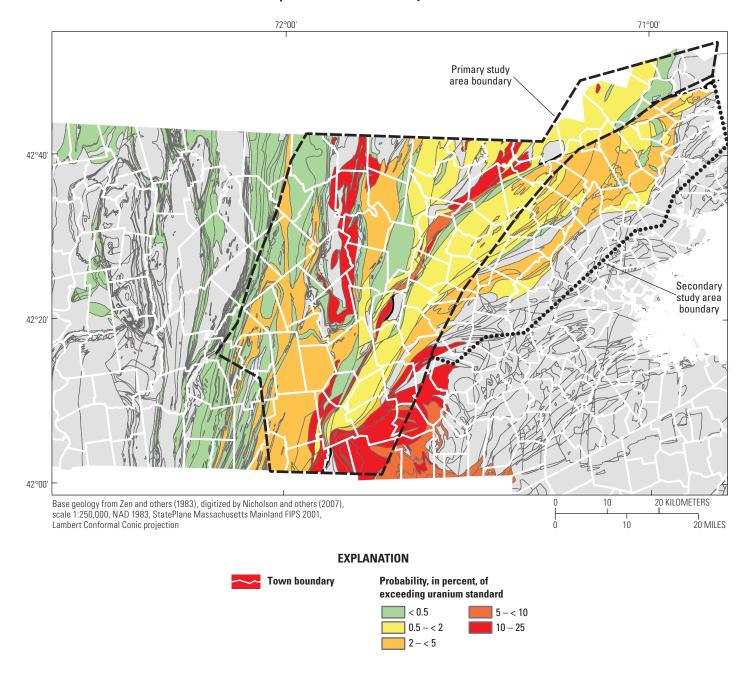
Bedrock units in the elevated-concentration area (fig. 7) were grouped for computing cumulative probabilities. The probability of well water being greater than 10 μ g/L for the elevated-concentration grouping of units was 23 percent, exceeded only by OZnb at 25 percent.

Uranium


In this study, uranium is more generally correlated to bedrock unit than is arsenic, so uranium associations can be mapped exclusively by bedrock unit. Distributions of uranium concentration in a bedrock unit are log normal. Cumulative log-normal distributions indicate the probability of concentrations occurring for the whole range of concentrations, including the probability of exceeding 30 μ g/L, the USEPA drinking-water standard for public supplies. The 95-percent confidence intervals of the probability estimates can also be determined from the log-normal fits (fig. 18, apps. 5 and 6). The uncertainty of the predictions—that is, the size of the confidence interval—decreases at high and low ends of the concentration range (fig. 18).


Example probabilities of encountering a concentration greater than 30 μ g/L (fig. 18) range from 0.0001 percent (95-percent confidence interval of 0.0 to 0.005 percent) for Ops, to 21 percent (95-percent confidence interval of 5.5 to 50 percent) for Dcgr. Areas with granitic rock have higher probabilities (figs. 5 and 19).

Estimates of the Number of Wells that Exceed USEPA Drinking-Water Standards


Estimates of the number of wells affected can be determined by the product of the probability for well water to exceed the USEPA standard and the estimated number of wells per bedrock unit.

Estimates of private well distributions were made for the MDPH by Weston & Sampson Engineers, Inc., during 2005 (fig. 20). Potential private wells were identified by cross-referencing addresses in property-tax-assessment databases


Figure 18. Cumulative log-normal distribution functions for uranium in an elevated-concentration bedrock unit, Dfgr, and a low-concentration bedrock unit, Sb, east-central Massachusetts.

Figure 19. Probabilities of uranium concentrations in bedrock well water being greater than 30 micrograms per liter, the U.S. Environmental Protection Agency drinking water standard for public supplies, east-central Massachusetts. <, less than

with those in water-billing databases. The addresses in the tax-assessment databases that did not have a match in the water-billing databases were classified as potential private wells. In communities not served by a public water supply, all addresses contained in the tax-assessment data were classified as potential private wells. For the purposes of the estimate, all the inferred private wells were assumed to be bedrock wells. All the potential private well addresses were geocoded using the GDT/TeleAtlas Batch Geocoding Service®.

Not all towns in the study area were included in the MDPH inferred private-well investigation (fig. 20). The 1990 census, which provided information about households per census track and percentage of households on public or private water, was used to supplement well estimates in locations not covered by MDPH (U.S. Census, 1992). The census areas in towns not covered by the MDPH study were intersected with the bedrock data using Geographic Information System (GIS) techniques to delineate parts of census tracts that were in each

Figure 20. Inferred locations of private wells and census tracts for towns not included in the inferred private-well study, east-central Massachusetts.

Table 4. Number of wells in each bedrock unit and estimates of number of wells exceeding the arsenic and uranium U.S. Environmental Protection Agency drinking-water standards for public supplies, east-central Massachusetts.

[*, bedrock unit within the high-arsenic zone; —, no data; MDPH, Massachusetts Department of Public Health; μg/L, micrograms per liter; standard, U.S.Environmental Protection Agency public drinking-water standard]

Bedrock unit	Total number of MDPH wells	Total number of estimated census wells	Probability of arsenic concentrations greater than 10 μg/L, in percent	Probability of uranium concentrations greater than 30 μg/L, in percent	Estimated number of wells exceeding the 10 µg/L standard for arsenic	Estimated number of wells exceeding the 30 µg/L standard for uranium
Grouped elevated- arsenic units	13,500	5,763	23.08	_	4,445	_
Dcgr*	418	1,275	_	21.01	_	356
Dfgr*	1,522	702	_	13.97	_	311
Dl	2,010	8,024	0.00	0.03	0	3
DSw*	382	629	_	0.13	<u>—</u>	1
Ops	770	7,707	0.10	0.00	8	0
OZf	0	507	7.64	0.01	39	0
OZm	735	679	10.83	4.64	153	66
OZn	7,007	5,621	0.79	0.89	100	113
OZnb	930	1,357	25.50	0.70	583	16
Ph*	60	0	_	11.99	_	7
Sacgr*	884	373	_	8.43	_	106
Sagr*	971	1,013	_	12.54	_	249
Sb*	2,315	4,594	_	0.69	_	47
Sbs*	67	133	_	0.00	_	0
Se*	305	492	_	0.00	_	0
Sgr	0	533	0.00	0.64	0	3
So*	1,374	2,406	_	1.55	_	59
SOagr	569	2,326	6.92	4.11	200	119
SObo*	0	236	_	12.42	_	29
Sp	2,862	10,343	0.00	4.61	0	609
Spsq	85	238	0.14	0.07	0	0
Spss	908	723	0.38	0.18	6	3
Ssqd	224	2,982	4.63	2.53	148	81
St*	245	150	_	0.76	_	3
SZtb	861	464	3.68	0.17	49	2
Zpg	2,197	1,361	0.02	6.94	1	247
Zsg	5,012	2,972	0.10	10.61	8	847
Totals	32,713	57,840			5,741	3,277

bedrock unit. The number of wells per census tract was then adjusted by the proportional area of the tract that was in the bedrock unit. Finally, all the wells in the parts of tracts in a bedrock unit were added to determine the number of wells in each unit. The number of wells estimated to exceed a standard was determined by multiplying the probability of exceeding a standard for that bedrock unit by the sum of the number of wells determined from the MDPH assessment and the census assessment (table 4).

Arsenic

For arsenic, no probability was given in table 4 for bedrock units that were within the elevated-arsenic area. Rather, the probabilities for the units in this area are covered by the grouped-units estimate (top of table 4).

The number of wells with arsenic concentrations that exceeded the USEPA drinking-water standard was estimated to be 5,741. Because the study area covered most of the known elevated-concentration areas for the State, this estimate is likely appropriate for the entire State. Several small units within the study area did not have enough data for probability statistics to be computed; however, these would not greatly alter the total.

Uranium

For uranium, correlations were strictly with bedrock units rather than grouped units (table 4). The number of wells with uranium concentrations that exceeded the standard for uranium was estimated to be 3,277. Most of these wells are in igneous rock. Because units west of the Clinton-Newbury fault were not grouped on an areal basis for uranium, several more bedrock units were excluded from the calculation of probability statistics than for arsenic.

Igneous bedrock units in Massachusetts are not confined to the primary and secondary study areas of this investigation. The statewide number of wells affected by uranium is likely larger than the number reported herein, based on the bedrock units in the study areas.

Implications for New Supplies, Testing, and Treatment

Locating Future Bedrock Water Supplies

Few private well owners have options regarding choosing locations that have favorable bedrock. For private supply, the probability maps (figs. 17 and 19) can be used to guide well-water testing.

Although the data collected were from private wells, the data could be used to assess conditions likely in public as well as private bedrock water supplies. Commonly, there are several site options for locating public wells. Consideration of the bedrock unit when selecting sites for public supplies could result in substantially decreased probabilities of concentrations exceeding the drinking-water standard. Towns that straddle the Clinton-Newbury fault, such as Harvard and Westford, could make use of the result that there is a lower probability of elevated arsenic concentration in the rocks east of the fault than those to the west.

Directing Resources for Water Testing

The numbers of overstandard water supplies without treatment can be computed by using the fraction of households currently using water without treatment for arsenic (66 percent of $5{,}741 = 3{,}789$) and uranium (93 percent of $3{,}277 = 3{,}047$). If testing could be directed toward the elevated-concentration areas, these numbers of untreated supplies would presumably decrease. By testing all wells that are in bedrock units with probabilities of elevated arsenic concentration greater than 10 percent, 90 percent of the wells exceeding the standard could be identified. Applied to data collected in this investigation, for example, all but two wells exceeding the standard (which are in SZtb with concentrations of 10 and 20 µg/L) would have been tested. This approach is likely to include testing of the highest concentration wells, because the elevated concentrations are associated with bedrock units that have the highest probabilities of overstandard concentrations. For example, of the two wells that were missed by this approach, one had a concentration at the standard and one had a concentration twice the standard; the highest concentration well tested in this study had a concentration 150 times the standard.

Because health risk increases with increasing concentration, a testing routine that likely includes the highest concentrations is beneficial. The 10-percent probability testing algorithm would result in testing 26 percent of all the wells estimated to be in the study areas. As a fraction of wells statewide, the percentage of wells tested would, of course, be much smaller.

For uranium, to determine 90 percent of wells greater than the standard, all units with overstandard probability of 4 percent or greater would need to be analyzed. This would involve testing about 40 percent of the wells in the study area.

Defining Natural Background Concentrations

A problem for site-contamination assessment in areas where arsenic occurs naturally is whether concentrations at a given site are caused by natural conditions or are the result of human-induced activity. In cases where there is a possibility that the bedrock has been contaminated with anthropogenic arsenic, the distribution frequencies of concentration for a given bedrock unit could be used to assess whether or not the distribution frequency of concentration at a site that is suspected of contamination is significantly different from natural conditions.

Summary

This investigation is the first regional-scale study of arsenic concentrations in water from private wells completed in bedrock throughout east-central Massachusetts, the region of elevated-arsenic concentrations in the State. Measurements of uranium concentrations also were included in the investigation, because uranium, similar to arsenic, likely has a bedrock source. Although private water supplies are not subject to new U.S. Environmental Protection Agency (USEPA) drinkingwater standards for public-water supplies, such as those established for arsenic and uranium in the last 7 years of 10 and 30 micrograms per liter, respectively, the standards are thresholds whereby private well users can assess the need for water treatment. Concentration data are needed for arsenic and uranium concentrations to (1) assess the geographic distribution of elevated concentrations, (2) guide testing of existing supplies, and (3) develop new supplies. These needs were addressed by correlating concentrations of arsenic and uranium with bedrock units and applying the correlations to the mapped distributions of wells. For arsenic, the number of overstandard wells estimated by these methods in the study area would account for most of the overstandard wells in the State. For uranium, the number of overstandard wells estimated for the study area would be less than the total for the State, because bedrock units with elevated concentrations of uranium are also expected outside of the region of this study.

Samples were collected by private well users that responded to sampling kits that were mailed to randomly selected well addresses. An instruction sheet and water-use questionnaire were included in the sampling kit. Of the wells randomly sampled, 13 percent had concentrations that exceeded the drinking-water standard for arsenic, and 3.5 percent exceeded the drinking-water standard for uranium.

One-way ANOVA analysis of log-transformed concentration data indicated significant differences for arsenic and for uranium concentration populations grouped by bedrock unit in most of the study area. However, an area of elevated arsenic concentrations was identified west of the Clinton-Newbury fault, where there were no significant differences in arsenic concentrations among the bedrock units. Lack of correlation with individual bedrock units in this area could have resulted from relatively equal redistribution of arsenic by metamorphic and/or metasomatic fluids.

Concentrations of arsenic and uranium fit log-normal distributions for populations separated by bedrock unit. For each bedrock unit, log-normal fits of the data were used to determine probabilities of concentrations exceeding the drinking-water standards. Overstandard probabilities were as great as 26 percent for arsenic in a unit containing amphibolite and 21 percent for uranium in a granitic unit.

Water-use data from the well users indicated that most of the overstandard wells were being used for drinking water without treatment—66 percent for arsenic and 93 percent

for uranium. This data together with probability and well-distribution data were used to estimate the potential total number of wells in the study area used for drinking water without treatment: approximately 3,800 for arsenic and 3,000 for uranium.

Probability and well-distribution data were also used to determine the sampling effort required to locate 90 percent of the estimated overstandard wells. For arsenic, this could be achieved by sampling wells in those bedrock units with an overstandard probability of 10 percent or greater. This would involve sampling 26 percent of the total number of wells in the study area. For uranium, 90 percent of overstandard wells could be determined by sampling wells in bedrock units with an overstandard probability of 4 percent or greater. This would involve sampling 40 percent of all the wells in the study area.

Increased sampling in the investigation was directed in the regions of three 1:24,000 quadrangles where recent detailed geologic mapping had been conducted. Improved correlations of arsenic and uranium with bedrock unit were measured for two of the three quadrangles compared to the correlations made with the statewide map.

The correlations with bedrock are compatible with a natural bedrock source of the contaminants. By addressing the potential for contamination of bedrock wells in areas of increased contamination probability, well owners and resource managers can better assess risk.

References Cited

Ayotte, J.D., Flanagan, S.M., and Morrow, W.S., 2007, Occurrence of uranium and ²²²radon in glacial and bedrock aquifers in the northern United States, 1993–2003: U.S. Geological Survey Scientific Investigations Report 2007– 5037, 84 p.

Ayotte, J.D., Montgomery, D.L., Flanagan, S.M., and Robinson, K.W., 2003, Arsenic in groundwater in eastern New England—Occurrence, controls, and human health implications: Environmental Science and Technology, v. 37, p. 2075–2083.

Ayotte, J.D., Nolan, B.T., Nuckols, J.J., Cantor, K.P., Robinson, G.R., Baris, D., Hayes, L., Karagas, M., Bress, W., Silerman, D.T., and Lubin, J.H., 2006, Modeling the probability of arsenic in groundwater in New England as a tool for exposure assessment: Environmental Science and Technology, v. 40, p. 3,578–3,585.

Boudette, E.L., 1977, Two-mica granite and uranium potential in the northern Appalachian orogen of New England, *in* Campbell, J.A., ed., Short papers of the U.S. Geological Survey uranium-thorium symposium: U.S. Geological Survey Circular 753, p. 23–24.

- Boudette, E.L., Canney, F.C., Cotton, J.E., Davis, R.I., Ficklin, W.H., and Motooka, J.M., 1985, High levels of arsenic in the groundwater of southeastern New Hampshire—A geochemical reconnaissance: U.S. Geological Survey Open-File Report 85–202, 20 p.
- Castle, R.O., Hepburn, J.C., and Kopera, J.P., 2005, Bedrock geologic map of the South Groveland Quandrangle, Massachusetts: Office of the Massachusetts State Geologist, University of Massachusetts, 1 sheet.
- Centeno, J.A., Tseng, C.-H., Van der Voet, G.B., and Finkelman, R.B., 2007, Global impacts of geogenic arsenic—A medical geology research case: Ambio, v. 36, no. 1, p. 78–81.
- DeSimone, L.A., 2009, Quality of water from domestic wells in principal aquifers of the United States, 1991–2004:
 U.S. Geological Survey Scientific Investigations Report 2008–5227, 139 p., available online at http://pubs.usgs.gov/sir/2008/5227
- Devesa, S.S., Grauman, D.G., Blot, W.J., Pennello, G., Hoover,
 R.N., Fraumeni, J.F., Jr., 1999, Atlas of cancer mortality in
 the United States, 1950–94: Washington, D.C., National
 Institutes of Health Publication no. 99–4564: U.S. Government Printing Office.
- Garbarino, J.R., Kanagy, L.K., and Cree, M.E., 2006, Determination of elements in natural-water, biota, sediment and soil samples using collision/reaction cell inductively coupled plasma-mass spectrometry: U.S. Geological Survey Techniques and Methods, book 5, sec. B, chap. 1, 88 p.
- Garbarino, J.R., and Struzeski, T.M., 1998, Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of elements in whole-water digests using inductively coupled plasma-optical emission spectrometry and inductively coupled plasma-mass spectrometry: U.S. Geological Survey Open-File Report 98–165, 101 p.
- Hansen, B., and Simcox, A.C., 1994, Yields of bedrock wells in Massachusetts: U.S. Geological Survey Water-Resources Investigations Report, 93–4115, 43 p.
- Hatch, N.L., ed., 1991, The bedrock geology of Massachusetts: U.S. Geological Survey Professional Paper 1366–E–J [variously paged].
- Henke, Kevin, 2009, Arsenic in natural environments, *in* Henke, Kevin, ed., Arsenic—Environmental chemistry, health threats and waste treatment: Hoboken, Wiley, p. 69–236.
- Iman, R.L., and Conover, W.J., 1983, A modern approach to statistics: New York, Wiley, 497 p.

- Karagas, M.R., Stukel, T.A., and Tosteson, T.D., 2002, Assessment of cancer risk and environmental levels of arsenic in New Hampshire: International Journal of Hygiene and Environmental Health, v. 205, p. 85–94.
- Keevil, N.B., Larsen, E.S., Jr., and Wank, F.J., 1944, The Ayer granite-migmatite at Chelmsford, Massachusetts, pt. 6 *of* The distribution of helium and radioactivity in rocks: American Journal of Science, v. 242, no. 7, p. 345–353.
- Kopera, J.P., 2005, Preliminary bedrock geological map of the Hudson quandrangle, Massachusetts: Office of the Massachusetts State Geologist, University of Massachusetts, Massachusetts Geologic Survey, 1 sheet.
- Kopera, J.P., 2006, Preliminary bedrock geologic map of the Ayer quadrangle, Massachusetts: Office of the Massachusetts State Geologist Open File Report 06–02, 1 sheet.
- Lamm, S.H., Byrd, D.M., Kruse, M.B., Feinleib, M., Lai, S-H., 2003, Bladder cancer and arsenic exposure— Differences in the two populations enrolled in a study in southwest Taiwan: Biomedical and Environmental Sciences v. 16, p. 355–368.
- Leggett, R.W., 1989, The behavior and chemical toxicity of U in the kidney—A reassessment: Health Physics, v. 57, no. 3, p. 365–383.
- Lyford, F.P., Carlson, C.S., and Hansen, B.P., 2003, Delineation of water sources for public-supply wells in three fractured-bedrock aquifer systems in Massachusetts: U.S. Geological Survey Water-Resources Investigations Report 02–4290, 114 p.
- Marvinney, R.G., Loiselle, M.C., Hopeck, J.T., Braley, David, and Krueger, J.A., 1994, Arsenic in Maine ground water—An example from Buxton, Maine, *in* Proceedings of the 1994 FOCUS conference on Eastern Regional Ground Water Issues, Burlington, Vt.: National Ground Water Association, p. 701–715.
- Massachusetts Department of Environmental Protection, 2008, Parameters and testing frequency for private wells: Commonwealth of Massachusetts, accessed October 2010 at http://www.mass.gov/dep/water/drinking/privatew.htm
- Massachusetts Office of Geographic Information (MassGIS), 2005, Othophoto quads index: Commonwealth of Massachusetts, accessed June 2007 at http://www.mass.gov/mgis/ix_oq.htm
- Montgomery, D.L., Ayotte, J.D., Carroll, P.R., and Hamlin, P., 2003, Arsenic concentrations in private bedrock wells in southeastern New Hampshire: U.S. Geological Survey Fact Sheet 051–03, 6 p.

- Moore, R.B., Schwarz, G.E., Clark, S.F. Jr., Walsh, G.J., and Degnan, J.R., 2002, Factors related to well yield in the fractured-bedrock aquifer of New Hampshire: U.S. Geological Survey Professional Paper 1660, 36 p.
- Moyer, L.A., Hastings, J.T., and Raines, G.L., 2005, Methods to create ArcMap® styles with examples for lithology and time: U.S. Geological Survey Open-File Report 2005–1314, 21 p.
- National Research Council, 2001, Arsenic in drinking water—2001 update: Washington, D.C., National Academy Press, 244 p.
- Nicholson, S.W., Dicken, C.L., Horton, J.D., Foose, M.P., Mueller, J.A.L., and Hon, Rudi, 2007, Preliminary integrated geologic map databases for the United States— Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, Rhode Island, and Vermont: U.S. Geological Survey Open-File Report 2006–1272, version 1.1, accessed at http://pubs.usgs.gov/of/2006/1272/
- Peters, S.C., 2008, Arsenic in groundwaters in the northern Appalachian mountain belt—A review of patterns and processes: Journal of Contaminant Hydrology, v. 99, p. 8–21.
- Pierce, H.A., Walsh, G.J., Burruss, R.C., and Degnan, J.R., 2007, Borehole characterization of a methane-yielding bedrock well, Tyngsborough, Massachusetts: U.S. Geological Survey Open-File Report 2007–1399, 17 p., accessed at http://pubs.usgs.gov/of/2007/1399/
- Radtke, D.B., Davis, J.V., and Wilde, F.D., 2005, Specific electrical conductance (ver. 1.2): U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A6, section 6.3, August, accessed June 2009 at http://pubs.water.usgs.gov/twri9A6/
- Ritz, G.F., and Collins, J.A., 2008, pH (version 2.0): U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A6, sec. 6.4, October, accessed May 2009 at http://pubs.water.usgs.gov/twri9A6/
- Rounds, S.A., 2006, Alkalinity and acid neutralizing capacity (ver. 3.0): U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A6, sec. 6.6, July, accessed June 2009, at http://pubs.water.usgs.gov/twri9A6/
- SEA Consultants, 1985, Investigation of arsenic contamination in private wells, Pepperell, Massachusetts: Cambridge, Mass. [variously paged].
- Smith, A.H., Hopenhayn-Rich, C., Bates, M.N., Goeden, H.M., Hertz-Picciotto, I., Duggan, H.M., Wood, R., Kosnett, M.J., and Smith, M.T., 1992, Cancer risks from arsenic in drinking water: Environmental Health Perspectives, v. 97, p. 259–267.

- Stollenwerk, K.G., and Colman, J.A., 2003, Natural remediation potential of arsenic contaminated ground water, *in* Welch, A.H., and Stollenwerk, K.G., eds., Arsenic in ground water—Geochemistry and occurrence: Boston, Kluwer, p. 351–380.
- Taylor, D.M., and Taylor, S.K., 1997, Environmental uranium and human health: Reviews on Environmental Health, v. 12, no. 3, p. 147–157.
- U.S. Census, 1992, 1992 U.S. Census enhanced TIGER/Line files for the fourteen counties of Massachusetts: Accessed May 2009 at http://www.mass.gov/mgis/cen1990_block-groups.htm
- Zen, E-An (ed.), Goldsmith, R., Ratcliffe, N.M., Robinson, P., Stanley, R.S. (compilers), Hatch, N.L., Jr., Shride, A.F., Weed, E.G.A., and Wones, D.R., 1983, Bedrock geologic map of Massachusetts: Reston, Va., U.S. Geological Survey, scale 1:250,000, 3 sheets.
- Zuena, A.J., and Keane, N.W., 1985, Arsenic contamination in private potable wells, *in* USEPA National Conference on Environmental Engineering, Northeastern University of Boston, Massachusetts, p. 717–725.

34	Arsenic and Uranium in Water from Private Wells Completed in Bedrock of East-Central Massachusetts

Appendix 1. Abbreviations and Descriptions for Bedrock Units in and Adjacent to the Study Area

Appendix 1. Abbreviations and descriptions for bedrock units in and adjacent to the study area.

Bedrock unit abbreviation	Age	Bedrock unit descriptions
Cbw	Cambrian	Braintree Argillite and Weymouth Fm—argillite, with some rare limestone
Cg	Cambrian	Green Lodge Fm of Rhodes and Graves (1931)—quartzite and slate
Ch	Cambrian	Hoppin Fm—quartzite, argillite, and minor limestone
cu	Unknown age	Cumberlandite—rock containing magnetite, ilmenite, olivine, labradorite, and spinel
Degr	Devonian	Chelmsford Granite—muscovite-biotite granite
Dchgr	Devonian	Coys Hill Porphyritic Granite Gneiss—microcline granite gneiss
Dchh	Devonian	Coys Hill Porphyritic Granite Gneiss—hornblende gneiss inclusions
Dcygr	Devonian	Cherry Hill Granite—alaskite granite containing ferro-hornblende
Ddi	Devonian	Hardwick Tonalite: Biotite-hornblende diorite and quartz-bearing diorite
Ddn	Devonian	Hardwick Tonalite: Meladiorite and norite
Dfgd	Devonian	Fitchburg Complex—biotite granodiorite to tonalite gneiss
Dfgds	Devonian	Fitchburg Complex—biotite-muscovite granitic gneiss with mica schist and feldspathic granulite inclusions
Dfgr	Devonian	Fitchburg Complex—muscovite-biotite granite
Dfgrg	Devonian	Fitchburg Complex—biotite-muscovite granite to granodiorite gneiss
Dft	Devonian	Fitchburg Complex—biotite-hornblende tonalite inclusions
Dgd	Devonian	Granodiorite
Ogr	Devonian	Biotite-muscovite granite
Dhgr	Devonian	Hardwick Tonalite—porhyritic microcline-biotite granite gneiss
Oht	Devonian	Hardwick Tonalite—biotite tonalite to granodiorite gneiss
D1	Devonian	Littleton Fm
Dl+Ops	Devonian	Littleton and Partridge Fms, interfolded
Ol+Ops	Devonian	Partridge Fm—interfolded Littleton and Partridge Fms
Dlf	Devonian	Littleton Fm—quartz-feldspar-garnet gneiss, probably felsic metavolcanic rock
Olm	Devonian	Littleton Fm—calcitic marble
Olo	Devonian	Littleton Fm—orthopyroxene-biotite gneiss, probably intermediate metavolcanic rock
Omgr	Devonian	Muscovite-biotite granite
DOgr	Devonian/Ordovician	Alkalic granite in Franklin
Opgr	Devonian	Peabody Granite—alkalic granite containing ferro-hornblende
Orgr	Devonian	Granite of Rattlesnake Hill pluton—biotite-granite and fine-grained riebeckite granite
Orh	Devonian	Hardwick Tonalite: Biotite-garnet-feldspar gneiss of Ragged Hill
DSdi	Devonian/Silurian	Diorite and tonalite
DSn	Devonian/Silurian	Newbury Volcanic Complex—undivided sedimentray and volcanic rocks
OSna	Devonian/Silurian	Newbury Volcanic Complex—porphyritic andesite, includes tuffaceous mudstone
DSnl	Devonian/Silurian	Newbury Volcanic Complex—basalt, andesite, rhyolite, and tuff
DSnr	Devonian/Silurian	Newbury Volcanic Complex—micrographic rhyolite
DSnu	Devonian/Silurian	Newbury Volcanic Complex—calcareous mudstone, red mudstone, and siliceous siltstone
DSw	Devonian/Silurian	Worcester Fm—carbonaceous slate and phyllite and minor metagraywacke
Dwm	Devonian	Wenham Monzonite—monzonite containing ferro-hornblende
DZl	Devonian	Lynn Volcanic Complex—rhyolite, agglomerate, and tuff
fgr	Unknown age	Fine-grained granite and granite porphyry

Appendix 1. Abbreviations and descriptions for bedrock units in and adjacent to the study area. —Continued

Bedrock unit abbreviation	Age	Bedrock unit descriptions
gb	Precambrian to Paleozoic	Hornblende-olivine gabbro
Cbw	Cambrian	Braintree Argillite and Weymouth Fm—argillite, with some rare limestone
Cg	Cambrian	Green Lodge Fm of Rhodes and Graves (1931)—quartzite and slate
Ch	Cambrian	Hoppin Fm—quartzite, argillite, and minor limestone
cu	Unknown age	Cumberlandite—rock containing magnetite, ilmenite, olivine, labradorite, and spinel
Dcgr	Devonian	Chelmsford Granite—muscovite-biotite granite
Dchgr	Devonian	Coys Hill Porphyritic Granite Gneiss—microcline granite gneiss
Dchh	Devonian	Coys Hill Porphyritic Granite Gneiss—hornblende gneiss inclusions
Dcygr	Devonian	Cherry Hill Granite—alaskite granite containing ferro-hornblende
Ddi	Devonian	Hardwick Tonalite: Biotite-hornblende diorite and quartz-bearing diorite
Ddn	Devonian	Hardwick Tonalite: Meladiorite and norite
Dfgd	Devonian	Fitchburg Complex—biotite granodiorite to tonalite gneiss
Dfgds	Devonian	Fitchburg Complex—biotite-muscovite granitic gneiss with mica schist and feldspathic granulite inclusions
Dfgr	Devonian	Fitchburg Complex—muscovite-biotite granite
Dfgrg	Devonian	Fitchburg Complex—biotite-muscovite granite to granodiorite gneiss
Dft	Devonian	Fitchburg Complex—biotite-hornblende tonalite inclusions
Dgd	Devonian	Granodiorite
Dgr	Devonian	Biotite-muscovite granite
Dhgr	Devonian	Hardwick Tonalite—porhyritic microcline-biotite granite gneiss
Dht	Devonian	Hardwick Tonalite—biotite tonalite to granodiorite gneiss
Dl	Devonian	Littleton Fm
Dl+Ops	Devonian	Littleton and Partridge Fms, interfolded
Dl+Ops	Devonian	Partridge Fm—interfolded Littleton and Partridge Fms
Dlf	Devonian	Littleton Fm—quartz-feldspar-garnet gneiss, probably felsic metavolcanic rock
Dlm	Devonian	Littleton Fm—calcitic marble
Dlo	Devonian	Littleton Fm—orthopyroxene-biotite gneiss, probably intermediate metavolcanic rock
Dmgr	Devonian	Muscovite-biotite granite
DOgr	Devonian/Ordovician	Alkalic granite in Franklin
Dpgr	Devonian	Peabody Granite—alkalic granite containing ferro-hornblende
Drgr	Devonian	Granite of Rattlesnake Hill pluton—biotite-granite and fine-grained riebeckite granite
Drh	Devonian	Hardwick Tonalite: Biotite-garnet-feldspar gneiss of Ragged Hill
DSdi	Devonian/Silurian	Diorite and tonalite
DSn	Devonian/Silurian	Newbury Volcanic Complex—undivided sedimentray and volcanic rocks
DSna	Devonian/Silurian	Newbury Volcanic Complex—porphyritic andesite, includes tuffaceous mudstone
DSnl	Devonian/Silurian	Newbury Volcanic Complex—basalt, andesite, rhyolite, and tuff
DSnr	Devonian/Silurian	Newbury Volcanic Complex—micrographic rhyolite
DSnu	Devonian/Silurian	Newbury Volcanic Complex—calcareous mudstone, red mudstone, and siliceous siltstone
DSw	Devonian/Silurian	Worcester Fm—carbonaceous slate and phyllite and minor metagraywacke
Dwm	Devonian	Wenham Monzonite—monzonite containing ferro-hornblende
DZl	Devonian	Lynn Volcanic Complex—rhyolite, agglomerate, and tuff

Appendix 1. Abbreviations and descriptions for bedrock units in and adjacent to the study area. —Continued

gb Precambrian to Paleozoic Granodiorite gr Precambrian to Paleozoic Granodiorite grg Precambrian to Paleozoic Granodiorite grg Devonian Biotite granitic gneiss hg Precambrian to Paleozoic Hornblende-bolagicalsase gneiss Granodiorite of the Indian Head pluton biotite granodiorite and hornblende-biotite tonalite Jurassic Diabase dikes and sills Jurassic Silicified fault-breccia or strongly silicified metamorphic rocks K. Cretaceous Cretaceous sediments—clay, silt, sand, and gravel, mostly non-marine and near-shore mgr Precambrian to Silurian Muscovite granite Orgb Ordovician Glastonbury Gneiss—granitic gneiss Ongb Ordovician Glastonbury Gneiss—granitic gneiss Ongb Ordovician Partridge Fm—amphibolite Opau Ordovician Partridge Fm—mphibolite Opau Ordovician Partridge Fm—biotite gneiss Opc Ordovician Partridge Fm—sillimanite-feldspar augen gneiss Opc Ordovician Partridge Fm—floitite gneiss Opc Ordovician Partridge Fm—sulfidic mica schist and subordinate amphibolite Opsa Ordovician Partridge Fm—sulfidic mica schist and subordinate amphibolite Opsa Ordovician Partridge Fm—sulfidic mica schist and abundant amphibolite Opsa Ordovician Partridge Fm—sulfidic mica schist and abundant amphibolite Opsa Ordovician Partridge Fm—floiting mica schist and abundant amphibolite Opsa Ordovician Partridge Fm—floiting mica schist and abundant amphibolite Opsa Ordovician Partridge Fm—floiting mica schist and abundant amphibolite Opsa Ordovician Partridge Fm—floiting mica schist and abundant amphibolite Opsa Ordovician Partridge Fm—floiting mica schist and abundant amphibolite Opsa Ordovician Partridge Fm—floiting mica schist and abundant amphibolite Opsa Ordovician Partridge Fm—floiting mica schist and pundant and pribability Opsa Ordovician Partridge Fm—floiting mica schist and pundant amphibolite Opsa Ordovician Partridge Fm—floiting mica schist and pundant amphibolite Opsa Ordovician Partridge Fm—floiting pribability mica schist and pundant apphibolite and sulfidic schist Oppa Ordovician Partridge Fm—floiting pribability mica schist	Bedrock unit abbreviation	Age	Bedrock unit descriptions
gd Precambrian to Paleozoic Grandiorite gr Precambrian to Paleozoic Grantic grg Devonian Biotite granitic gneiss hg Precambrian to Paleozoic Grantic hg Precambrian to Paleozoic Grandiorite of the Indian Head pluton—biotite granodiorite and hormblende-plagioclase gneiss Grandiorite of the Indian Head pluton—biotite granodiorite and hormblende-biotite tonalite Jurassic Diabase dikes and sills Jurassic Silicified fault-breccia or strongly silicified metamorphic rocks K Cretaceous Cretaceous sediments—clay, silt, sand, and gravel, mostly non-marine and near-shore mgr Precambrian to Silurian Mozeovite granite Ogl Ordovician Gilastonbury Gneiss—granitic gneiss Ongb Ordovician Gilastonbury Gneiss—granitic gneiss Ongb Ordovician Partridge Fm—amphibolite Opau Ordovician Partridge Fm—mbiotite gneiss Opc Ordovician Partridge Fm—biotite gneiss Opc Ordovician Partridge Fm—biotite gneiss Opc Ordovician Partridge Fm—biotite gneiss Opc Ordovician Partridge Fm—silidide mica schist and subordinate amphibolite Ops Ordovician Partridge Fm—silidide mica schist and abundant amphibolite Ops Ordovician Partridge Fm—silidide mica schist and abundant amphibolite Opse Ordovician Partridge Fm—silidide incia schist and abundant amphibolite Opse Ordovician Partridge Fm—silidide incia schist and abundant amphibolite Opse Ordovician Partridge Fm—silidide mica schist and abundant amphibolite Opse Ordovician Partridge Fm—silidic mica schist and abundant amphibolite Opse Ordovician Partridge Fm—silidic mica schist and pundant amphibolite Opse Ordovician Partridge Fm—marmafic lenses, commonly hormblendite Opv Ordovician Partridge Fm—marmafic lenses, commonly hormblendite Opv Ordovician Partridge Fm—marmafic lenses, controlopide in a subordian subordiante amphibolite Opv Ordovician Partridge Fm—biotite gneiss, metavoleanic, with cale-silicate granofels OZM Neoproterozoic Marboro Fm—marphibolite, biotite schist and gneiss, minor cale-silicate granofels and felsi granofels OZM Neoproterozoic Marboro Fm—marphibolite, biotite schist and gneiss, mino	fgr	Unknown age	Fine-grained granite and granite porphyry
precambrian to Paleozoic Granite grg Devonian Biotite granitic gneiss Hormblende-plagioclase gneiss Granodiorite of the Indian Head pluton—biotite granodiorite and hormblende-biotite tonalite Jurassic Diabase dikes and silis Jurassic Silicified fault-breccia or strongly silicified metamorphic rocks K Cretaceous Cretaceous sediments—clay, silt, sand, and gravel, mostly non-marine and near-shore mgr Precambrian to Silurian Muscovite granite Gold Ordovician Glastonbury Gneiss—granitic gneiss Ongb Ordovician Nahant Gabbro and gabbro at Salem Neck—labradorite-pyroxene gabbro, hornblende gabbro, and hormblende diorite Opa Ordovician Partridge Fm—amphibolite Opau Ordovician Partridge Fm—biotite gneiss Opbg Ordovician Partridge Fm—biotite gneiss Opbg Ordovician Partridge Fm—biotite gneiss Opc Ordovician Partridge Fm—sulfidic mica schist and subordinate amphibolite Opsa Ordovician Partridge Fm—sulfidic mica schist and subordinate amphibolite Opsa Ordovician Partridge Fm—sulfidic mica schist and abundant amphibolite Opsa Ordovician Partridge Fm—sulfidic mica schist and abundant amphibolite Opsa Ordovician Partridge Fm—sulfidic mica schist and abundant amphibolite Opso Ordovician Partridge Fm—sulfidic mica schist and abundant cale-silicate Oppo Ordovician Partridge Fm—mafic and felsic gneiss and schist Oppu Ordovician Partridge Fm—mafic and felsic gneiss, metavoleanic, minor amphibolite Oppu Ordovician Partridge Fm—mafic and felsic gneisses, metavoleanic, with cale-silicate granofels Oppu Ordovician Partridge Fm—mafic and felsic gneisses, metavoleanic, with cale-silicate granofels OZI Neoproterozoic Marboro Fm—feldspathic gneiss OZM Neoproterozoic Marboro Fm—feldspathic gneiss OZM Neoproterozoic Marboro Fm—feldspathic gneiss OZM Neoproterozoic Marboro Fm—amphibolite, biotite schist and gneiss, minor cale-silicate gneiss, and cale-silicate gneiss, and marble OZA Neoproterozoic Shawsheen Gneiss—sillimanite schist and nornblended gneiss, and cale-silicate gneiss minor amphibolite, cale-silicate gneiss a	gb	Precambrian to Paleozoic	Hornblende-olivine gabbro
Biotite grantite gneiss hg Precambrian to Paleozoic Homblende-plagioclase gneiss ligd Precambrian to Paleozoic Granodiorite of the Indian Head pluton—biotite granodiorite and homblende-biotite tonalite Jurassic Diabase dikes and sills Jurassic Silicitied flault-breccia or strongly silicified metamorphic rocks K Cretaceous Cretaceous sediments—clay, silt, sand, and gravel, mostly non-marine and near-shore mgr Precambrian to Silurian Muscovite granite Ogl Ordovician Glastonbury Gneiss—granitie gneiss Ongb Ordovician Partridge Fm —amphibolite Opau Ordovician Partridge Fm —amphibolite Opau Ordovician Partridge Fm —biotite gneiss Opbg Ordovician Partridge Fm—sulfidic mica schist and abundant amphibolite Opa Ordovician Partridge Fm—sulfidic mica schist and abundant amphibolite Opsa Ordovician Partridge Fm—sulfidic mica schist and abundant calc-silicate Opsa Ordovician Partridge Fm—sulfidic mica schist and abundant calc-silicate Opsa Ordovician Partridge Fm—mulfidic mica schist and abundant calc-silicate Opsa Ordovician Partridge Fm—mulfidic schist and abundant calc-silicate granofels Opsa Ordovician Partridge Fm—mulfidic schist and abundant calc-silicate granofels Opsa Ordovician Partridge Fm—mulfidic schist and abundant calc-silicate granofels Opsa Ordovician Partridge Fm—mulfidic schist and abundant calc-silicate granofels Opsa Ordovician Partridge Fm—mulfidic schist and geiss, metavolcanic, with calc-silicate granofels Opsa Ordovician Partridge Fm—biotite gneiss, metavolcanic, with calc-silicate granofels Opsa Ordovician Partridge Fm—biotite gneiss, metavolcanic, minor amphibolite and sulfidic schist OZI Neoproterozoic Marlboro Fm—feldspathic gneiss OZI Neop	gd	Precambrian to Paleozoic	Granodiorite
Precambrian to Paleozoic Hornblende-plagioclase gneiss Granodiorite of the Indian Head pluton—biotite granodiorite and hornblende-biotite tonalite Jurassic Diabase dikes and sills Jurassic Silicified fault-breceiu or strongly silicified metamorphic rocks K Cretaceous Cretaceous sediments—clay, silt, sand, and gravel, mostly non-marine and near-shore mgr Precambrian to Silurian Muscovite granite Ogl Ordovician Glastonbury Gneiss—granitic gneiss Ongb Ordovician Nahant Gabbro and gabbro at Salem Neck—labradorite-pyroxene gabbro, hornblende gabbro, and hornblende diorite Opa Ordovician Partridge Fm—sillimanite-feldspar augen gneiss Opbg Ordovician Partridge Fm—biotite gneiss Opc Ordovician Partridge Fm—felsic gneiss Opf Ordovician Partridge Fm—felsic gneiss, metavolcanic, and minor amphibolite Ops Ordovician Partridge Fm—sulfidic mica schist and subordinate amphibolite Ops Ordovician Partridge Fm—sulfidic mica schist and abundant amphibolite Opso Ordovician Partridge Fm—sulfidic schist and abundant cale-silicate Oppe Ordovician Partridge Fm—sulfidic schist and abundant cale-silicate Oppe Ordovician Partridge Fm—felsic gneiss, metavolcanic, with cale-silicate granofels Oppe Ordovician Partridge Fm—felsic gneiss and schist Oppe Ordovician Partridge Fm—felsic gneiss and schist Oppe Ordovician Partridge Fm—felsic gneiss and schist and pundant cale-silicate Oppe Ordovician Partridge Fm—felsic gneiss, metavolcanic, with cale-silicate granofels Oppe Ordovician Partridge Fm—felsic gneiss, metavolcanic, minor amphibolite Oppe Ordovician Partridge Fm—felsic gneiss, metavolcanic, minor amphibolite and sulfidic schist of the feldspar paragneiss intruded by potassium-feldspar- rich gneiss OZnn Neoproterozoic Marlboor Fm—feldspathic gneiss partry sulfide, amphibolite, biotite gneiss, cale- silicate gneiss, and marble OZnb Neoproterozoic Nashoba Fm—sulfilmanite schist and gneiss, felsic gneiss, and cale-silicate gneiss OZsh Neoproterozoic Shawsheen Gneiss—silimanite gneiss, sulfidic at base, minor amphibo	gr	Precambrian to Paleozoic	Granite
rigid Precambrian to Paleozoic Granodiorite of the Indian Head pluton—biotite granodiorite and hornblende-biotite tonalite Jurassic Diabase dikes and sills Jurassic Silicified fault-breecia or strongly silicified metamorphic rocks K Cretaceous Cretaceous sediments—clay, silt, sand, and gravel, mostly non-marine and near-shore mgr Precambrian to Silurian Muscovite granite Ogl Ordovician Glastonbury Gneiss—granitic gneiss Ongb Ordovician Shahart Giabbro and gabbro at Salem Neck—labradorite-pyroxene gabbro, hornblende gabbro, and hornblende diorite Opa Ordovician Partridge Fm—amphibolite Opau Ordovician Partridge Fm—sillimanite-feldspar augen gneiss Opc Ordovician Partridge Fm—felsic gneiss Opc Ordovician Partridge Fm—felsic gneiss, metavolcanic, and minor amphibolite Ops Ordovician Partridge Fm—sulfidic mica schist and abundant amphibolite Ops Ordovician Partridge Fm—sulfidic mica schist and abundant amphibolite Opse Ordovician Partridge Fm—sulfidic schist and abundant amphibolite Opse Ordovician Partridge Fm—felsic gneiss and schist Oppu Ordovician Partridge Fm—maltramafic lenses, commonly hornblendite Opvo Ordovician Partridge Fm—mafic and felsic gneisses, metavolcanic, with cale-silicate granofels Opvo Ordovician Partridge Fm—mafic and felsic gneisses, metavolcanic, with cale-silicate granofels Opvo Ordovician Partridge Fm—mafic and felsic gneisses, metavolcanic, with cale-silicate granofels Opvo Ordovician Partridge Fm—mafic and felsic gneisses, metavolcanic, with cale-silicate granofels Opvo Ordovician Partridge Fm—mafic and felsic gneisses, metavolcanic, with cale-silicate granofels Opvo Ordovician Partridge Fm—mafic and felsic gneisses, metavolcanic, with cale-silicate granofels of marboro Fm—amphibolite, biotite schist and gneiss, minor cale-silicate granofels and felsi gneiss OZm Neoproterozoic Marboro Fm—amphibolite, biotitic schist and gneiss, partly sulfide, amphibolite, biotite gneiss OZm Neoproterozoic Marboro Fm—amphibolite, biotitic schist and gneiss, felsic gneiss, and cale-silicate gneiss OZ	grg	Devonian	Biotite granitic gneiss
homblende-biotite tonalite Jurassie Diabase dikes and sills Jurassie Silicified fault-breceia or strongly silicified metamorphic rocks K Cretaceous Cretaceous sediments—clay, silt, sand, and gravel, mostly non-marine and near-shore mgr Precambrian to Silurian Muscovite granite Ogl Ordovician Glastonbury Gneiss—granitic gneiss Ongb Ordovician Nahant Gabbro and gabbro at Salem Neck—labradorite-pyroxene gabbro, homblende gabbro, and homblende diorite Opa Ordovician Partridge Fm—amphibolite Opau Ordovician Partridge Fm—biotite gneiss Opbg Ordovician Partridge Fm—biotite gneiss Opc Ordovician Partridge Fm—biotite gneiss Opf Ordovician Partridge Fm—sulfidic mica schist and subordinate amphibolite Ops Ordovician Partridge Fm—sulfidic mica schist and subordinate amphibolite Ops Ordovician Partridge Fm—sulfidic mica schist and abundant amphibolite Ops Ordovician Partridge Fm—sulfidic schist and abundant cale-silicate Opso Ordovician Partridge Fm—sulfidic schist and abundant cale-silicate Oppo Ordovician Partridge Fm—maric and felsic gneiss ordovician Opu Ordovician Partridge Fm—maric and felsic gneisses, metavolcanic, with cale-silicate granofels Opv Ordovician Partridge Fm—maric and felsic gneisses, metavolcanic, with cale-silicate granofels Opv Ordovician Partridge Fm—maric and felsic gneisses, metavolcanic, with cale-silicate granofels OZM Neoproterozoic Fish Brook Gneiss—biotite gneiss, metavolcanic, with cale-silicate granofels and felsic gneiss OZm Neoproterozoic Marlboro Fm—amphibolite, biotite schist and gneiss, minor calc-silicate granofels and felsic gneiss OZm Neoproterozoic Marlboro Fm—amphibolite, biotite schist and gneiss, partly sulfide, amphibolite, biotite gneiss OZn Neoproterozoic Nashoba Fm: Boxford Mbr—massive amphibolite, minor biotite gneiss OZn Neoproterozoic Nashoba Fm: Boxford Mbr—massive amphibolite, minor amphibolite OZt Neoproterozoic Shawsheen Gneiss—sillimanite schist, sillimanite schist and gneiss, biotitit gneiss; minor amphibolite, cale-silicate gneiss and marble	hg	Precambrian to Paleozoic	Hornblende-plagioclase gneiss
Jurassic Silicified fault-breecia or strongly silicified metamorphic rocks	igd	Precambrian to Paleozoic	* *
Residence of the content of the cont	Jd	Jurassic	Diabase dikes and sills
Precambrian to Silurian Muscovite granite Ogl Ordovician Glastonbury Gneiss—granitic gneiss Ongb Ordovician Shahant Gabbro and gabbro at Salem Neck—labradorite-pyroxene gabbro, hornblende gabbro, and hornblende diorite Opau Ordovician Partridge Fm—amphibolite Opau Ordovician Partridge Fm—biotite gneiss Opbg Ordovician Partridge Fm—biotite gneiss Opc Ordovician Partridge Fm—biotite gneiss Opf Ordovician Partridge Fm—biotite gneiss Opf Ordovician Partridge Fm—sulfidic mica schist and subordinate amphibolite Opsa Ordovician Partridge Fm—sulfidic mica schist and abundant amphibolite Opsa Ordovician Partridge Fm—sulfidic mica schist and abundant amphibolite Opsc Ordovician Partridge Fm—sulfidic mica schist and abundant cale-silicate Opsg Ordovician Partridge Fm—felsic gneiss and schist Opu Ordovician Partridge Fm—felsic gneiss, metavolcanic, with cale-silicate granofels Opv Ordovician Partridge Fm—mafic and felsic gneisses, metavolcanic, with cale-silicate granofels Opv Ordovician Partridge Fm—biotite gneiss, metavolcanic, with cale-silicate granofels OZT Neoproterozoic Fish Brook Oneiss—biotite-plagioclase quartz gneiss OZT Neoproterozoic Marlboro Fm—amphibolite, biotite feldspar paragneiss intruded by potassium-feldspartrich gneiss OZT Neoproterozoic Marlboro Fm—feldspathic gneiss OZT Neoproterozoic Nashoba Fm: Flaspathic gneiss OZT Neoproterozoic Nashoba Fm: Flox ford Mbr—massive amphibolite, innor biotite gneiss, cale-silicate gneiss, and marble OZT Neoproterozoic Shawsheen Gneiss—sillimanite schist and pneiss, felsic gneiss, and cale-silicate gneiss OZA Neoproterozoic Shawsheen Gneiss—sillimanite schist and formit gneiss, biotite gneiss, biotite gneiss, sillimanite schist and gneiss, sulfidic at base; minor amphibolite OZt Neoproterozoic Shawsheen Gneiss—sillimanite schist, sillimanite schist and gneiss, biotite gneiss; minor amphibolite	Jsi	Jurassic	Silicified fault-breccia or strongly silicified metamorphic rocks
Ogl Ordovician Glastonbury Gneiss—granitic gneiss Ongb Ordovician Nahant Gabbro and gabbro at Salem Neck—labradorite-pyroxene gabbro, hornblende gabbro, and hornblende diorite Opau Ordovician Partridge Fm—aphibolite Opau Ordovician Partridge Fm—sillimanite-feldspar augen gneiss Opbg Ordovician Partridge Fm—biotite gneiss Opc Ordovician Pauchaug Gneiss—granitic gneiss Opf Ordovician Partridge Fm—biotite gneiss Opf Ordovician Partridge Fm—sulfidic mica schist and subordinate amphibolite Opsa Ordovician Partridge Fm—sulfidic mica schist and abundant amphibolite Opsa Ordovician Partridge Fm—sulfidic schist and abundant cale-silicate Opsa Ordovician Partridge Fm—sulfidic schist and abundant cale-silicate Opsa Ordovician Partridge Fm—ultramafic lenses, commonly hornblendite Opv Ordovician Partridge Fm—ultramafic lenses, commonly hornblendite Opv Ordovician Partridge Fm—mafic and felsic gneisses, metavolcanic, with cale-silicate granofels Opvs Ordovician Partridge Fm—biotite gneiss, metavolcanic; minor amphibolite and sulfidic schist OZf Neoproterozoic Fish Brook Gneiss—biotite-plagioclase quartz gneiss OZm Neoproterozoic Marlboro Fm—amphibolite, biotite schist and gneiss, minor cale-silicate granofels and felsi granofels OZma Neoproterozoic Marlboro Fm—feldspathic gneiss OZma Neoproterozoic Marlboro Fm—feldspathic gneiss OZma Neoproterozoic Marlboro Fm—feldspathic gneiss OZma Neoproterozoic Nashoba Fm: Boxford Mbr—massive amphibolite, innor biotite gneiss, ode-silicate gneiss, and marble OZnb Neoproterozoic Nashoba Fm: Boxford Mbr—massive amphibolite, minor biotite gneiss, and cale-silicate gneiss OZd Neoproterozoic Shawsheen Gneiss—sillimanite schist, sillimanite schist and gneiss, biotite gneiss; minor amphibolite OZt Neoproterozoic Shawsheen Gneiss—sillimanite schist, sillimanite schist and gneiss, biotite gneiss; minor amphibolite	K	Cretaceous	Cretaceous sediments—clay, silt, sand, and gravel, mostly non-marine and near-shore
Ongb Ordovician Nahant Gabbro and gabbro at Salem Neck—labradorite-pyroxene gabbro, homblende gabbro, and homblende diorite Opau Ordovician Partridge Fm—amphibolite Opby Ordovician Partridge Fm—biotite gneiss Opc Ordovician Partridge Fm—biotite gneiss Opc Ordovician Partridge Fm—felsic gneiss, metavolcanic, and minor amphibolite Ops Ordovician Partridge Fm—sulfidic mica schist and subordinate amphibolite Ops Ordovician Partridge Fm—sulfidic mica schist and abundant amphibolite Opso Ordovician Partridge Fm—sulfidic mica schist and abundant amphibolite Opso Ordovician Partridge Fm—sulfidic mica schist and abundant cale-silicate Opso Ordovician Partridge Fm—sulfidic schist and abundant cale-silicate Opso Ordovician Partridge Fm—sulfidic schist and abundant cale-silicate Oppo Ordovician Partridge Fm—felsic gneiss and schist Oppo Ordovician Partridge Fm—biotite gneiss, metavolcanic, with cale-silicate granofels Opv Ordovician Partridge Fm—biotite gneiss, metavolcanic, with cale-silicate granofels Opv Ordovician Partridge Fm—biotite gneiss, metavolcanic, minor amphibolite and sulfidic schist OZf Neoproterozoic Fish Brook Gneiss—biotite-plagioclase quartz gneiss OZm Neoproterozoic Marlboro Fm—amphibolite, biotite schist and gneiss, minor cale-silicate granofels and felsi granofels OZma Neoproterozoic Massabesic Gneiss Complex—biotite feldspar paragneiss intruded by potassium-feldsparrich gneiss OZmg Neoproterozoic Nashoba Fm—sillimanite schist and gneiss, partly sulfide, amphibolite, biotite gneiss, cale-silicate gneiss, and marble OZnb Neoproterozoic Nashoba Fm: Boxford Mbr—massive amphibolite, minor biotite gneiss, cale-silicate gneiss OZq Neoproterozoic Shawsheen Gneiss—sillimanite gneiss, sulfidic at base; minor amphibolite OZt Neoproterozoic Shawsheen Gneiss—sillimanite gneiss, sulfidic at base; minor amphibolite OZt Neoproterozoic Tatnic Hill Fm—sulfidic sillimanite schist, sillimanite schist and gneiss, biotite gneiss; minor amphibolite, cale-silicate gneiss and marble	mgr	Precambrian to Silurian	Muscovite granite
gabbro, and homblende diorite Opau Ordovician Partridge Fm—amphibolite Opau Ordovician Partridge Fm—biotite gneiss Opbg Ordovician Partridge Fm—biotite gneiss Opc Ordovician Pauchaug Gneiss—granitic gneiss Opf Ordovician Partridge Fm—biotite gneiss Opf Ordovician Partridge Fm—sulfidic mica schist and subordinate amphibolite Ops Ordovician Partridge Fm—sulfidic mica schist and subordinate amphibolite Opsa Ordovician Partridge Fm—sulfidic mica schist and abundant amphibolite Opsc Ordovician Partridge Fm—sulfidic schist and abundant calc-silicate Opsg Ordovician Partridge Fm—sulfidic schist and abundant calc-silicate Opsg Ordovician Partridge Fm—ultramafic lenses, commonly hornblendite Opv Ordovician Partridge Fm—ultramafic lenses, commonly hornblendite Opv Ordovician Partridge Fm—biotite gneiss, metavolcanic, with calc-silicate granofels Opvs Ordovician Partridge Fm—biotite gneiss, metavolcanic, with calc-silicate granofels OZf Neoproterozoic Fish Brook Gneiss—biotite-plagioclase quartz gneiss OZm Neoproterozoic Marlboro Fm—amphibolite, biotite schist and gneiss, minor calc-silicate granofels and felsi granofels OZma Neoproterozoic Massabesic Gneiss Complex—biotite feldspar paragneiss intruded by potassium-feldsparrich gneiss OZm Neoproterozoic Nashoba Fm—feldspathic gneiss OZn Neoproterozoic Nashoba Fm—sillimanite schist and gneiss, partly sulfide, amphibolite, biotite gneiss, calc-silicate gneiss, and marble OZn Neoproterozoic Shawsheen Gneiss—sillimanite gneiss, sulfidic at base; minor amphibolite OZt Neoproterozoic Shawsheen Gneiss—sillimanite gneiss, sulfidic at base; minor amphibolite OZt Neoproterozoic Shawsheen Gneiss—sillimanite schist, sillimanite schist and gneiss, biotite gneiss; minor amphibolite, calc-silicate gneiss and marble	Ogl	Ordovician	Glastonbury Gneiss—granitic gneiss
Opau Ordovician Partridge Fm—sillimanite-feldspar augen gneiss Opc Ordovician Pauchaug Gneiss—granitic gneiss Opc Ordovician Pauchaug Gneiss—granitic gneiss Opf Ordovician Partridge Fm—felsic gneiss, metavolcanic, and minor amphibolite Ops Ordovician Partridge Fm—sulfidic mica schist and subordinate amphibolite Opsa Ordovician Partridge Fm—sulfidic mica schist and abundant amphibolite Opsa Ordovician Partridge Fm—sulfidic mica schist and abundant amphibolite Opsa Ordovician Partridge Fm—sulfidic mica schist and abundant calc-silicate Opsg Ordovician Partridge Fm—sulfidic schist and abundant calc-silicate Oppu Ordovician Partridge Fm—delsic gneiss and schist Opu Ordovician Partridge Fm—ultramafic lenses, commonly hornblendite Opv Ordovician Partridge Fm—mafic and felsic gneisses, metavolcanic, with calc-silicate granofels Opv Ordovician Partridge Fm—biotite gneiss, metavolcanic, with calc-silicate granofels OZf Neoproterozoic Fish Brook Gneiss—biotite-plagioclase quartz gneiss OZm Neoproterozoic Marlboro Fm—amphibolite, biotite schist and gneiss, minor calc-silicate granofels and felsi granofels OZma Neoproterozoic Marlboro Fm—amphibolite, biotite feldspar paragneiss intruded by potassium-feldsparrich gneiss OZm Neoproterozoic Marlboro Fm—feldspathic gneiss OZn Neoproterozoic Nashoba Fm: Boxford Mbr—massive amphibolite, amphibolite, biotite gneiss, calc-silicate gneiss, and marble OZnb Neoproterozoic Nashoba Fm: Boxford Mbr—massive amphibolite, minor biotite gneiss, and calc-silicate gneiss OZq Neoproterozoic Shawsheen Gneiss—sillimanite gneiss, sulfidic at base; minor amphibolite OZt Neoproterozoic Tatnic Hill Fm—sulfidic sillimanite schist, sillimanite schist and gneiss, biotite gneiss; minor amphibolite, calc-silicate gneiss and marble	Ongb	Ordovician	
Opbg Ordovician Partridge Fm—biotite gneiss Opc Ordovician Pauchaug Gneiss—granitic gneiss Opf Ordovician Partridge Fm—felsic gneiss, metavolcanic, and minor amphibolite Ops Ordovician Partridge Fm—sulfidic mica schist and subordinate amphibolite Opsa Ordovician Partridge Fm—sulfidic mica schist and abundant amphibolite Opsc Ordovician Partridge Fm—sulfidic schist and abundant amphibolite Opsg Ordovician Partridge Fm—sulfidic schist and abundant calc-silicate Opsg Ordovician Partridge Fm—felsic gneiss and schist Opu Ordovician Partridge Fm—ultramafic lenses, commonly hornblendite Opv Ordovician Partridge Fm—mafic and felsic gneisses, metavolcanic, with calc-silicate granofels Opvs Ordovician Partridge Fm—biotite gneiss, metavolcanic; minor amphibolite and sulfidic schist OZf Neoproterozoic Fish Brook Gneiss—biotite-plagioclase quartz gneiss OZm Neoproterozoic Marlboro Fm—amphibolite, biotite schist and gneiss, minor calc-silicate granofels and felsi granofels OZma Neoproterozoic Massabesic Gneiss Complex—biotite feldspar paragneiss intruded by potassium-feldsparrich gneiss OZm Neoproterozoic Marlboro Fm—feldspathic gneiss OZn Neoproterozoic Nashoba Fm—sillimanite schist and gneiss, partly sulfide, amphibolite, biotite gneiss, calc-silicate gneiss, and marble OZn Neoproterozoic Nashoba Fm: Boxford Mbr—massive amphibolite, minor biotite gneiss OZq Neoproterozoic Shawsheen Gneiss—sillimanite gneiss, sulfidic at base; minor amphibolite OZt Neoproterozoic Shawsheen Gneiss—sillimanite schist, sillimanite schist and gneiss, biotite gneiss; minor amphibolite, calc-silicate gneiss and marble	Opa	Ordovician	Partridge Fm—amphibolite
Opc Ordovician Pauchaug Gneiss—granitic gneiss Opf Ordovician Partridge Fm—felsic gneiss, metavolcanic, and minor amphibolite Ops Ordovician Partridge Fm—sulfidic mica schist and subordinate amphibolite Opsa Ordovician Partridge Fm—sulfidic mica schist and abundant amphibolite Opsc Ordovician Partridge Fm—sulfidic schist and abundant cale-silicate Opsg Ordovician Partridge Fm—sulfidic schist and abundant cale-silicate Opsg Ordovician Partridge Fm—elsic gneiss and schist Opu Ordovician Partridge Fm—ultramafic lenses, commonly hornblendite Opv Ordovician Partridge Fm—mafic and felsic gneisses, metavolcanic, with cale-silicate granofels Opvs Ordovician Partridge Fm—biotite gneiss, metavolcanic, with cale-silicate granofels OZf Neoproterozoic Fish Brook Gneiss—biotite-plagioclase quartz gneiss OZm Neoproterozoic Marlboro Fm—amphibolite, biotite schist and gneiss, minor cale-silicate granofels and felsic granofels OZma Neoproterozoic Massabesic Gneiss Complex—biotite feldspar paragneiss intruded by potassium-feldsparrich gneiss OZm Neoproterozoic Marlboro Fm—feldspathic gneiss OZn Neoproterozoic Nashoba Fm—sillimanite schist and gneiss, partly sulfide, amphibolite, biotite gneiss, cale-silicate gneiss, and marble OZn Neoproterozoic Nashoba Fm: Boxford Mbr—massive amphibolite, minor biotite gneiss OZq Neoproterozoic Shawsheen Gneiss—sillimanite gneiss, sulfidic at base; minor amphibolite OZt Neoproterozoic Shawsheen Gneiss—sillimanite schist, sillimanite schist and gneiss, biotite gneiss; minor amphibolite, cale-silicate gneiss and marble	Opau	Ordovician	Partridge Fm—sillimanite-feldspar augen gneiss
Opf Ordovician Partridge Fm—felsic gneiss, metavolcanic, and minor amphibolite Ops Ordovician Partridge Fm—sulfidic mica schist and subordinate amphibolite Opsc Ordovician Partridge Fm—sulfidic mica schist and abundant amphibolite Opsc Ordovician Partridge Fm—sulfidic schist and abundant calc-silicate Opsg Ordovician Partridge Fm—felsic gneiss and schist Opu Ordovician Partridge Fm—ultramafic lenses, commonly hornblendite Opv Ordovician Partridge Fm—mafic and felsic gneisses, metavolcanic, with calc-silicate granofels Opvs Ordovician Partridge Fm—biotite gneiss, metavolcanic; minor amphibolite and sulfidic schist OZf Neoproterozoic Fish Brook Gneiss—biotite-plagioclase quartz gneiss OZm Neoproterozoic Marlboro Fm—amphibolite, biotite schist and gneiss, minor calc-silicate granofels and felsi granofels OZma Neoproterozoic Massabesic Gneiss Complex—biotite feldspar paragneiss intruded by potassium-feldsparrich gneiss OZm Neoproterozoic Marlboro Fm—feldspathic gneiss OZn Neoproterozoic Nashoba Fm—sillimanite schist and gneiss, partly sulfide, amphibolite, biotite gneiss, calc-silicate gneiss, and marble OZnb Neoproterozoic Nashoba Fm: Boxford Mbr—massive amphibolite, minor biotite gneiss OZq Neoproterozoic Shawsheen Gneiss—sillimanite gneiss, sulfidic at base; minor amphibolite OZt Neoproterozoic Tatnic Hill Fm—sulfidic sillimanite schist, sillimanite schist and gneiss, biotite gneiss; minor amphibolite, calc-silicate gneiss and marble	Opbg	Ordovician	Partridge Fm—biotite gneiss
Ops Ordovician Partridge Fm—sulfidic mica schist and subordinate amphibolite Opsa Ordovician Partridge Fm—sulfidic mica schist and abundant amphibolite Opsc Ordovician Partridge Fm—sulfidic schist and abundant calc-silicate Opsg Ordovician Partridge Fm—felsic gneiss and schist Opu Ordovician Partridge Fm—tltramafic lenses, commonly hornblendite Opv Ordovician Partridge Fm—mafic and felsic gneisses, metavolcanic, with calc-silicate granofels Opvs Ordovician Partridge Fm—biotite gneiss, metavolcanic; minor amphibolite and sulfidic schist OZf Neoproterozoic Fish Brook Gneiss—biotite-plagioclase quartz gneiss OZm Neoproterozoic Marlboro Fm—amphibolite, biotite schist and gneiss, minor calc-silicate granofels and felsi granofels OZma Neoproterozoic Massabesic Gneiss Complex—biotite feldspar paragneiss intruded by potassium-feldsparrich gneiss OZm Neoproterozoic Marlboro Fm—feldspathic gneiss OZm Neoproterozoic Nashoba Fm—sillimanite schist and gneiss, partly sulfide, amphibolite, biotite gneiss, calc-silicate gneiss, and marble OZnb Neoproterozoic Nashoba Fm: Boxford Mbr—massive amphibolite, minor biotite gneiss OZq Neoproterozoic Shawsheen Gneiss—sillimanite gneiss, sulfidic at base; minor amphibolite OZt Neoproterozoic Tatnic Hill Fm—sulfidic sillimanite schist, sillimanite schist and gneiss, biotite gneiss; minor amphibolite, calc-silicate gneiss and marble	Opc	Ordovician	Pauchaug Gneiss—granitic gneiss
Opsa Ordovician Partridge Fm—sulfidic mica schist and abundant amphibolite Opsc Ordovician Partridge Fm—sulfidic schist and abundant calc-silicate Opsg Ordovician Partridge Fm—felsic gneiss and schist Opu Ordovician Partridge Fm—ultramafic lenses, commonly hornblendite Opv Ordovician Partridge Fm—mafic and felsic gneisses, metavolcanic, with calc-silicate granofels Opvs Ordovician Partridge Fm—biotite gneiss, metavolcanic; minor amphibolite and sulfidic schist OZf Neoproterozoic Fish Brook Gneiss—biotite-plagioclase quartz gneiss OZm Neoproterozoic Marlboro Fm—amphibolite, biotite schist and gneiss, minor calc-silicate granofels and felsi granofels OZma Neoproterozoic Massabesic Gneiss Complex—biotite feldspar paragneiss intruded by potassium-feldsparrich gneiss OZmg Neoproterozoic Marlboro Fm—feldspathic gneiss OZn Neoproterozoic Nashoba Fm—sillimanite schist and gneiss, partly sulfide, amphibolite, biotite gneiss, calc-silicate gneiss, and marble OZnb Neoproterozoic Nashoba Fm: Boxford Mbr—massive amphibolite, minor biotite gneiss OZq Neoproterozoic Quinebaug Fm—amphibolite, biotite, and hornblende gneiss, felsic gneiss, and calc-silicate gneiss OZsh Neoproterozoic Shawsheen Gneiss—sillimanite gneiss, sulfidic at base; minor amphibolite OZt Neoproterozoic Tatnic Hill Fm—sulfidic sillimanite schist, sillimanite schist and gneiss, biotite gneiss; minor amphibolite, calc-silicate gneiss and marble	Opf	Ordovician	Partridge Fm—felsic gneiss, metavolcanic, and minor amphibolite
Opse Ordovician Partridge Fm—sulfidic schist and abundant calc-silicate Opse Ordovician Partridge Fm—felsic gneiss and schist Opu Ordovician Partridge Fm—ultramafic lenses, commonly hornblendite Opv Ordovician Partridge Fm—mafic and felsic gneisses, metavolcanic, with calc-silicate granofels Opvs Ordovician Partridge Fm—biotite gneiss, metavolcanic; minor amphibolite and sulfidic schist OZf Neoproterozoic Fish Brook Gneiss—biotite-plagioclase quartz gneiss OZm Neoproterozoic Marlboro Fm—amphibolite, biotite schist and gneiss, minor calc-silicate granofels and felsi granofels OZma Neoproterozoic Massabesic Gneiss Complex—biotite feldspar paragneiss intruded by potassium-feldsparrich gneiss OZmg Neoproterozoic Marlboro Fm—feldspathic gneiss OZn Neoproterozoic Nashoba Fm—sillimanite schist and gneiss, partly sulfide, amphibolite, biotite gneiss, calc-silicate gneiss, and marble OZnb Neoproterozoic Nashoba Fm: Boxford Mbr—massive amphibolite, minor biotite gneiss OZq Neoproterozoic Quinebaug Fm—amphibolite, biotite, and hornblende gneiss, felsic gneiss, and calc-silicate gneiss OZsh Neoproterozoic Shawsheen Gneiss—sillimanite gneiss, sulfidic at base; minor amphibolite OZt Neoproterozoic Tatnic Hill Fm—sulfidic sillimanite schist, sillimanite schist and gneiss, biotite gneiss; minor amphibolite, calc-silicate gneiss and marble	Ops	Ordovician	Partridge Fm—sulfidic mica schist and subordinate amphibolite
Opsg Ordovician Partridge Fm—felsic gneiss and schist Opu Ordovician Partridge Fm—ultramafic lenses, commonly hornblendite Opv Ordovician Partridge Fm—ultramafic lenses, commonly hornblendite Opv Ordovician Partridge Fm—biotite gneiss, metavolcanic, with calc-silicate granofels Opvs Ordovician Partridge Fm—biotite gneiss, metavolcanic, minor amphibolite and sulfidic schist OZf Neoproterozoic Fish Brook Gneiss—biotite-plagioclase quartz gneiss OZm Neoproterozoic Marlboro Fm—amphibolite, biotite schist and gneiss, minor calc-silicate granofels and felsi granofels OZma Neoproterozoic Massabesic Gneiss Complex—biotite feldspar paragneiss intruded by potassium-feldsparrich gneiss OZn Neoproterozoic Marlboro Fm—feldspathic gneiss OZn Neoproterozoic Nashoba Fm—sillimanite schist and gneiss, partly sulfide, amphibolite, biotite gneiss, calc-silicate gneiss, and marble OZnb Neoproterozoic Nashoba Fm: Boxford Mbr—massive amphibolite, minor biotite gneiss OZq Neoproterozoic Quinebaug Fm—amphibolite, biotite, and hornblende gneiss, felsic gneiss, and calc-silicate gneiss OZsh Neoproterozoic Shawsheen Gneiss—sillimanite gneiss, sulfidic at base; minor amphibolite OZt Neoproterozoic Tatnic Hill Fm—sulfidic sillimanite schist, sillimanite schist and gneiss, biotite gneiss; minor amphibolite, calc-silicate gneiss and marble	Opsa	Ordovician	Partridge Fm—sulfidic mica schist and abundant amphibolite
Opu Ordovician Partridge Fm—ultramafic lenses, commonly hornblendite Opv Ordovician Partridge Fm—mafic and felsic gneisses, metavolcanic, with calc-silicate granofels Opvs Ordovician Partridge Fm—biotite gneiss, metavolcanic; minor amphibolite and sulfidic schist OZf Neoproterozoic Fish Brook Gneiss—biotite-plagioclase quartz gneiss OZm Neoproterozoic Marlboro Fm—amphibolite, biotite schist and gneiss, minor calc-silicate granofels and felsi granofels OZma Neoproterozoic Massabesic Gneiss Complex—biotite feldspar paragneiss intruded by potassium-feldsparrich gneiss OZm Neoproterozoic Marlboro Fm—feldspathic gneiss OZn Neoproterozoic Nashoba Fm—sillimanite schist and gneiss, partly sulfide, amphibolite, biotite gneiss, calc-silicate gneiss, and marble OZnb Neoproterozoic Nashoba Fm: Boxford Mbr—massive amphibolite, minor biotite gneiss OZq Neoproterozoic Quinebaug Fm—amphibolite, biotite, and hornblende gneiss, felsic gneiss, and calc-silicate gneiss OZsh Neoproterozoic Shawsheen Gneiss—sillimanite gneiss, sulfidic at base; minor amphibolite OZt Neoproterozoic Shawsheen Gneiss—sillimanite schist, sillimanite schist and gneiss, biotite gneiss; minor amphibolite, calc-silicate gneiss and marble	Opsc	Ordovician	Partridge Fm—sulfidic schist and abundant calc-silicate
Opv Ordovician Partridge Fm—mafic and felsic gneisses, metavolcanic, with calc-silicate granofels Opvs Ordovician Partridge Fm—biotite gneiss, metavolcanic; minor amphibolite and sulfidic schist OZf Neoproterozoic Fish Brook Gneiss—biotite-plagioclase quartz gneiss OZm Neoproterozoic Marlboro Fm—amphibolite, biotite schist and gneiss, minor calc-silicate granofels and felsi granofels OZma Neoproterozoic Massabesic Gneiss Complex—biotite feldspar paragneiss intruded by potassium-feldsparrich gneiss OZmg Neoproterozoic Marlboro Fm—feldspathic gneiss OZn Neoproterozoic Nashoba Fm—sillimanite schist and gneiss, partly sulfide, amphibolite, biotite gneiss, calc-silicate gneiss, and marble OZnb Neoproterozoic Nashoba Fm: Boxford Mbr—massive amphibolite, minor biotite gneiss OZq Neoproterozoic Quinebaug Fm—amphibolite, biotite, and hornblende gneiss, felsic gneiss, and calc-silicate gneiss OZsh Neoproterozoic Shawsheen Gneiss—sillimanite gneiss, sulfidic at base; minor amphibolite OZt Neoproterozoic Tatnic Hill Fm—sulfidic sillimanite schist, sillimanite schist and gneiss, biotite gneiss; minor amphibolite, calc-silicate gneiss and marble	Opsg	Ordovician	Partridge Fm—felsic gneiss and schist
Opvs Ordovician Partridge Fm—biotite gneiss, metavolcanic; minor amphibolite and sulfidic schist OZf Neoproterozoic Fish Brook Gneiss—biotite-plagioclase quartz gneiss OZm Neoproterozoic Marlboro Fm—amphibolite, biotite schist and gneiss, minor calc-silicate granofels and felsi granofels OZma Neoproterozoic Massabesic Gneiss Complex—biotite feldspar paragneiss intruded by potassium-feldsparrich gneiss OZmg Neoproterozoic Marlboro Fm—feldspathic gneiss OZn Neoproterozoic Nashoba Fm—sillimanite schist and gneiss, partly sulfide, amphibolite, biotite gneiss, calc-silicate gneiss, and marble OZnb Neoproterozoic Nashoba Fm: Boxford Mbr—massive amphibolite, minor biotite gneiss OZq Neoproterozoic Quinebaug Fm—amphibolite, biotite, and hornblende gneiss, felsic gneiss, and calc-silicate gneiss OZsh Neoproterozoic Shawsheen Gneiss—sillimanite gneiss, sulfidic at base; minor amphibolite OZt Neoproterozoic Tatnic Hill Fm—sulfidic sillimanite schist, sillimanite schist and gneiss, biotite gneiss; minor amphibolite, calc-silicate gneiss and marble	Opu	Ordovician	Partridge Fm—ultramafic lenses, commonly hornblendite
OZm Neoproterozoic Fish Brook Gneiss—biotite-plagioclase quartz gneiss OZm Neoproterozoic Marlboro Fm—amphibolite, biotite schist and gneiss, minor calc-silicate granofels and felsi granofels OZma Neoproterozoic Massabesic Gneiss Complex—biotite feldspar paragneiss intruded by potassium-feldsparrich gneiss OZmg Neoproterozoic Marlboro Fm—feldspathic gneiss OZn Neoproterozoic Nashoba Fm—sillimanite schist and gneiss, partly sulfide, amphibolite, biotite gneiss, calc-silicate gneiss, and marble OZnb Neoproterozoic Nashoba Fm: Boxford Mbr—massive amphibolite, minor biotite gneiss OZq Neoproterozoic Quinebaug Fm—amphibolite, biotite, and hornblende gneiss, felsic gneiss, and calc-silicate gneiss OZsh Neoproterozoic Shawsheen Gneiss—sillimanite gneiss, sulfidic at base; minor amphibolite OZt Neoproterozoic Tatnic Hill Fm—sulfidic sillimanite schist, sillimanite schist and gneiss, biotite gneiss; minor amphibolite, calc-silicate gneiss and marble	Opv	Ordovician	Partridge Fm—mafic and felsic gneisses, metavolcanic, with calc-silicate granofels
OZma Neoproterozoic Marlboro Fm—amphibolite, biotite schist and gneiss, minor calc-silicate granofels and felsi granofels OZma Neoproterozoic Massabesic Gneiss Complex—biotite feldspar paragneiss intruded by potassium-feldsparrich gneiss OZmg Neoproterozoic Marlboro Fm—feldspathic gneiss OZn Neoproterozoic Nashoba Fm—sillimanite schist and gneiss, partly sulfide, amphibolite, biotite gneiss, calc-silicate gneiss, and marble OZnb Neoproterozoic Nashoba Fm: Boxford Mbr—massive amphibolite, minor biotite gneiss OZq Neoproterozoic Quinebaug Fm—amphibolite, biotite, and hornblende gneiss, felsic gneiss, and calc-silicate gneiss OZsh Neoproterozoic Shawsheen Gneiss—sillimanite gneiss, sulfidic at base; minor amphibolite OZt Neoproterozoic Tatnic Hill Fm—sulfidic sillimanite schist, sillimanite schist and gneiss, biotite gneiss; minor amphibolite, calc-silicate gneiss and marble	Opvs	Ordovician	Partridge Fm—biotite gneiss, metavolcanic; minor amphibolite and sulfidic schist
OZma Neoproterozoic Massabesic Gneiss Complex—biotite feldspar paragneiss intruded by potassium-feldsparrich gneiss OZmg Neoproterozoic Marlboro Fm—feldspathic gneiss OZn Neoproterozoic Nashoba Fm—sillimanite schist and gneiss, partly sulfide, amphibolite, biotite gneiss, calcsilicate gneiss, and marble OZnb Neoproterozoic Nashoba Fm: Boxford Mbr—massive amphibolite, minor biotite gneiss OZq Neoproterozoic Quinebaug Fm—amphibolite, biotite, and hornblende gneiss, felsic gneiss, and calc-silicate gneiss OZsh Neoproterozoic Shawsheen Gneiss—sillimanite gneiss, sulfidic at base; minor amphibolite OZt Neoproterozoic Tatnic Hill Fm—sulfidic sillimanite schist, sillimanite schist and gneiss, biotite gneiss; minor amphibolite, calc-silicate gneiss and marble	OZf	Neoproterozoic	Fish Brook Gneiss—biotite-plagioclase quartz gneiss
rich gneiss OZmg Neoproterozoic Marlboro Fm—feldspathic gneiss OZn Neoproterozoic Nashoba Fm—sillimanite schist and gneiss, partly sulfide, amphibolite, biotite gneiss, calesilicate gneiss, and marble OZnb Neoproterozoic Nashoba Fm: Boxford Mbr—massive amphibolite, minor biotite gneiss OZq Neoproterozoic Quinebaug Fm—amphibolite, biotite, and hornblende gneiss, felsic gneiss, and cale-silicate gneiss OZsh Neoproterozoic Shawsheen Gneiss—sillimanite gneiss, sulfidic at base; minor amphibolite OZt Neoproterozoic Tatnic Hill Fm—sulfidic sillimanite schist, sillimanite schist and gneiss, biotite gneiss; minor amphibolite, cale-silicate gneiss and marble	OZm	Neoproterozoic	Marlboro Fm—amphibolite, biotite schist and gneiss, minor calc-silicate granofels and felsic granofels
OZn Neoproterozoic Nashoba Fm—sillimanite schist and gneiss, partly sulfide, amphibolite, biotite gneiss, cale- silicate gneiss, and marble OZnb Neoproterozoic Nashoba Fm: Boxford Mbr—massive amphibolite, minor biotite gneiss OZq Neoproterozoic Quinebaug Fm—amphibolite, biotite, and hornblende gneiss, felsic gneiss, and cale-silicate gneiss OZsh Neoproterozoic Shawsheen Gneiss—sillimanite gneiss, sulfidic at base; minor amphibolite OZt Neoproterozoic Tatnic Hill Fm—sulfidic sillimanite schist, sillimanite schist and gneiss, biotite gneiss; minor amphibolite, cale-silicate gneiss and marble	OZma	Neoproterozoic	
silicate gneiss, and marble OZnb Neoproterozoic Nashoba Fm: Boxford Mbr—massive amphibolite, minor biotite gneiss OZq Neoproterozoic Quinebaug Fm—amphibolite, biotite, and hornblende gneiss, felsic gneiss, and calc-silicate gneiss OZsh Neoproterozoic Shawsheen Gneiss—sillimanite gneiss, sulfidic at base; minor amphibolite OZt Neoproterozoic Tatnic Hill Fm—sulfidic sillimanite schist, sillimanite schist and gneiss, biotite gneiss; minor amphibolite, calc-silicate gneiss and marble	OZmg	Neoproterozoic	Marlboro Fm—feldspathic gneiss
OZq Neoproterozoic Quinebaug Fm—amphibolite, biotite, and hornblende gneiss, felsic gneiss, and calc-silicate gneiss OZsh Neoproterozoic Shawsheen Gneiss—sillimanite gneiss, sulfidic at base; minor amphibolite OZt Neoproterozoic Tatnic Hill Fm—sulfidic sillimanite schist, sillimanite schist and gneiss, biotite gneiss; minor amphibolite, calc-silicate gneiss and marble	OZn	Neoproterozoic	Nashoba Fm—sillimanite schist and gneiss, partly sulfide, amphibolite, biotite gneiss, calc-silicate gneiss, and marble
OZsh Neoproterozoic Shawsheen Gneiss—sillimanite gneiss, sulfidic at base; minor amphibolite OZt Neoproterozoic Tatnic Hill Fm—sulfidic sillimanite schist, sillimanite schist and gneiss, biotite gneiss; minor amphibolite, calc-silicate gneiss and marble	OZnb	Neoproterozoic	Nashoba Fm: Boxford Mbr—massive amphibolite, minor biotite gneiss
OZt Neoproterozoic Tatnic Hill Fm—sulfidic sillimanite schist, sillimanite schist and gneiss, biotite gneiss; minor amphibolite, calc-silicate gneiss and marble	OZq	Neoproterozoic	Quinebaug Fm—amphibolite, biotite, and hornblende gneiss, felsic gneiss, and calc-silicate gneiss
minor amphibolite, calc-silicate gneiss and marble	OZsh	Neoproterozoic	Shawsheen Gneiss—sillimanite gneiss, sulfidic at base; minor amphibolite
OZtf Neoproterozoic Tatnic Hill Fm: Fly Pond Mbr—calc-silicate gneiss and marble	OZt	Neoproterozoic	
The same state of the same sta	OZtf	Neoproterozoic	Tatnic Hill Fm: Fly Pond Mbr—calc-silicate gneiss and marble

Appendix 1. Abbreviations and descriptions for bedrock units in and adjacent to the study area. —Continued

Bedrock unit abbreviation	Age	Bedrock unit descriptions
OZty	Neoproterozoic	Tatnic Hill Fm: Yantic Mbr—grey mica schist
Pcm	Pennsylvanian	Coal Mine Brook Fm—carbonaceous slate and garnet phyllite; lens of meta-anthracite; conglomerate and arkose
Pd	Pennsylvanian	Dighton Conglomerate—coarse conglomerate having sandy matrix; minor sandstone
Pgr	Pennsylvanian	Biotite granite, with magnetite-bearing pegmatite
Ph	Pennsylvanian	Harvard Conglomerate—conglomerate and chloritoid-hematite phyllite
Pp	Pennsylvanian	Pondville Conglomerate—quartz conglomerate having abundant sandy matrix; boulder conglomerate; arkose
Pr	Pennsylvanian	Rhode Island Fm—sandstone, graywacke, shale, and conglomerate; minor beds of meta-antracite
Prc	Pennsylvanian	Rhode Island Fm—conglomerate, sandstone, and graywacke
Pw	Pennsylvanian	Wamsutta Fm—red to pink conglomerate, graywacke, sandstone, and shale
Pwv	Pennsylvanian	Wamsutta Fm—rhyolite and mafic volcanic rocks
PZb	Unknown age	Bellingham Conglomerate—red and gray metamorphosed conglomerate, sandstone, graywacke, and shale
PzZc	Proterozoic Z to earliest Paleozoic	Cambridge Argillite—gray argillite and minor quartzite; rare sandstone and conglomerate
PzZr	Proterozoic Z to earliest Paleozoic	Roxbury Conglomerate—conglomerate, sandstone, siltstone, argillite, and melaphyre
PzZrb	Proterozoic Z to earliest Paleozoic	Roxbury Conglomerate—melaphyre
q	Unknown age	Massive quartz and silicified rock
qd	Precambrian to Phanerozoic	Quartz diorite
Sacgr	Silurian	Ayer Granite—Clinton facies, porphyritic biotite granite
Sagr	Silurian	Ayer Granite—granite to tonalite
Sb	Silurian	Berwick Fm—metamorphosed calcareous sandstone, silstone, and minor muscovite schist (1 polygon)
Sb	Silurian	Berwick Fm—metamorphosed calcareous sandstone, silstone, and minor muscovite schist
Sbs	Silurian	Berwick Fm—mica schist
Se	Silurian	Eliot Fm—phyllite and calcareous phyllite
Sfs	Silurian	Fitch Fm—sulfidic calc-silicate and minor sulfidic schist
Sfss	Silurian	Fitch Fm—sulfidic mica schist
Sgr	Silurian	Rusty-weathering biotite granite to granodiorite
Sngr	Silurian	Newburyport Complex—porphyritic granite with microcline phenocrysts
So	Silurian	Oakdale Fm—metamorphosed pelitic and calcareous siltsone and muscovite schist
SOad	Silurian	Ayer Granite—Devens-Long Pond facies, porphyritic gneissic biotite granite and granodiorite
SOagr	Silurian	Andover Granite—muscovite-biotite granite
SObgr	Silurian	Blue Hill Granite Porphyry—microperthite-quartz porphyry
SObo	Silurian	Boylston Schist—carbonaceous phyllite and schist, locally sulfidic; quartzite; calc-silicate beds
SOcb	Silurian	Cape Ann Complex: Beverly Syenite
SOcgr	Silurian	Cape Ann Complex—alkalic granite to quartz syenite containing ferro-hornblende
SOcsm	Silurian	Cape Ann Complex: Squam Granite—monzodiorite
SOk	Silurian	Kittery Fm—quartzite, partly calcareous; phyllite, schist

Appendix 1. Abbreviations and descriptions for bedrock units in and adjacent to the study area. —Continued

[Fm, formation; Mbr, member; bedrock unit abbreviations and descriptions are from Zen and others, 1983]

Bedrock unit abbreviation	Age	Bedrock unit descriptions
SOngd	Silurian	Newburyport Complex—tonalite and granodiorite
SOqgr	Silurian	Quincy Granite—alkalic granite containing riebeckite and aegirine
SOrh	Silurian	Reubens Hill Fm—amphibolite, hornblende-chlorite schist, and feldspathic schist; includes metamorphosed diorite
SOvh	Silurian	Vaughn Hills Quartzite—quartzite, phyllite, conglomerate, and chlorite schist
Sp	Silurian	Paxton Fm—biotite granofels, calc-silicate granofels, and sulfidic schist
Spa	Silurian	Paxton Fm—amphibolite
Spbc	Silurian	Paxton Fm—diopside calc-silicate granofels
Spbs	Silurian	Paxton Fm: Bigelow Brook Mbr—biotite granofels, sulfidic schist, and minor calc-silicate granofels
Spqr	Silurian	Paxton Fm—rusty-weathering sulfidic quartzite and sulfidic schist
Spso	Silurian	Paxton Fm: Southbridge Mbr—biotite granofels and calc-silicate granofels
Spsq	Silurian	Paxton Fm—sulfidic magnesian biotite and magnesian cordierite schist and sillimanite quartzite
Spss	Silurian	Paxton Fm—sulfidic mica schist
Ssaqd	Silurian	Straw Hollow Diorite and Assabet Quartz Diorite, undifferentiated—biotite-hornblende diorite and quartz diorite
Ssqd	Silurian	Sharpners Pond Diorite—biotite-hornblende tonalite and diorite
St	Silurian	Tower Hill Quartzite—quartzite and phyllite
Sts	Silurian	Tower Hill Quartzite—gray phyllite
SZtb	Silurian	Tadmuck Brook Schist—andalusite phyllite and sillimanite schist, partly sulfidic; local quartzite
T	Tertiary	Tertiary sediments—unconsolidated sand, silt, and clay in discontinuous patches
TRe	Triassic	Red arkosic conglomerate, sandstone, and siltstone
u	Precambrian to Phanerozoic	Serpentinite
Zagr	Neoproterozoic	Alaskite—mafic-poor gneissic granite, commonly containing muscovite
Zb	Proterozoic Z	Blackstone Group—undivided, quartzite, schist, phyllite, marble, and metavolcanic rocks
Zbq	Proterozoic Z	Blackstone Group: Quinnville Quartzite
Zbs	Proterozoic Z	Blackstone Group—mica schist and phyllite
Zbv	Proterozoic Z	Blackstone Group—greenstone and amphibolite
Zdgr	Proterozoic Z	Dedham Granite—granite; includes dioritic rock
Zdi	Proterozoic Z	Diorite—hornblende diorite metamorhosed in part to amphibolite and hornblende gneiss
Zdigb	Proterozoic Z	Diorite and gabbro—complex of diorite and gabbro, sub. metavolcanic rocks and intrusive granite and granodiorite
Zdngr	Proterozoic Z	Dedham Granite—granite to granodiorite
Zegr	Proterozoic Z	Esmond Granite—biotite granite
Zfgr	Proterozoic Z	Granite of the Fall River pluton—biotite granite, in part mafic poor
Zfm	Proterozoic Z	Felsic and mafic volcanic rocks
Zgb	Proterozoic Z	Gabbro—hornblende gabbro and hornblende-pyroxene gabbro metamorphosed in part to hornblende gneiss and amphibolite
Zgg	Proterozoic Z	Granite, gneiss, and schist, undivided—plutonic and metamorphic rocks
Zgmgd	Proterozoic Z	Grant Mills Granodiorite—porphyritic granodiorite

Appendix 1. Abbreviations and descriptions for bedrock units in and adjacent to the study area. —Continued

[Fm, formation; Mbr, member; bedrock unit abbreviations and descriptions are from Zen and others, 1983]

Bedrock unit abbreviation	Age	Bedrock unit descriptions
Zgn	Proterozoic Z	Biotite gneiss near New Bedford—feldspathic gneiss
Zgr	Proterozoic Z	Biotite granite
Zgs	Proterozoic Z	Gneiss and schist near New Bedford-hornblende and biotite schist and gneiss, amphibolite
Zhg	Proterozoic Z	Hope Valley Alaskite Gneiss—mafic-poor gneissic granite, locally containing muscovite
Zm	Proterozoic Z	Mattapan Volcanic Complex—rhyolite, melaphyre, agglomerate, and tuff
Zmgd	Proterozoic Z	Milford Granite—seriate to subporphyritic granite to granodiorite, locally gneissic
Zmgr	Proterozoic Z	Milford Granite—biotite granite, locally gneissic
Zp	Proterozoic Z	Plainfield Fm—quartzite, pelitic schist, minor calc-silicate rock and amphibolite
Zpg	Proterozoic Z	Ponaganset Gneiss—gneissic biotite granite containing megacrysts of microcline
Zpgr	Proterozoic Z	Porphyritic granite—seriate to porphyritic biotite granite with epidote and sphene and mafic inclusions
Zrdi	Proterozoic Z	Diorite at Rowley—hornblende diorite
Zsg	Proterozoic Z	Scituate Granite Gneiss—gneissic granite containing biotite
Zssy	Proterozoic Z	Sharon Syenite—syenite containing microperthite, oligoclase, and clinopyroxene, mixed with ferro-gabbro
Ztgd	Proterozoic Z	Topsfield Granodiorite—porphyritic granodiorite
Zv	Proterozoic Z	Metamorphosed mafic to felsic flow, and volcaniclastic and hypabyssal intrusive rocks
Zvf	Proterozoic Z	Metamorphosed felsic metavolcanic rocks
Zw	Proterozoic Z	Westboro Fm—quartzite, schist, calc-silicate quartzite, and amphibolite
Zwgr	Proterozoic Z	Westwood Granite

42

Appendix 2. Letter to Potential Participants in the Study

Appendix 2. Letter to potential participants in the study.

OMB Control Number 1028-0086

USGS Study on Arsenic and Uranium in Bedrock Wells of East Central Massachusetts

Dear Resident Well User:

The U.S. Geological Survey (USGS) and the Massachusetts Department of Environmental Protection (MDEP) are conducting a study of drinking water to assess the extent of possible elevated concentrations of naturally occurring arsenic and uranium in bedrock aquifers that provide drinking water in east central Massachusetts. The well at your address has been chosen by a random selection process to be included in the study.

The study, conducted by John Colman, U.S. Geological Survey (508 490 5027), will indicate relationships between arsenic and uranium concentrations and type of bedrock in which a well is drilled. This information will help guide future water-supply development, well-water testing, and estimates of total numbers of wells affected.

Your participation is completely voluntary, and results from your well will be kept completely confidential (by Exemption 9, well data is not subject to the Freedom of Information Act) and will only be used for the purpose of this study.

We will report results to you with information about health effects of drinking water greater than standards and ways to decrease concentrations. If you have any questions, please do not hesitate to contact the project leader John Colman at: (508) 490 5027.

Questionnaires will be mailed to a small number of the selected well addresses by the Massachusetts Department of Public Health (MDPH). The MDPH questionnaire offers a second program of biomonitoring for some participants concerned about uranium and arsenic effects on health. Participation in the MDPH program is also voluntary and is not required for well testing by USGS.

In Parts 1 and 3 of the survey we want to know a little about your water and where it comes from. In Part 2, there are instructions about how to collect a water sample. When you are done, please use the enclosed business reply envelope to mail your survey and water samples back to the USGS. Please mail in the bottles and survey soon, if possible within 2 weeks. If it goes longer, however, we are still interested.

PART 1 - Water Sources and Supplies

The majority of residential water supply wells in east-central Massachusetts are private wells that tap ground water aquifers in fractured bedrock formations. In the first part of this study, we would like to ask you a few questions about your water source and supply.

1.	Is your home supplied with water from a private (bedrock) well?
	☐ Yes (go to question 2)
	☐ No. My house supply is town water or another source other than bedrock well.
	Please STOP here. You do not have to mail back bottles or a water sample.

Appendix 2. Letter to potential participants in the study.—Continued

2.	ls y	our well water treated?		
		Yes		
		What is the treatment?		
		No		
	How useh		nis q	uestion is to determine the amount of water use in your
		People live in this household .		
4. [Оо ус	ou use your well water for drinking water a	and/	or cooking?
		Yes		
		No, because of water quality issues (Sele	ect a	all that apply):
		Arsenic		Uranium
] Iron		Sediment
] Manganese		Taste
		Other		

Part 2 - Water Sampling Instructions

Although collecting a water sample is a relatively simple task, there are several steps that must be taken to ensure accurate results. Please follow the instructions in steps 1-6 below to complete the next section of the survey.

Sampling Objective

The objective is to get a water sample that represents the water in the bedrock aquifer as closely as possible, so please select a tap that does not have treatment. Both bottles should be filled from the same faucet, one that does not have a water treatment system. Sample bottle screw threads and cap should not be contaminated with dirt from hands or the tap.

Once the bottles are filled, please mail the samples and questionnaire in the enclosed, prepaid business reply envelope.

Appendix 2. Letter to potential participants in the study.—Continued

Instructions

- 1. Collect your water sample in the sample containers provided by the USGS. Samples collected in any other container will not meet lab standards and cannot be processed.
- 2. Choose a location to sample your water. If you do not have any water treatment devices, such as a water softener or a reverse osmosis filter, take the sample from a cold water tap where you get your drinking water. If you do have treatment devices on your water system, (other than a whole-house filter for sediment) please locate a faucet which is attached to the water line before the treatment system.
- 3. Please avoid contamination of your samples, and do not touch the inside of the bottle or cap.
- 4. **Turn on the cold water and let it run for 1 minute** to flush the water out of the pipes. Turn the faucet down to a pencil size stream of water and fill the sample container.
- 5. Place the bottles and your completed survey in the enclosed postage-paid, business-reply envelope.
- 6. Mail the envelope to the USGS.

PART 3 - Location and Time of Water Sample

Please tell us	where and when you collected the water for this sample.
☐ Base	ment Faucet
☐ Outs	ide Spigot
☐ Bathı	room Faucet
☐ Kitch	en Faucet
☐ Othe	r
Date and time	e of sampling
	e to conduct follow-up sampling with a visit to a small number of participants. Would you be willing to the follow-up visit?
	Yes, I would like to participate in a follow-up visit.
	Please contact me by phone:
	Or by email:
	No, I would not like to participate in a follow-up visit.

We would like to thank you for taking the time to participate in this important study.

PAPERWORK REDUCTION ACT STATEMENT: The Paperwork Reduction Act of 1995 (44 U.S.C. 3501 et. seq.) requires us to inform you that this information is being collected to inform a study on arsenic and uranium in bedrock wells of east central Massachusetts. The estimated burden for this collection of information is estimated to average 20 minutes per response, including the time for reviewing instructions, answering questions, collecting water samples. The response to this request is voluntary. An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB Control Number. Comments regarding the burden estimate or any other aspect of this collection of information should be directed to: John Colman at (508) 490 5027

Appendix 3. Probability of Arsenic Exceeding a Given Concentration by Bedrock Unit

Appendix 3. Probability of arsenic exceeding a given concentration, by bedrock unit.

	Grouped	bedrock units	s with	Bedrock unit abbreviation						
Arsenic,		rsenic conce			Ops*			0Zf		
in micro- grams per liter	Probability of concentration being greater than concentration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concentra- tion listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concentration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	
1	0.66442	0.60023	0.72414	0.03526	0.00377	0.17241	0.55522	0.27338	0.81066	
2	0.52993	0.46620	0.59290	0.01398	0.00108	0.09179	0.36942	0.15070	0.64306	
3	0.44855	0.38670	0.51167	0.00764	0.00049	0.06006	0.27105	0.09073	0.54658	
4	0.39190	0.33202	0.45446	0.00484	0.00027	0.04334	0.21023	0.05795	0.48441	
5	0.34942	0.29143	0.41117	0.00334	0.00017	0.03316	0.16912	0.03875	0.44042	
6	0.31604	0.25983	0.37687	0.00244	0.00011	0.02639	0.13965	0.02687	0.40719	
7	0.28893	0.23440	0.34879	0.00186	0.00008	0.02161	0.11763	0.01919	0.38091	
8	0.26637	0.21342	0.32525	0.00146	0.00006	0.01809	0.10064	0.01406	0.35941	
9	0.24723	0.19578	0.30515	0.00117	0.00004	0.01540	0.08721	0.01051	0.34138	
10	0.23076	0.18073	0.28772	0.00096	0.00003	0.01329	0.07637	0.00801	0.32594	
11	0.21641	0.16771	0.27242	0.00080	0.00003	0.01161	0.06748	0.00619	0.31252	
12	0.20376	0.15633	0.25886	0.00068	0.00002	0.01024	0.06008	0.00486	0.30069	
13	0.19253	0.14630	0.24673	0.00058	0.00002	0.00910	0.05384	0.00386	0.29017	
14	0.18247	0.13739	0.23581	0.00050	0.00001	0.00815	0.04854	0.00310	0.28071	
15	0.17341	0.12942	0.22590	0.00043	0.00001	0.00735	0.04399	0.00251	0.27214	
16	0.16520	0.12225	0.21687	0.00038	0.00001	0.00666	0.04005	0.00205	0.26434	
17	0.15772	0.11576	0.20860	0.00034	0.00001	0.00607	0.03661	0.00169	0.25718	
18	0.15088	0.10986	0.20098	0.00030	0.00001	0.00555	0.03360	0.00140	0.25058	
19	0.14459	0.10448	0.19395	0.00027	0.00001	0.00510	0.03094	0.00117	0.24447	
20	0.13878	0.09954	0.18742	0.00024	0.00001	0.00470	0.02857	0.00099	0.23879	
21	0.13341	0.09501	0.18135	0.00022	0.00001	0.00435	0.02647	0.00084	0.23349	
22	0.12843	0.09082	0.17568	0.00020	0.00000	0.00403	0.02459	0.00071	0.22853	
23	0.12379	0.08694	0.17037	0.00018	0.00000	0.00375	0.02289	0.00061	0.22387	
24	0.11945	0.08334	0.16540	0.00016	0.00000	0.00350	0.02136	0.00052	0.21949	
25	0.11540	0.08000	0.16072	0.00015	0.00000	0.00327	0.01998	0.00045	0.21535	
26	0.11160	0.07687	0.15631	0.00014	0.00000	0.00307	0.01872	0.00039	0.21143	
27	0.10802	0.07396	0.15215	0.00013	0.00000	0.00288	0.01758	0.00034	0.20772	
28	0.10466	0.07123	0.14821	0.00012	0.00000	0.00271	0.01653	0.00030	0.20419	
29	0.10149	0.06866	0.14448	0.00011	0.00000	0.00256	0.01557	0.00026	0.20083	
30	0.09849	0.06625	0.14093	0.00010	0.00000	0.00241	0.01469	0.00023	0.19763	
31	0.09565	0.06398	0.13756	0.00009	0.00000	0.00228	0.01388	0.00020	0.19458	
32	0.09296	0.06184	0.13436	0.00009	0.00000	0.00216	0.01313	0.00018	0.19166	
33	0.09040	0.05982	0.13130	0.00008	0.00000	0.00205	0.01244	0.00016	0.18886	
34	0.08798	0.05791	0.12839	0.00008	0.00000	0.00195	0.01180	0.00014	0.18618	
35	0.08567	0.05609	0.12560	0.00007	0.00000	0.00185	0.01120	0.00012	0.18361	

Appendix 3. Probability of arsenic exceeding a given concentration, by bedrock unit.—Continued

	Grouped	bedrock units	s with	Bedrock unit abbreviation							
Arsenic,	elevated a	rsenic conce			Ops*			0Zf			
in micro- grams per liter	Probability of concentration being greater than concentration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concentra- tion listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concentration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound		
36	0.08346	0.05438	0.12293	0.00007	0.00000	0.00176	0.01065	0.00011	0.18113		
37	0.08136	0.05274	0.12038	0.00006	0.00000	0.00168	0.01014	0.00010	0.17875		
38	0.07936	0.05119	0.11793	0.00006	0.00000	0.00160	0.00966	0.00009	0.17646		
39	0.07744	0.04972	0.11558	0.00006	0.00000	0.00153	0.00921	0.00008	0.17425		
40	0.07561	0.04831	0.11332	0.00005	0.00000	0.00146	0.00879	0.00007	0.17212		
41	0.07385	0.04697	0.11115	0.00005	0.00000	0.00140	0.00840	0.00006	0.17006		
42	0.07216	0.04569	0.10906	0.00005	0.00000	0.00134	0.00803	0.00006	0.16807		
43	0.07055	0.04446	0.10705	0.00004	0.00000	0.00129	0.00768	0.00005	0.16615		
44	0.06900	0.04329	0.10512	0.00004	0.00000	0.00123	0.00736	0.00005	0.16428		
45	0.06750	0.04217	0.10325	0.00004	0.00000	0.00119	0.00705	0.00004	0.16248		
46	0.06607	0.04110	0.10144	0.00004	0.00000	0.00114	0.00676	0.00004	0.16073		
47	0.06469	0.04007	0.09970	0.00004	0.00000	0.00110	0.00649	0.00004	0.15903		
48	0.06336	0.03908	0.09802	0.00003	0.00000	0.00105	0.00623	0.00003	0.15738		
49	0.06208	0.03813	0.09639	0.00003	0.00000	0.00102	0.00599	0.00003	0.15578		
50	0.06084	0.03722	0.09481	0.00003	0.00000	0.00098	0.00576	0.00003	0.15423		
55	0.05526	0.03316	0.08765	0.00002	0.00000	0.00082	0.00478	0.00002	0.14706		
60	0.05054	0.02978	0.08147	0.00002	0.00000	0.00070	0.00402	0.00001	0.14075		
65	0.04647	0.02692	0.07609	0.00002	0.00000	0.00060	0.00341	0.00001	0.13514		
70	0.04295	0.02447	0.07136	0.00001	0.00000	0.00052	0.00293	0.00001	0.13011		
75	0.03987	0.02237	0.06716	0.00001	0.00000	0.00046	0.00253	0.00000	0.12556		
80	0.03715	0.02054	0.06341	0.00001	0.00000	0.00040	0.00221	0.00000	0.12143		
85	0.03474	0.01894	0.06005	0.00001	0.00000	0.00036	0.00194	0.00000	0.11764		
90	0.03258	0.01752	0.05700	0.00001	0.00000	0.00032	0.00171	0.00000	0.11416		
95	0.03065	0.01627	0.05424	0.00001	0.00000	0.00029	0.00152	0.00000	0.11094		
100	0.02890	0.01515	0.05172	0.00001	0.00000	0.00026	0.00136	0.00000	0.10796		
110	0.02587	0.01325	0.04729	0.00000	0.00000	0.00021	0.00109	0.00000	0.10259		
120	0.02334	0.01170	0.04351	0.00000	0.00000	0.00018	0.00090	0.00000	0.09788		
130	0.02120	0.01041	0.04026	0.00000	0.00000	0.00015	0.00074	0.00000	0.09370		
140	0.01937	0.00932	0.03744	0.00000	0.00000	0.00013	0.00062	0.00000	0.08997		
150	0.01779	0.00841	0.03495	0.00000	0.00000	0.00011	0.00053	0.00000	0.08660		
160	0.01641	0.00762	0.03275	0.00000	0.00000	0.00010	0.00045	0.00000	0.08354		
170	0.01520	0.00694	0.03079	0.00000	0.00000	0.00009	0.00039	0.00000	0.08075		
180	0.01413	0.00635	0.02904	0.00000	0.00000	0.00008	0.00034	0.00000	0.07819		
190	0.01318	0.00583	0.02746	0.00000	0.00000	0.00007	0.00030	0.00000	0.07582		
200	0.01233	0.00538	0.02602	0.00000	0.00000	0.00006	0.00026	0.00000	0.07364		

Appendix 3. Probability of arsenic exceeding a given concentration, by bedrock unit.—Continued

	Grouped	bedrock units	s with	Bedrock unit abbreviation						
Arsenic,	elevated arsenic concentration				Ops*		0Zf			
in micro- grams per liter	Probability of concentration being greater than concentration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concentration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concentration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	
210	0.01157	0.00497	0.02472	0.00000	0.00000	0.00005	0.00023	0.00000	0.07161	
220	0.01087	0.00461	0.02352	0.00000	0.00000	0.00005	0.00020	0.00000	0.06971	
230	0.01025	0.00429	0.02243	0.00000	0.00000	0.00004	0.00018	0.00000	0.06794	
240	0.00968	0.00400	0.02142	0.00000	0.00000	0.00004	0.00016	0.00000	0.06628	
250	0.00916	0.00374	0.02050	0.00000	0.00000	0.00004	0.00015	0.00000	0.06472	
260	0.00868	0.00350	0.01964	0.00000	0.00000	0.00003	0.00013	0.00000	0.06325	
270	0.00824	0.00329	0.01884	0.00000	0.00000	0.00003	0.00012	0.00000	0.06186	
280	0.00784	0.00309	0.01810	0.00000	0.00000	0.00003	0.00011	0.00000	0.06055	
290	0.00747	0.00291	0.01740	0.00000	0.00000	0.00003	0.00010	0.00000	0.05930	
300	0.00712	0.00275	0.01676	0.00000	0.00000	0.00002	0.00009	0.00000	0.05811	

Appendix 3. Probability of arsenic exceeding a given concentration, by bedrock unit.—Continued

	Bedrock unit abbreviation								
		0Zm			0Zn			0Znb	
Arsenic, in micro- grams per liter	Probability of concentration being greater than concentration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concentration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concentration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound
1	0.23792	0.07581	0.50313	0.16282	0.07832	0.29137	0.63210	0.44055	0.79514
2	0.19207	0.05460	0.44482	0.07879	0.02495	0.19331	0.51498	0.33884	0.68819
3	0.16795	0.04320	0.41687	0.04795	0.01088	0.15020	0.44518	0.27992	0.62072
4	0.15207	0.03587	0.39961	0.03262	0.00562	0.12468	0.39654	0.23959	0.57260
5	0.14047	0.03069	0.38756	0.02373	0.00322	0.10742	0.35986	0.20970	0.53578
6	0.13144	0.02681	0.37852	0.01807	0.00199	0.09480	0.33080	0.18642	0.50628
7	0.12413	0.02380	0.37140	0.01422	0.00130	0.08510	0.30699	0.16769	0.48187
8	0.11803	0.02137	0.36559	0.01148	0.00089	0.07737	0.28700	0.15224	0.46118
9	0.11283	0.01938	0.36074	0.00946	0.00063	0.07103	0.26990	0.13926	0.44331
10	0.10832	0.01771	0.35659	0.00792	0.00046	0.06573	0.25505	0.12819	0.42764
11	0.10435	0.01630	0.35299	0.00672	0.00034	0.06122	0.24199	0.11862	0.41375
12	0.10082	0.01508	0.34983	0.00577	0.00026	0.05733	0.23039	0.11026	0.40129
13	0.09765	0.01402	0.34701	0.00501	0.00020	0.05393	0.22000	0.10291	0.39003
14	0.09478	0.01309	0.34449	0.00438	0.00015	0.05093	0.21063	0.09638	0.37979
15	0.09217	0.01227	0.34221	0.00386	0.00012	0.04827	0.20211	0.09055	0.37040
16	0.08977	0.01154	0.34013	0.00342	0.00010	0.04589	0.19434	0.08530	0.36175
17	0.08756	0.01088	0.33823	0.00305	0.00008	0.04374	0.18720	0.08057	0.35374
18	0.08552	0.01029	0.33647	0.00274	0.00007	0.04179	0.18063	0.07627	0.34630
19	0.08361	0.00975	0.33485	0.00247	0.00005	0.04001	0.17454	0.07235	0.33935
20	0.08184	0.00926	0.33335	0.00224	0.00005	0.03839	0.16889	0.06877	0.33285
21	0.08018	0.00882	0.33194	0.00203	0.00004	0.03689	0.16363	0.06547	0.32674
22	0.07862	0.00841	0.33062	0.00185	0.00003	0.03551	0.15871	0.06244	0.32098
23	0.07715	0.00803	0.32939	0.00170	0.00003	0.03423	0.15410	0.05964	0.31555
24	0.07576	0.00768	0.32823	0.00156	0.00002	0.03305	0.14977	0.05704	0.31040
25	0.07445	0.00736	0.32713	0.00143	0.00002	0.03194	0.14569	0.05463	0.30552
26	0.07320	0.00706	0.32609	0.00132	0.00002	0.03091	0.14185	0.05238	0.30088
27	0.07202	0.00679	0.32511	0.00123	0.00001	0.02995	0.13821	0.05028	0.29646
28	0.07089	0.00653	0.32417	0.00114	0.00001	0.02904	0.13477	0.04832	0.29224
29	0.06982	0.00629	0.32328	0.00106	0.00001	0.02819	0.13151	0.04648	0.28821
30	0.06880	0.00606	0.32243	0.00099	0.00001	0.02739	0.12841	0.04476	0.28435
31	0.06782	0.00585	0.32162	0.00092	0.00001	0.02663	0.12545	0.04314	0.28065
32	0.06688	0.00565	0.32084	0.00086	0.00001	0.02591	0.12264	0.04161	0.27711
33	0.06598	0.00546	0.32010	0.00081	0.00001	0.02523	0.11996	0.04017	0.27370
34	0.06511	0.00528	0.31939	0.00076	0.00001	0.02459	0.11740	0.03881	0.27042
35	0.06428	0.00511	0.31870	0.00071	0.00001	0.02398	0.11494	0.03752	0.26726

Appendix 3. Probability of arsenic exceeding a given concentration, by bedrock unit.—Continued

	Bedrock unit abbreviation								
		0Zm			0Zn			0Znb	
Arsenic, in micro- grams per liter	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concentration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concentra- tion listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound
36	0.06348	0.00495	0.31804	0.00067	0.00000	0.02339	0.11260	0.03631	0.26422
37	0.06271	0.00480	0.31741	0.00063	0.00000	0.02284	0.11035	0.03515	0.26128
38	0.06197	0.00466	0.31680	0.00060	0.00000	0.02231	0.10819	0.03405	0.25844
39	0.06125	0.00452	0.31621	0.00056	0.00000	0.02181	0.10612	0.03301	0.25570
40	0.06056	0.00439	0.31564	0.00053	0.00000	0.02132	0.10412	0.03202	0.25305
41	0.05989	0.00427	0.31509	0.00050	0.00000	0.02086	0.10220	0.03108	0.25048
42	0.05924	0.00415	0.31455	0.00048	0.00000	0.02042	0.10036	0.03018	0.24799
43	0.05861	0.00404	0.31404	0.00045	0.00000	0.02000	0.09858	0.02932	0.24558
44	0.05801	0.00393	0.31354	0.00043	0.00000	0.01959	0.09686	0.02850	0.24324
45	0.05742	0.00383	0.31305	0.00041	0.00000	0.01920	0.09521	0.02771	0.24097
46	0.05685	0.00374	0.31258	0.00039	0.00000	0.01882	0.09361	0.02696	0.23876
47	0.05629	0.00364	0.31213	0.00037	0.00000	0.01846	0.09206	0.02624	0.23661
48	0.05575	0.00355	0.31168	0.00035	0.00000	0.01811	0.09057	0.02556	0.23452
49	0.05523	0.00347	0.31125	0.00034	0.00000	0.01778	0.08912	0.02490	0.23249
50	0.05472	0.00338	0.31083	0.00032	0.00000	0.01745	0.08772	0.02426	0.23051
55	0.05236	0.00302	0.30889	0.00026	0.00000	0.01600	0.08133	0.02145	0.22133
60	0.05028	0.00271	0.30718	0.00021	0.00000	0.01476	0.07581	0.01912	0.21319
65	0.04843	0.00246	0.30564	0.00018	0.00000	0.01370	0.07099	0.01717	0.20589
70	0.04676	0.00224	0.30426	0.00015	0.00000	0.01277	0.06674	0.01551	0.19930
75	0.04525	0.00205	0.30300	0.00012	0.00000	0.01196	0.06297	0.01409	0.19331
80	0.04387	0.00189	0.30185	0.00011	0.00000	0.01124	0.05959	0.01286	0.18782
85	0.04261	0.00175	0.30079	0.00009	0.00000	0.01060	0.05654	0.01178	0.18277
90	0.04145	0.00162	0.29981	0.00008	0.00000	0.01003	0.05378	0.01084	0.17810
95	0.04037	0.00151	0.29890	0.00007	0.00000	0.00951	0.05128	0.01001	0.17376
100	0.03937	0.00141	0.29805	0.00006	0.00000	0.00905	0.04898	0.00928	0.16972
110	0.03757	0.00124	0.29650	0.00005	0.00000	0.00823	0.04494	0.00803	0.16240
120	0.03598	0.00111	0.29514	0.00004	0.00000	0.00754	0.04149	0.00702	0.15593
130	0.03457	0.00099	0.29391	0.00003	0.00000	0.00696	0.03851	0.00620	0.15015
140	0.03330	0.00089	0.29280	0.00003	0.00000	0.00645	0.03590	0.00551	0.14494
150	0.03215	0.00081	0.29179	0.00002	0.00000	0.00601	0.03361	0.00493	0.14022
160	0.03111	0.00074	0.29086	0.00002	0.00000	0.00562	0.03158	0.00443	0.13591
170	0.03016	0.00068	0.29000	0.00002	0.00000	0.00527	0.02976	0.00401	0.13195
180	0.02928	0.00063	0.28921	0.00001	0.00000	0.00497	0.02813	0.00364	0.12830
190	0.02848	0.00058	0.28847	0.00001	0.00000	0.00469	0.02665	0.00332	0.12492
200	0.02773	0.00054	0.28778	0.00001	0.00000	0.00444	0.02531	0.00304	0.12178

Appendix 3. Probability of arsenic exceeding a given concentration, by bedrock unit.—Continued

	0Zm			0Zn			OZnb		
Arsenic, in micro- grams per liter	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concentration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concentra- tion listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound
210	0.02703	0.00050	0.28713	0.00001	0.00000	0.00422	0.02409	0.00280	0.11885
220	0.02638	0.00047	0.28652	0.00001	0.00000	0.00401	0.02297	0.00258	0.11610
230	0.02577	0.00044	0.28595	0.00001	0.00000	0.00382	0.02195	0.00238	0.11353
240	0.02519	0.00041	0.28541	0.00001	0.00000	0.00365	0.02100	0.00221	0.11110
250	0.02465	0.00038	0.28489	0.00001	0.00000	0.00349	0.02012	0.00206	0.10881
260	0.02414	0.00036	0.28440	0.00001	0.00000	0.00335	0.01931	0.00192	0.10665
270	0.02366	0.00034	0.28393	0.00000	0.00000	0.00321	0.01856	0.00179	0.10460
280	0.02320	0.00032	0.28349	0.00000	0.00000	0.00308	0.01786	0.00167	0.10266
290	0.02277	0.00031	0.28307	0.00000	0.00000	0.00297	0.01720	0.00157	0.10080
300	0.02236	0.00029	0.28266	0.00000	0.00000	0.00286	0.01658	0.00147	0.09904

Appendix 3. Probability of arsenic exceeding a given concentration, by bedrock unit.—Continued

Arsenic, in micrograms per liter than conception lists	ation 95-percen eater confidence	•	Probability of	S0agr Lower			Spsq				
in micro- grams concentr per liter being gr than conc	ation 95-percen eater confidence	t 95-percent	•	Lower				Spsq			
		bound	concentration being greater than concentra- tion listed in first column	95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concentra- tion listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound			
1 0.431	65 0.15898	0.74354	0.32722	0.14632	0.56242	0.06350	0.01045	0.22900			
2 0.061	43 0.01062	0.21710	0.22397	0.08084	0.45292	0.02471	0.00212	0.14221			
3 0.009	52 0.00061	0.07257	0.17337	0.05237	0.39760	0.01316	0.00066	0.10868			
4 0.001	79 0.00004	0.02970	0.14228	0.03691	0.36223	0.00811	0.00026	0.09011			
5 0.000	40 0.00000	0.01393	0.12094	0.02746	0.33686	0.00546	0.00012	0.07803			
6 0.000	10 0.00000	0.00719	0.10525	0.02121	0.31738	0.00390	0.00006	0.06940			
7 0.000	0.00000	0.00399	0.09318	0.01686	0.30173	0.00291	0.00003	0.06287			
8 0.000	0.00000	0.00234	0.08358	0.01370	0.28876	0.00224	0.00002	0.05771			
9 0.000	0.00000	0.00143	0.07575	0.01134	0.27773	0.00177	0.00001	0.05351			
10 0.000	0.00000	0.00091	0.06923	0.00952	0.26820	0.00142	0.00001	0.05001			
11 0.000	0.00000	0.00060	0.06371	0.00809	0.25983	0.00117	0.00001	0.04704			
12 0.000	0.00000	0.00040	0.05898	0.00695	0.25239	0.00097	0.00000	0.04447			
13 0.000	0.00000	0.00028	0.05487	0.00602	0.24571	0.00082	0.00000	0.04223			
14 0.000	0.00000	0.00020	0.05127	0.00527	0.23967	0.00069	0.00000	0.04026			
15 0.000	0.00000	0.00014	0.04809	0.00463	0.23416	0.00060	0.00000	0.03850			
16 0.000	0.00000	0.00010	0.04526	0.00410	0.22911	0.00052	0.00000	0.03692			
17 0.000	0.00000	0.00008	0.04273	0.00366	0.22445	0.00045	0.00000	0.03549			
18 0.000	0.00000	0.00006	0.04045	0.00327	0.22013	0.00040	0.00000	0.03420			
19 0.000	0.00000	0.00004	0.03838	0.00294	0.21611	0.00035	0.00000	0.03301			
20 0.000	0.00000	0.00003	0.03650	0.00266	0.21236	0.00031	0.00000	0.03192			
21 0.000	0.00000	0.00003	0.03478	0.00241	0.20884	0.00028	0.00000	0.03092			
22 0.000	0.00000	0.00002	0.03321	0.00219	0.20553	0.00025	0.00000	0.02999			
23 0.000	0.00000	0.00002	0.03176	0.00200	0.20241	0.00022	0.00000	0.02912			
24 0.000	0.00000	0.00001	0.03042	0.00183	0.19946	0.00020	0.00000	0.02832			
25 0.000	0.00000	0.00001	0.02918	0.00168	0.19667	0.00018	0.00000	0.02756			
26 0.000	0.00000	0.00001	0.02803	0.00155	0.19401	0.00017	0.00000	0.02686			
27 0.000	0.00000	0.00001	0.02695	0.00143	0.19149	0.00015	0.00000	0.02620			
28 0.000	0.00000	0.00001	0.02595	0.00132	0.18908	0.00014	0.00000	0.02557			
29 0.000	0.00000	0.00000	0.02502	0.00123	0.18678	0.00013	0.00000	0.02498			
30 0.000	0.00000	0.00000	0.02414	0.00114	0.18458	0.00012	0.00000	0.02443			
31 0.000	0.00000	0.00000	0.02332	0.00106	0.18247	0.00011	0.00000	0.02390			
32 0.000	0.00000	0.00000	0.02254	0.00099	0.18045	0.00010	0.00000	0.02340			
33 0.000	0.00000	0.00000	0.02181	0.00092	0.17851	0.00009	0.00000	0.02292			
34 0.000	0.00000	0.00000	0.02112	0.00086	0.17665	0.00009	0.00000	0.02247			
35 0.000	0.00000	0.00000	0.02047	0.00081	0.17485	0.00008	0.00000	0.02204			

Appendix 3. Probability of arsenic exceeding a given concentration, by bedrock unit.—Continued

	Bedrock unit abbreviation										
A		Sgr			S0agr			Spsq			
Arsenic, in micro- grams per liter	Probability of concentration being greater than concentra- tion listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concentra- tion listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concentra- tion listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound		
36	0.00000	0.00000	0.00000	0.01986	0.00076	0.17312	0.00007	0.00000	0.02162		
37	0.00000	0.00000	0.00000	0.01927	0.00071	0.17145	0.00007	0.00000	0.02123		
38	0.00000	0.00000	0.00000	0.01872	0.00067	0.16984	0.00006	0.00000	0.02085		
39	0.00000	0.00000	0.00000	0.01819	0.00063	0.16828	0.00006	0.00000	0.02049		
40	0.00000	0.00000	0.00000	0.01769	0.00060	0.16678	0.00006	0.00000	0.02014		
41	0.00000	0.00000	0.00000	0.01721	0.00056	0.16532	0.00005	0.00000	0.01981		
42	0.00000	0.00000	0.00000	0.01675	0.00053	0.16390	0.00005	0.00000	0.01949		
43	0.00000	0.00000	0.00000	0.01632	0.00050	0.16253	0.00005	0.00000	0.01918		
44	0.00000	0.00000	0.00000	0.01590	0.00048	0.16120	0.00004	0.00000	0.01888		
45	0.00000	0.00000	0.00000	0.01551	0.00045	0.15991	0.00004	0.00000	0.01860		
46	0.00000	0.00000	0.00000	0.01512	0.00043	0.15866	0.00004	0.00000	0.01832		
47	0.00000	0.00000	0.00000	0.01476	0.00041	0.15744	0.00004	0.00000	0.01806		
48	0.00000	0.00000	0.00000	0.01441	0.00039	0.15625	0.00003	0.00000	0.01780		
49	0.00000	0.00000	0.00000	0.01408	0.00037	0.15509	0.00003	0.00000	0.01755		
50	0.00000	0.00000	0.00000	0.01375	0.00035	0.15397	0.00003	0.00000	0.01731		
55	0.00000	0.00000	0.00000	0.01232	0.00028	0.14875	0.00002	0.00000	0.01622		
60	0.00000	0.00000	0.00000	0.01112	0.00022	0.14412	0.00002	0.00000	0.01527		
65	0.00000	0.00000	0.00000	0.01011	0.00018	0.13996	0.00002	0.00000	0.01445		
70	0.00000	0.00000	0.00000	0.00925	0.00015	0.13619	0.00001	0.00000	0.01373		
75	0.00000	0.00000	0.00000	0.00851	0.00013	0.13277	0.00001	0.00000	0.01308		
80	0.00000	0.00000	0.00000	0.00786	0.00011	0.12962	0.00001	0.00000	0.01251		
85	0.00000	0.00000	0.00000	0.00729	0.00009	0.12673	0.00001	0.00000	0.01198		
90	0.00000	0.00000	0.00000	0.00679	0.00008	0.12405	0.00001	0.00000	0.01151		
95	0.00000	0.00000	0.00000	0.00634	0.00007	0.12155	0.00001	0.00000	0.01108		
100	0.00000	0.00000	0.00000	0.00594	0.00006	0.11922	0.00000	0.00000	0.01068		
110	0.00000	0.00000	0.00000	0.00526	0.00005	0.11500	0.00000	0.00000	0.00998		
120	0.00000	0.00000	0.00000	0.00470	0.00004	0.11124	0.00000	0.00000	0.00938		
130	0.00000	0.00000	0.00000	0.00423	0.00003	0.10788	0.00000	0.00000	0.00886		
140	0.00000	0.00000	0.00000	0.00383	0.00002	0.10484	0.00000	0.00000	0.00839		
150	0.00000	0.00000	0.00000	0.00349	0.00002	0.10207	0.00000	0.00000	0.00798		
160	0.00000	0.00000	0.00000	0.00320	0.00002	0.09954	0.00000	0.00000	0.00762		
170	0.00000	0.00000	0.00000	0.00295	0.00001	0.09721	0.00000	0.00000	0.00729		
180	0.00000	0.00000	0.00000	0.00272	0.00001	0.09505	0.00000	0.00000	0.00699		
190	0.00000	0.00000	0.00000	0.00272	0.00001	0.09305	0.00000	0.00000	0.00671		
200	0.00000	0.00000	0.00000	0.00235	0.00001	0.09118	0.00000	0.00000	0.00646		
200	0.00000	0.00000	0.00000	0.00233	0.00001	0.07110	0.00000	0.00000	0.00040		

Appendix 3. Probability of arsenic exceeding a given concentration, by bedrock unit.—Continued

				Bedrock	c unit abbrevi	ation			
Arsenic,		Sgr			S0agr			Spsq	
in micro- grams per liter	Probability of concentration being greater than concentra- tion listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concentra- tion listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concentra- tion listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound
210	0.00000	0.00000	0.00000	0.00220	0.00001	0.08942	0.00000	0.00000	0.00623
220	0.00000	0.00000	0.00000	0.00206	0.00001	0.08778	0.00000	0.00000	0.00602
230	0.00000	0.00000	0.00000	0.00193	0.00001	0.08624	0.00000	0.00000	0.00583
240	0.00000	0.00000	0.00000	0.00182	0.00000	0.08478	0.00000	0.00000	0.00564
250	0.00000	0.00000	0.00000	0.00171	0.00000	0.08339	0.00000	0.00000	0.00547
260	0.00000	0.00000	0.00000	0.00162	0.00000	0.08208	0.00000	0.00000	0.00531
270	0.00000	0.00000	0.00000	0.00153	0.00000	0.08084	0.00000	0.00000	0.00517
280	0.00000	0.00000	0.00000	0.00145	0.00000	0.07966	0.00000	0.00000	0.00503
290	0.00000	0.00000	0.00000	0.00138	0.00000	0.07853	0.00000	0.00000	0.00489
300	0.00000	0.00000	0.00000	0.00131	0.00000	0.07745	0.00000	0.00000	0.00477

Appendix 3. Probability of arsenic exceeding a given concentration, by bedrock unit.—Continued

				Bedrocl	k unit abbrevi	ation			
		Spss			Ssqd			SZtb	
Arsenic, in micro- grams per liter	Probability of concentration being greater than concentra- tion listed	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concentra- tion listed	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound
1	0.23273	0.06670	0.51638	0.64322	0.38238	0.84930	0.44216	0.31151	0.57949
2	0.09457	0.01492	0.32491	0.40139	0.19993	0.63395	0.26095	0.15832	0.38996
3	0.04903	0.00450	0.24303	0.27074	0.10603	0.51066	0.17621	0.09343	0.29462
4	0.02895	0.00165	0.19660	0.19308	0.05819	0.43523	0.12812	0.06020	0.23651
5	0.01857	0.00069	0.16620	0.14340	0.03328	0.38371	0.09772	0.04117	0.19710
6	0.01262	0.00032	0.14451	0.10983	0.01980	0.34569	0.07710	0.02941	0.16851
7	0.00896	0.00016	0.12816	0.08619	0.01221	0.31611	0.06240	0.02172	0.14678
8	0.00658	0.00008	0.11533	0.06898	0.00776	0.29222	0.05152	0.01648	0.12970
9	0.00496	0.00005	0.10495	0.05611	0.00507	0.27240	0.04323	0.01277	0.11591
10	0.00382	0.00003	0.09636	0.04628	0.00339	0.25560	0.03676	0.01009	0.10455
11	0.00300	0.00002	0.08913	0.03863	0.00232	0.24112	0.03161	0.00809	0.09504
12	0.00239	0.00001	0.08294	0.03257	0.00162	0.22848	0.02744	0.00657	0.08696
13	0.00194	0.00001	0.07758	0.02771	0.00115	0.21731	0.02403	0.00540	0.08001
14	0.00159	0.00000	0.07289	0.02377	0.00082	0.20735	0.02119	0.00449	0.07397
15	0.00131	0.00000	0.06874	0.02053	0.00060	0.19840	0.01880	0.00376	0.06869
16	0.00110	0.00000	0.06505	0.01785	0.00044	0.19031	0.01679	0.00318	0.06403
17	0.00092	0.00000	0.06174	0.01561	0.00033	0.18294	0.01506	0.00271	0.05988
18	0.00078	0.00000	0.05875	0.01372	0.00025	0.17620	0.01358	0.00232	0.05618
19	0.00067	0.00000	0.05604	0.01212	0.00019	0.17000	0.01229	0.00200	0.05284
20	0.00058	0.00000	0.05357	0.01076	0.00015	0.16427	0.01117	0.00174	0.04984
21	0.00050	0.00000	0.05131	0.00958	0.00011	0.15897	0.01019	0.00151	0.04711
22	0.00043	0.00000	0.04923	0.00857	0.00009	0.15403	0.00932	0.00133	0.04462
23	0.00038	0.00000	0.04731	0.00769	0.00007	0.14943	0.00856	0.00117	0.04235
24	0.00033	0.00000	0.04554	0.00693	0.00006	0.14512	0.00787	0.00103	0.04026
25	0.00029	0.00000	0.04389	0.00625	0.00004	0.14108	0.00727	0.00091	0.03834
26	0.00026	0.00000	0.04236	0.00567	0.00004	0.13728	0.00672	0.00081	0.03657
27	0.00023	0.00000	0.04093	0.00515	0.00003	0.13370	0.00623	0.00072	0.03493
28	0.00021	0.00000	0.03959	0.00468	0.00002	0.13032	0.00579	0.00065	0.03341
29	0.00018	0.00000	0.03833	0.00428	0.00002	0.12713	0.00539	0.00058	0.03200
30	0.00016	0.00000	0.03715	0.00391	0.00002	0.12409	0.00503	0.00052	0.03068
31	0.00015	0.00000	0.03604	0.00358	0.00001	0.12122	0.00470	0.00047	0.02945
32	0.00013	0.00000	0.03499	0.00329	0.00001	0.11848	0.00440	0.00043	0.02830
33	0.00012	0.00000	0.03400	0.00303	0.00001	0.11588	0.00412	0.00039	0.02722
34	0.00011	0.00000	0.03306	0.00279	0.00001	0.11339	0.00387	0.00035	0.02620
35	0.00011	0.00000	0.03217	0.00258	0.00001	0.11102	0.00364	0.00032	0.02525

Appendix 3. Probability of arsenic exceeding a given concentration, by bedrock unit.—Continued

	Bedrock unit abbreviation										
		Spss			Ssqd			SZtb			
Arsenic, in micro- grams per liter	Probability of concentration being greater than concentration listed	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concentra- tion listed	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound		
36	0.00009	0.00000	0.03133	0.00239	0.00001	0.10875	0.00342	0.00029	0.02435		
37	0.00008	0.00000	0.03053	0.00221	0.00000	0.10658	0.00323	0.00027	0.02351		
38	0.00008	0.00000	0.02977	0.00205	0.00000	0.10450	0.00305	0.00025	0.02271		
39	0.00007	0.00000	0.02904	0.00191	0.00000	0.10251	0.00288	0.00023	0.02195		
40	0.00006	0.00000	0.02834	0.00177	0.00000	0.10059	0.00272	0.00021	0.02123		
41	0.00006	0.00000	0.02768	0.00165	0.00000	0.09875	0.00258	0.00019	0.02055		
42	0.00005	0.00000	0.02705	0.00154	0.00000	0.09698	0.00244	0.00018	0.01991		
43	0.00005	0.00000	0.02644	0.00144	0.00000	0.09527	0.00232	0.00016	0.01930		
44	0.00005	0.00000	0.02586	0.00135	0.00000	0.09363	0.00220	0.00015	0.01871		
45	0.00004	0.00000	0.02530	0.00126	0.00000	0.09205	0.00210	0.00014	0.01816		
46	0.00004	0.00000	0.02477	0.00118	0.00000	0.09052	0.00199	0.00013	0.01763		
47	0.00004	0.00000	0.02426	0.00111	0.00000	0.08905	0.00190	0.00012	0.01712		
48	0.00003	0.00000	0.02376	0.00104	0.00000	0.08762	0.00181	0.00011	0.01664		
49	0.00003	0.00000	0.02329	0.00098	0.00000	0.08624	0.00173	0.00010	0.01618		
50	0.00003	0.00000	0.02283	0.00092	0.00000	0.08491	0.00165	0.00010	0.01574		
55	0.00002	0.00000	0.02078	0.00069	0.00000	0.07884	0.00132	0.00007	0.01380		
60	0.00002	0.00000	0.01905	0.00053	0.00000	0.07360	0.00107	0.00005	0.01222		
65	0.00001	0.00000	0.01757	0.00041	0.00000	0.06904	0.00089	0.00004	0.01090		
70	0.00001	0.00000	0.01630	0.00032	0.00000	0.06502	0.00074	0.00003	0.00980		
75	0.00001	0.00000	0.01519	0.00026	0.00000	0.06145	0.00062	0.00002	0.00886		
80	0.00001	0.00000	0.01421	0.00021	0.00000	0.05826	0.00053	0.00002	0.00805		
85	0.00000	0.00000	0.01334	0.00017	0.00000	0.05539	0.00045	0.00001	0.00736		
90	0.00000	0.00000	0.01256	0.00014	0.00000	0.05279	0.00039	0.00001	0.00675		
95	0.00000	0.00000	0.01186	0.00011	0.00000	0.05042	0.00034	0.00001	0.00622		
100	0.00000	0.00000	0.01124	0.00010	0.00000	0.04826	0.00030	0.00001	0.00575		
110	0.00000	0.00000	0.01015	0.00007	0.00000	0.04444	0.00023	0.00001	0.00496		
120	0.00000	0.00000	0.00923	0.00005	0.00000	0.04118	0.00018	0.00000	0.00432		
130	0.00000	0.00000	0.00846	0.00004	0.00000	0.03836	0.00015	0.00000	0.00380		
140	0.00000	0.00000	0.00780	0.00003	0.00000	0.03589	0.00012	0.00000	0.00337		
150	0.00000	0.00000	0.00722	0.00002	0.00000	0.03372	0.00010	0.00000	0.00301		
160	0.00000	0.00000	0.00672	0.00002	0.00000	0.03178	0.00008	0.00000	0.00271		
170	0.00000	0.00000	0.00628	0.00001	0.00000	0.03005	0.00007	0.00000	0.00245		
180	0.00000	0.00000	0.00588	0.00001	0.00000	0.02850	0.00006	0.00000	0.00222		
190	0.00000	0.00000	0.00553	0.00001	0.00000	0.02709	0.00005	0.00000	0.00203		
200	0.00000	0.00000	0.00522	0.00001	0.00000	0.02581	0.00004	0.00000	0.00186		

Appendix 3. Probability of arsenic exceeding a given concentration, by bedrock unit.—Continued

Bedrock unit abbreviation										
		Spss			Ssqd		SZtb			
Arsenic, in micro- grams per liter	Probability of concentration being greater than concentra- tion listed	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concentra- tion listed	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	
210	0.00000	0.00000	0.00493	0.00001	0.00000	0.02464	0.00004	0.00000	0.00171	
220	0.00000	0.00000	0.00467	0.00001	0.00000	0.02356	0.00003	0.00000	0.00158	
230	0.00000	0.00000	0.00444	0.00000	0.00000	0.02257	0.00003	0.00000	0.00146	
240	0.00000	0.00000	0.00422	0.00000	0.00000	0.02166	0.00003	0.00000	0.00135	
250	0.00000	0.00000	0.00402	0.00000	0.00000	0.02082	0.00002	0.00000	0.00126	
260	0.00000	0.00000	0.00384	0.00000	0.00000	0.02003	0.00002	0.00000	0.00118	
270	0.00000	0.00000	0.00367	0.00000	0.00000	0.01930	0.00002	0.00000	0.00110	
280	0.00000	0.00000	0.00352	0.00000	0.00000	0.01862	0.00002	0.00000	0.00103	
290	0.00000	0.00000	0.00337	0.00000	0.00000	0.01798	0.00001	0.00000	0.00097	
300	0.00000	0.00000	0.00324	0.00000	0.00000	0.01738	0.00001	0.00000	0.00091	

Appendix 3. Probability of arsenic exceeding a given concentration, by bedrock unit.—Continued

Bedrock unit abbreviation											
		Zpg*			Zsg						
Arsenic, in micro- grams per liter	Probability of concentration being greater than concentration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concentra- tion listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound					
1	0.01393	0.00098	0.09648	0.04051	0.00712	0.14958					
2	0.00446	0.00022	0.04351	0.01576	0.00089	0.12002					
3	0.00213	0.00008	0.02561	0.00848	0.00020	0.10841					
4	0.00122	0.00004	0.01708	0.00529	0.00006	0.10152					
5	0.00078	0.00002	0.01227	0.00361	0.00002	0.09673					
6	0.00053	0.00001	0.00926	0.00261	0.00001	0.09310					
7	0.00038	0.00001	0.00724	0.00197	0.00000	0.09020					
8	0.00028	0.00001	0.00582	0.00153	0.00000	0.08780					
9	0.00022	0.00000	0.00478	0.00122	0.00000	0.08577					
10	0.00017	0.00000	0.00400	0.00099	0.00000	0.08400					
11	0.00014	0.00000	0.00339	0.00082	0.00000	0.08245					
12	0.00011	0.00000	0.00291	0.00069	0.00000	0.08107					
13	0.00009	0.00000	0.00252	0.00059	0.00000	0.07982					
14	0.00008	0.00000	0.00220	0.00050	0.00000	0.07869					
15	0.00007	0.00000	0.00194	0.00044	0.00000	0.07766					
16	0.00006	0.00000	0.00172	0.00038	0.00000	0.07670					
17	0.00005	0.00000	0.00154	0.00033	0.00000	0.07582					
18	0.00004	0.00000	0.00138	0.00030	0.00000	0.07500					
19	0.00004	0.00000	0.00125	0.00026	0.00000	0.07424					
20	0.00003	0.00000	0.00113	0.00023	0.00000	0.07352					
21	0.00003	0.00000	0.00103	0.00021	0.00000	0.07285					
22	0.00003	0.00000	0.00094	0.00019	0.00000	0.07221					
23	0.00002	0.00000	0.00086	0.00017	0.00000	0.07161					
24	0.00002	0.00000	0.00079	0.00016	0.00000	0.07104					
25	0.00002	0.00000	0.00073	0.00014	0.00000	0.07050					
26	0.00002	0.00000	0.00068	0.00013	0.00000	0.06998					
27	0.00001	0.00000	0.00063	0.00012	0.00000	0.06949					
28	0.00001	0.00000	0.00058	0.00011	0.00000	0.06901					
29	0.00001	0.00000	0.00054	0.00010	0.00000	0.06856					
30	0.00001	0.00000	0.00051	0.00009	0.00000	0.06813					
31	0.00001	0.00000	0.00047	0.00009	0.00000	0.06771					
32	0.00001	0.00000	0.00044	0.00008	0.00000	0.06731					
33	0.00001	0.00000	0.00042	0.00008	0.00000	0.06693					
34	0.00001	0.00000	0.00039	0.00007	0.00000	0.06656					
35	0.00001	0.00000	0.00037	0.00007	0.00000	0.06620					

Appendix 3. Probability of arsenic exceeding a given concentration, by bedrock unit.—Continued

	Bedrock unit abbreviation										
		Zpg*			Zsg						
Arsenic, in micro- grams per liter	Probability of concentration being greater than concentration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concentra- tion listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound					
36	0.00001	0.00000	0.00035	0.00006	0.00000	0.06585					
37	0.00001	0.00000	0.00033	0.00006	0.00000	0.06551					
38	0.00001	0.00000	0.00031	0.00005	0.00000	0.06519					
39	0.00001	0.00000	0.00029	0.00005	0.00000	0.06488					
40	0.00001	0.00000	0.00028	0.00005	0.00000	0.06457					
41	0.00000	0.00000	0.00026	0.00004	0.00000	0.06427					
42	0.00000	0.00000	0.00025	0.00004	0.00000	0.06399					
43	0.00000	0.00000	0.00024	0.00004	0.00000	0.06371					
44	0.00000	0.00000	0.00023	0.00004	0.00000	0.06344					
45	0.00000	0.00000	0.00022	0.00004	0.00000	0.06317					
46	0.00000	0.00000	0.00021	0.00003	0.00000	0.06291					
47	0.00000	0.00000	0.00020	0.00003	0.00000	0.06266					
48	0.00000	0.00000	0.00019	0.00003	0.00000	0.06242					
49	0.00000	0.00000	0.00018	0.00003	0.00000	0.06218					
50	0.00000	0.00000	0.00017	0.00003	0.00000	0.06195					
55	0.00000	0.00000	0.00014	0.00002	0.00000	0.06086					
60	0.00000	0.00000	0.00011	0.00002	0.00000	0.05988					
65	0.00000	0.00000	0.00010	0.00001	0.00000	0.05900					
70	0.00000	0.00000	0.00008	0.00001	0.00000	0.05820					
75	0.00000	0.00000	0.00007	0.00001	0.00000	0.05746					
80	0.00000	0.00000	0.00006	0.00001	0.00000	0.05677					
85	0.00000	0.00000	0.00005	0.00001	0.00000	0.05614					
90	0.00000	0.00000	0.00005	0.00001	0.00000	0.05554					
95	0.00000	0.00000	0.00004	0.00001	0.00000	0.05499					
100	0.00000	0.00000	0.00004	0.00000	0.00000	0.05447					
110	0.00000	0.00000	0.00003	0.00000	0.00000	0.05351					
120	0.00000	0.00000	0.00002	0.00000	0.00000	0.05265					
130	0.00000	0.00000	0.00002	0.00000	0.00000	0.05187					
140	0.00000	0.00000	0.00002	0.00000	0.00000	0.05116					
150	0.00000	0.00000	0.00001	0.00000	0.00000	0.05051					
160	0.00000	0.00000	0.00001	0.00000	0.00000	0.04990					
170	0.00000	0.00000	0.00001	0.00000	0.00000	0.04934					
180	0.00000	0.00000	0.00001	0.00000	0.00000	0.04882					
190	0.00000	0.00000	0.00001	0.00000	0.00000	0.04833					
200	0.00000	0.00000	0.00001	0.00000	0.00000	0.04787					

Appendix 3. Probability of arsenic exceeding a given concentration, by bedrock unit.—Continued

			Bedrock unit	abbreviation		
		Zpg*			Zsg	
Arsenic, in micro- grams per liter	Probability of concentration being greater than concentration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concentra- tion listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound
210	0.00000	0.00000	0.00001	0.00000	0.00000	0.04743
220	0.00000	0.00000	0.00000	0.00000	0.00000	0.04702
230	0.00000	0.00000	0.00000	0.00000	0.00000	0.04663
240	0.00000	0.00000	0.00000	0.00000	0.00000	0.04626
250	0.00000	0.00000	0.00000	0.00000	0.00000	0.04591
260	0.00000	0.00000	0.00000	0.00000	0.00000	0.04557
270	0.00000	0.00000	0.00000	0.00000	0.00000	0.04525
280	0.00000	0.00000	0.00000	0.00000	0.00000	0.04494
290	0.00000	0.00000	0.00000	0.00000	0.00000	0.04464
300	0.00000	0.00000	0.00000	0.00000	0.00000	0.04436

Appendix 4. Arsenic Log-Normal Fit Statistics by Bedrock Unit

Appendix 4. Arsenic log-normal fit statistics by bedrock unit.

	Grouped l	edrock units v	with			Bedrock u	Bedrock unit abbreviation					
	elevated-ar	senic concent	ration				Ops*					
Censoring inf	formation	Count			Censoring inf	formation	Count					
Uncensored valu	ıe	142			Uncensored value 2							
Left censored va	alue	13			Left censored va	lue	8					
	Param	eter estimates	;		Parameter estimates							
В	F 41 4	Standard	95% normal CI		D .	F	Standard	95% nor	mal CI			
Parameter	Estimate	error	Lower	Upper	Parameter	Estimate	error	Lower	Upper			
Location	0.842088	0.160891	0.526746	1.15743	Location	-3.21928	0.787011	-4.7618	-1.67677			
Scale	1.98346	0.122107	1.75801	2.23782	Scale	1.78003	0.0901298	1.61186	1.96574			
Log-likelihood -484.214					Log-likelihood -4.305							
	God	dness-of-fit				Good	Iness-of-fit					
Anderson-Darling (adjusted) 0.431					Anderson-Darlin	g (adjusted)	2.245					
Correlation coef	ficient	0.999			Correlation coef	ficient	1					
	Characteri	stics of distrib	ution		Characteristics of distribution							
Danasistas	F-4:4-	Standard	95% no	rmal CI	Descriptor	Fatimata	Standard		mal CI			
Descriptor	Estimate	error	Lower	Upper	Descriptor	Estimate	error	Lower	Upper			
Mean	16.5957	4.65715	9.57473	28.7649	Mean	0.194946	0.152905	0.041906	0.906885			
Standard deviation	117.486	59.1549	43.7925	315.189	Standard deviation	0.93028	0.759049	0.18797	4.60404			
Median	2.32121	0.373462	1.69341	3.18174	Median	0.0399836	0.0314676	0.0085502	0.186977			
First quartile (Q1)	0.609123	0.113368	0.422943	0.877259	First quartile (Q1)	0.0120355	0.0095863	0.0025262	0.0573391			
Third quartile (Q3)	8.84551	1.54983	6.27455	12.4699	Third quartile (Q3)	0.132832	0.103893	0.0286776	0.615262			
Interquartile range (IQR)	8.23639	1.48626	5.78278	11.7311	Interquartile range (IQR)	0.120796	0.0944301	0.0261001	0.559067			

 $\textbf{Appendix 4.} \quad \text{Arsenic log-normal fit statistics by bedrock unit.} \\ \textbf{—Continued}$

				Bedrock u	nit abbreviation					
		0Zf					0Zm			
Censoring info	ormation	Count			Censoring in	formation	Count			
Uncensored valu	e	7			Uncensored value		4			
Left censored va	lue	1			Left censored va	lue	6			
Distribution		Log normal			Distribution		Log normal			
	Param	eter estimate	S			Paramo	eter estimates			
Parameter	Estimate	Standard	95% no	rmal CI	Parameter	Estimate	Standard	95% no	rmal CI	
T di dillotoi	Lottillato	error	Lower	Upper	T di dillotoi		error	Lower	Upper	
Location	0.203812	0.537881	-0.850415	1.25804	Location	-3.14197	2.2943	-7.63872	1.35477	
Scale	1.46776	0.444717	0.810489	2.65803	Scale	4.40671	2.19624	1.65915	11.7042	
Log-likelihood -19.146					Log-likelihood		-20.355			
	Goo	dness-of-fit				Goo	dness-of-fit			
Anderson-Darling	g (adjusted)	3.106			Anderson-Darlin	g (adjusted)	2.122			
Correlation coeff	ficient	0.922			Correlation coefficient 0.956					
	Characteris	stics of distrib	ution		Characteristics of distribution					
Descriptor	Estimate	Standard	95% no	rmal CI	Descriptor	Estimate	Standard	95% normal Cl		
Descriptor	Latimate	error	Lower	Upper	Descriptor	Estillate	error	Lower	Upper	
Mean	3.60011	2.6815	0.836197	15.4997	Mean	711.633	5.84×10^{3}	0.0000725	6.99×10^9	
Standard deviation	9.93912	13.636	0.675371	146.269	Standard deviation	1.17×10^7	2.09×10^{8}	0	1.68×10^{22}	
Median	1.22607	0.659479	0.427238	3.51852	Median	0.0431974	0.0991078	0.0004814	3.87586	
First quartile (Q1)	0.455585	0.306663	0.121789	1.70424	First quartile (Q1)	0.0022111	0.0077461	0.0000023	2.1211	
Third quartile (Q3)	3.29959	1.82372	1.11684	9.7483	Third quartile (Q3)	0.843922	1.3722	0.0348552	20.4332	
Interquartile range (IQR)	2.84401	1.67949	0.89385	9.04891	Interquartile range (IQR)	0.841711	1.36804	0.0348095	20.353	

Appendix 4. Arsenic log-normal fit statistics by bedrock unit.—Continued

				Bedrock un	it abbreviation					
		0Zn					0Znb			
Censoring inf	formation	Count			Censoring inf	formation	Count			
Uncensored valu	ue	19			Uncensored valu	e	17			
Left censored va	alue	12			Left censored va	lue	3			
Distribution	ibution Log normal			Distribution		Log normal				
	Param	eter estimates	5			Param	eter estimates			
D	Fathwate	Standard	95% no	rmal CI	D	Fatherste	Standard	95% no	rmal Cl	
Parameter	Estimate	error	Lower	Upper	Parameter	Estimate	error	Lower	Upper	
Location	-1.58309	0.352176	-2.27334	-0.892837	Location	0.779948	0.531552	-0.261874	1.82177	
Scale	1.6106	0.349339	1.05283	2.46384	Scale	2.31159	0.437248	1.59552	3.34903	
Log-likelihood -33.677					Log-likelihood		-67.412			
	God	odness-of-fit				Goo	dness-of-fit			
Anderson-Darlin	ng (adjusted)	3.307			Anderson-Darling	g (adjusted)	1.281			
Correlation coef	fficient	0.981			Correlation coefficient 0.98					
	Characteri	stics of distrib	ution		Characteristics of distribution					
Doorintor	Estimate	Standard	95% no	rmal CI	Dogguinter	Estimate	Standard	95% normal CI		
Descriptor	Estillate	error	Lower	Upper	Descriptor	Estimate	error	Lower	Upper	
Mean	0.751202	0.37721	0.280759	2.00993	Mean	31.5531	33.5261	3.93202	253.203	
Standard deviation	2.64349	2.77567	0.337609	20.6986	Standard deviation	455.321	914.887	8.87111	2.34×10^4	
Median	0.20534	0.0723157	0.102968	0.409492	Median	2.18136	1.1595	0.769608	6.18279	
First quartile (Q1)	0.0692924	0.035228	0.0255822	0.187687	First quartile (Q1)	0.458775	0.297545	0.128689	1.63553	
Third quartile (Q3)	0.608499	0.193027	0.326771	1.13312	Third quartile (Q3)	10.3718	5.85262	3.43193	31.3452	
Interquartile range (IQR)	0.539207	0.180896	0.279377	1.04069	Interquartile range (IQR)	9.91304	5.69917	3.21246	30.5898	

Appendix 4. Arsenic log-normal fit statistics by bedrock unit.—Continued

				Bedrock ur	nit abbreviation					
		Sgr					SOagr			
Censoring inf	ormation	Count			Censoring in	formation	Count			
Uncensored valu	ie	7			Uncensored valu	ie	7			
Left censored va	lue	0			Left censored va	lue	5			
Distribution		Log normal	 -		Distribution		Log normal			
	Parame	eter estimates	;			Paran	neter estimate	S		
D	F . 45 4 .	Standard	95% no	rmal CI	D	F.454.	Standard	95% no	rmal CI	
Parameter	Estimate	error	Lower	Upper	Parameter	Estimate	error	Lower	Upper	
Location	-0.0870687	0.221555	-0.521308	0.347171	Location	-0.996819	0.724544	-2.4169	0.423261	
Scale	0.505699	0.101615	0.341076	0.749778	Scale	2.22697	0.632122	1.27674	3.88443	
Log-likelihood		-9.715	·		Log-likelihood		-24.772			
	Good	dness-of-fit				God	odness-of-fit			
Anderson-Darling	g (adjusted)	3.111			Anderson-Darling (adjusted) 1.726					
Correlation coef	ficient	0.954			Correlation coefficient 0.947					
	Characteris	tics of distrib	ution		Characteristics of distribution					
Descriptor	Estimate	Standard	95% no	rmal CI	Descriptor	Estimate	Standard	95% no	rmal CI	
Descriptor	Estillate	error	Lower	Upper	Descriptor	Estillate	error	Lower	Upper	
Mean	1.04164	0.20888	0.703116	1.54315	Mean	4.40564	5.98493	0.307381	63.1452	
Standard deviation	0.562298	0.142746	0.341884	0.924815	Standard deviation	52.4085	140.438	0.274442	1.00×10^{4}	
Median	0.916614	0.20308	0.593743	1.41506	Median	0.369052	0.267394	0.0891978	1.52693	
First quartile (Q1)	0.651709	0.171367	0.389252	1.09113	First quartile (Q1) 0.0821762		0.078262	0.0127084	0.531378	
Third quartile (Q3)	1.2892	0.252714	0.877936	1.89311	Third quartile (Q3)	1.6574	1.17954	0.410814	6.68669	
Interquartile range (IQR)	0.637489	0.136533	0.418955	0.970013	Interquartile range (IQR)	1.57523	1.14191	0.380445	6.5222	

Appendix 4. Arsenic log-normal fit statistics by bedrock unit.—Continued

			ı	Bedrock uni	t abbreviation					
		Spsq*					Spss			
Censoring in	formation	Count			Censoring inf	ormation	Count			
Uncensored valu	ie	4			Uncensored value	e	5			
Left censored va	llue	5			Left censored val	lue	2			
Distribution		Log normal			Distribution		Log normal			
	Param	eter estimates				Param	eter estimate	s		
Parameter	Estimate	Standard	95% nor	mal CI	Parameter	Estimate	Standard	95% noi	mal CI	
Parameter	Estillate	error	Lower	Upper	Farameter	Estillate	error	Lower	Upper	
Location	-2.41045	0.846842	-4.07023	-0.750667	Location	-0.867381	0.508521	-1.86406	0.129302	
Scale	1.57953	0.495804	0.853772	2.92223	Scale	1.18838	0.332903	0.686285	2.0578	
Log-likelihood		-10.109			Log-likelihood		-10.976			
	Goo	dness-of-fit				Goo	dness-of-fit			
Anderson-Darlin	g (adjusted)	2.121			Anderson-Darling (adjusted) 2.799					
Correlation coef	ficient	0.966			Correlation coefficient 0.982					
	Characteris	stics of distribu	ıtion		Characteristics of distribution					
Danasistas	F-4:4-	Standard	95% nor	mal Cl	Descriptor	Fatimata.	Standard	95% noi	mal Cl	
Descriptor	Estimate	error	Lower	Upper	Descriptor	Estimate	error	Lower	Upper	
Mean	0.312551	0.199818	0.0892766	1.09422	Mean	0.851069	0.428686	0.317112	2.28411	
Standard deviation	1.04229	1.26353	0.0968518	11.2168	Standard deviation	1.4997	1.27936	0.281753	7.98256	
Median	0.0897751	0.0760253	0.0170735	0.472051	Median	0.42005	0.213604	0.155041	1.13803	
First quartile (Q1)	0.0309363	0.0342062	0.0035424	0.270172	First quartile (Q1)	0.188449	0.119276	0.0545049	0.651556	
Third quartile (Q3)	0.260522	0.171901	0.0714813	0.9495	Third quartile (Q3)	0.936287	0.436567	0.375418	2.33509	
Interquartile range (IQR)	0.229585	0.144786	0.0667025	0.790216	Interquartile range (IQR)	0.747838	0.362431	0.289256	1.93345	

Appendix 4. Arsenic log-normal fit statistics by bedrock unit.—Continued

				Bedrock u	nit abbreviation					
		Ssqd					SZtb			
Censoring info	ormation	Count			Censoring inf	ormation	Count			
Uncensored valu	e	11			Uncensored value	e	29			
Left censored va	lue	0			Left censored val	lue	4			
Distribution		Log normal			Distribution		Log normal			
	Param	eter estimates	;			Param	eter estimate:	S		
D	Fatimata.	Standard	95% noi	rmal CI	Dawawatan	F-4:4-	Standard	95% no	rmal CI	
Parameter	Estimate	error	Lower	Upper	Parameter	Estimate	error	Lower	Upper	
Location	0.412493	0.343881	-0.261502	1.08649	Location	-0.203752	0.250689	-0.695093	0.287588	
Scale	1.1237	0.320478	0.642518	1.96522	Scale	1.40051	0.187371	1.07747	1.8204	
Log-likelihood	Log-likelihood -21.008			Log-likelihood		-62.075				
	Goo	dness-of-fit				God	odness-of-fit			
Anderson-Darling	g (adjusted)	2.392			Anderson-Darling (adjusted) 0.892					
Correlation coeff	ficient	0.951			Correlation coeff	icient	0.992			
	Characteris	stics of distrib	ution		Characteristics of distribution					
Descriptor	Estimate	Standard	95% noi	rmal CI	Descriptor	Estimate	Standard	95% no	rmal CI	
Descriptor	Estillate	error	Lower	Upper	Descriptor	Estillate	error	Lower	Upper	
Mean	2.8401	1.28763	1.16794	6.90631	Mean	2.17486	0.715688	1.1411	4.14514	
Standard deviation	4.52184	3.94286	0.818658	24.9763	Standard deviation	5.3757	3.10934	1.7302	16.7023	
Median	1.51058	0.51946	0.769894	2.96385	Median	0.815664	0.204478	0.499028	1.33321	
First quartile (Q1)	0.707917	0.308919	0.30098	1.66505	First quartile (Q1) 0.317149		0.0951949	0.176104	0.571161	
Third quartile (Q3)	3.22333	1.20405	1.55005	6.70291	Third quartile (Q3)	2.09778	0.545174	1.26051	3.49117	
Interquartile range (IQR)	2.51541	1.10396	1.06423	5.94541	Interquartile range (IQR)	1.78063	0.49387	1.03392	3.06662	

Appendix 4. Arsenic log-normal fit statistics by bedrock unit.—Continued

				Bedrock un	it abbreviation					
		Zpg*			Zsg					
Censoring info	ormation	Count			Censoring info	Count				
Uncensored valu	ıe	2			Uncensored value	e	7			
Left censored va	llue	9			Left censored value 16					
Distribution		Log normal			Distribution Log normal					
	Param	eter estimate	es .			Param	eter estimates	5		
Dawawataw	Fatimata	Standard	95% no	rmal CI	Davassatav	F-4:4-	Standard	95% no	rmal CI	
Parameter	Estimate	error	Lower	Upper	Parameter	Estimate	error	Lower	Upper	
Location	-3.66411	0.771435	-5.17609	-2.15212	Location	-2.98176	0.999948	-4.94162	-1.0219	
Scale	1.66617	0.100537	1.48032	1.87534	Scale	1.70893	0.748103	0.724607	4.03039	
Log-likelihood		-3.006			Log-likelihood		-14.871			
	God	dness-of-fit				Goo	dness-of-fit			
Anderson-Darlin	g (adjusted)	2.214			Anderson-Darling (adjusted) 2.733					
Correlation coef	ficient	1			Correlation coefficient 0.982					
	Characteri	stics of distri	bution		Characteristics of distribution					
Descriptor	Estimate	Standard	95% no	rmal CI	Descriptor	Estimate	Standard	95% no	rmal CI	
Descriptor	Estillate	error	Lower	Upper	Descriptor		error	Lower	Upper	
Mean	0.102689	0.0779394	0.0231993	0.454541	Mean	0.218376	0.130661	0.0675934	0.705514	
Standard deviation	0.398461	0.313134	0.0854009	1.85913	Standard deviation	0.914828	1.64495	0.0269649	31.037	
Median	0.0256271	0.0197696	0.0056501	0.116237	Median	0.0507034	0.0507008	0.007143	0.35991	
First quartile (Q1)	0.0083298	0.0065524	0.0017826	0.0389236	First quartile (Q1)	0.016012	0.0234942	0.0009026	0.284057	
Third quartile (Q3)	0.0788433	0.0600783	0.0177073	0.351056	Third quartile (Q3)	0.160557	0.0958063	0.049855	0.517073	
Interquartile range (IQR)	0.0705135	0.0536348	0.0158789	0.313129	Interquartile range (IQR)	0.144545	0.0768037	0.0510177	0.409532	

Appendix 5. Probability of Uranium Exceeding a Given Concentration by Bedrock Unit

Appendix 5. Probability of uranium exceeding a given concentration by bedrock unit.

				Bedrock	unit abbrevia	ation			
		Dcgr			Dfgr			DI	
Uranium, in micro- grams per liter	Probability of concentration being greater than concentration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound
1	0.95614	0.51366	0.99964	0.64549	0.32667	0.88405	0.15706	0.03907	0.40068
2	0.88401	0.43605	0.99464	0.53055	0.24734	0.79848	0.06707	0.00759	0.28505
3	0.81477	0.38671	0.98120	0.46145	0.20378	0.73716	0.03710	0.00226	0.23244
4	0.75269	0.34946	0.96018	0.41300	0.17473	0.69003	0.02333	0.00085	0.20043
5	0.69779	0.31902	0.93403	0.37627	0.15347	0.65213	0.01588	0.00037	0.17825
6	0.64925	0.29304	0.90509	0.34705	0.13703	0.62065	0.01140	0.00018	0.16167
7	0.60617	0.27025	0.87509	0.32303	0.12384	0.59389	0.00852	0.00010	0.14867
8	0.56776	0.24991	0.84521	0.30281	0.11296	0.57073	0.00656	0.00005	0.13812
9	0.53332	0.23154	0.81621	0.28545	0.10381	0.55040	0.00517	0.00003	0.12932
10	0.50229	0.21481	0.78853	0.27033	0.09599	0.53235	0.00416	0.00002	0.12185
11	0.47420	0.19950	0.76239	0.25702	0.08921	0.51615	0.00340	0.00001	0.11540
12	0.44867	0.18543	0.73789	0.24516	0.08328	0.50151	0.00282	0.00001	0.10976
13	0.42537	0.17247	0.71502	0.23452	0.07804	0.48817	0.00237	0.00001	0.10476
14	0.40402	0.16051	0.69373	0.22490	0.07337	0.47595	0.00201	0.00000	0.10031
15	0.38440	0.14947	0.67395	0.21615	0.06918	0.46470	0.00172	0.00000	0.09631
16	0.36631	0.13925	0.65557	0.20815	0.06541	0.45429	0.00148	0.00000	0.09268
17	0.34958	0.12980	0.63849	0.20079	0.06199	0.44461	0.00129	0.00000	0.08937
18	0.33407	0.12106	0.62261	0.19400	0.05887	0.43558	0.00112	0.00000	0.08635
19	0.31966	0.11296	0.60782	0.18771	0.05602	0.42713	0.00099	0.00000	0.08356
20	0.30623	0.10545	0.59404	0.18186	0.05341	0.41920	0.00087	0.00000	0.08099
21	0.29369	0.09850	0.58116	0.17640	0.05100	0.41173	0.00078	0.00000	0.07860
22	0.28197	0.09206	0.56912	0.17129	0.04877	0.40469	0.00069	0.00000	0.07638
23	0.27098	0.08609	0.55784	0.16650	0.04670	0.39802	0.00062	0.00000	0.07431
24	0.26066	0.08055	0.54726	0.16199	0.04478	0.39170	0.00056	0.00000	0.07236
25	0.25095	0.07541	0.53731	0.15775	0.04299	0.38569	0.00050	0.00000	0.07054
26	0.24181	0.07064	0.52794	0.15374	0.04132	0.37997	0.00046	0.00000	0.06882
27	0.23319	0.06621	0.51910	0.14994	0.03976	0.37453	0.00042	0.00000	0.06721
28	0.22505	0.06209	0.51074	0.14635	0.03830	0.36932	0.00038	0.00000	0.06568
29	0.21735	0.05827	0.50284	0.14293	0.03692	0.36435	0.00035	0.00000	0.06423
30	0.21005	0.05471	0.49534	0.13968	0.03562	0.35958	0.00032	0.00000	0.06285
31	0.20313	0.05140	0.48822	0.13659	0.03440	0.35501	0.00029	0.00000	0.06155
32	0.19657	0.04832	0.48146	0.13364	0.03325	0.35062	0.00027	0.00000	0.06031
33	0.19033	0.04545	0.47502	0.13082	0.03216	0.34640	0.00025	0.00000	0.05912
34	0.18439	0.04277	0.46887	0.12813	0.03113	0.34234	0.00023	0.00000	0.05799
35	0.17874	0.04028	0.46301	0.12555	0.03015	0.33843	0.00021	0.00000	0.05691

Appendix 5. Probability of uranium exceeding a given concentration by bedrock unit. —Continued

				Bedrock	unit abbrevia	ation			
		Dcgr			Dfgr			DI	
Uranium, in micro- grams per liter	Probability of concentration being greater than concentration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound
36	0.17335	0.03795	0.45740	0.12308	0.02922	0.33466	0.00020	0.00000	0.05588
37	0.16821	0.03577	0.45204	0.12071	0.02834	0.33103	0.00018	0.00000	0.05489
38	0.16331	0.03374	0.44690	0.11843	0.02750	0.32751	0.00017	0.00000	0.05394
39	0.15862	0.03185	0.44196	0.11624	0.02670	0.32411	0.00016	0.00000	0.05302
40	0.15413	0.03007	0.43723	0.11414	0.02593	0.32082	0.00015	0.00000	0.05215
41	0.14984	0.02841	0.43267	0.11211	0.02521	0.31764	0.00014	0.00000	0.05130
42	0.14573	0.02686	0.42829	0.11016	0.02451	0.31455	0.00013	0.00000	0.05049
43	0.14179	0.02540	0.42407	0.10828	0.02385	0.31156	0.00012	0.00000	0.04971
44	0.13801	0.02404	0.42001	0.10646	0.02321	0.30866	0.00011	0.00000	0.04896
45	0.13438	0.02275	0.41608	0.10470	0.02260	0.30584	0.00011	0.00000	0.04823
46	0.13090	0.02155	0.41229	0.10301	0.02202	0.30310	0.00010	0.00000	0.04752
47	0.12755	0.02043	0.40863	0.10137	0.02146	0.30044	0.00009	0.00000	0.04684
48	0.12433	0.01937	0.40508	0.09978	0.02093	0.29785	0.00009	0.00000	0.04619
49	0.12123	0.01837	0.40165	0.09824	0.02041	0.29533	0.00008	0.00000	0.04555
50	0.11825	0.01743	0.39833	0.09676	0.01992	0.29287	0.00008	0.00000	0.04493
55	0.10488	0.01351	0.38316	0.08995	0.01770	0.28149	0.00006	0.00000	0.04212
60	0.09366	0.01058	0.36997	0.08406	0.01586	0.27140	0.00005	0.00000	0.03968
65	0.08415	0.00836	0.35838	0.07890	0.01430	0.26236	0.00004	0.00000	0.03754
70	0.07600	0.00667	0.34806	0.07434	0.01297	0.25420	0.00003	0.00000	0.03565
75	0.06897	0.00537	0.33880	0.07028	0.01183	0.24678	0.00002	0.00000	0.03397
80	0.06286	0.00435	0.33042	0.06664	0.01083	0.23999	0.00002	0.00000	0.03245
85	0.05751	0.00355	0.32278	0.06335	0.00996	0.23375	0.00002	0.00000	0.03108
90	0.05281	0.00292	0.31578	0.06037	0.00919	0.22798	0.00001	0.00000	0.02983
95	0.04864	0.00241	0.30932	0.05765	0.00851	0.22263	0.00001	0.00000	0.02869
100	0.04493	0.00201	0.30335	0.05516	0.00790	0.21764	0.00001	0.00000	0.02765
110	0.03865	0.00141	0.29260	0.05076	0.00687	0.20862	0.00001	0.00000	0.02579
120	0.03356	0.00101	0.28316	0.04699	0.00603	0.20064	0.00001	0.00000	0.02419
130	0.02938	0.00073	0.27479	0.04373	0.00534	0.19352	0.00000	0.00000	0.02279
140	0.02590	0.00054	0.26728	0.04087	0.00476	0.18712	0.00000	0.00000	0.02156
150	0.02298	0.00040	0.26048	0.03835	0.00427	0.18131	0.00000	0.00000	0.02047
160	0.02050	0.00031	0.25429	0.03610	0.00385	0.17601	0.00000	0.00000	0.01949
170	0.01839	0.00024	0.24862	0.03409	0.00349	0.17115	0.00000	0.00000	0.01860
180	0.01656	0.00018	0.24339	0.03229	0.00318	0.16666	0.00000	0.00000	0.01780
190	0.01498	0.00014	0.23855	0.03065	0.00290	0.16251	0.00000	0.00000	0.01708
200	0.01361	0.00011	0.23404	0.02916	0.00266	0.15865	0.00000	0.00000	0.01641

Appendix 5. Probability of uranium exceeding a given concentration by bedrock unit. —Continued

		Dcgr			Dfgr		DI			
Uranium, in micro- grams per liter	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	
210	0.01240	0.00009	0.22983	0.02780	0.00245	0.15505	0.00000	0.00000	0.01579	
220	0.01134	0.00007	0.22589	0.02655	0.00226	0.15168	0.00000	0.00000	0.01523	
230	0.01040	0.00006	0.22219	0.02541	0.00210	0.14852	0.00000	0.00000	0.01470	
240	0.00956	0.00005	0.21869	0.02435	0.00195	0.14554	0.00000	0.00000	0.01422	
250	0.00881	0.00004	0.21539	0.02337	0.00181	0.14273	0.00000	0.00000	0.01376	
260	0.00815	0.00003	0.21227	0.02245	0.00169	0.14007	0.00000	0.00000	0.01334	
270	0.00755	0.00003	0.20930	0.02161	0.00158	0.13755	0.00000	0.00000	0.01294	
280	0.00700	0.00002	0.20648	0.02082	0.00148	0.13516	0.00000	0.00000	0.01257	
290	0.00651	0.00002	0.20379	0.02007	0.00139	0.13289	0.00000	0.00000	0.01222	
300	0.00607	0.00002	0.20122	0.01938	0.00130	0.13073	0.00000	0.00000	0.01189	

Appendix 5. Probability of uranium exceeding a given concentration, by bedrock unit.—Continued

				Bedrock	unit abbrevia	ation			
		DSw			Ops*			0Zf	
Uranium, in micro- grams per liter	Probability of concentration being greater than concentration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound
1	0.27948	0.09368	0.55948	0.0035097	0.0002758	0.0263434	0.22587	0.07024	0.48763
2	0.14055	0.02225	0.44187	0.0009592	0.0000546	0.0097475	0.08718	0.01214	0.32133
3	0.08590	0.00696	0.39223	0.0004182	0.0000196	0.005111	0.04339	0.00294	0.25130
4	0.05806	0.00263	0.36239	0.0002247	0.0000091	0.0031409	0.02476	0.00089	0.21056
5	0.04181	0.00114	0.34152	0.0001362	0.0000049	0.0021176	0.01542	0.00032	0.18314
6	0.03145	0.00054	0.32567	0.0000894	0.0000029	0.0015181	0.01021	0.00013	0.16310
7	0.02444	0.00028	0.31299	0.0000621	0.0000019	0.0011371	0.00708	0.00006	0.14764
8	0.01948	0.00015	0.30248	0.000045	0.0000013	0.0008804	0.00509	0.00003	0.13527
9	0.01584	0.00009	0.29355	0.0000337	0.0000009	0.0006995	0.00376	0.00001	0.12510
10	0.01309	0.00005	0.28580	0.000026	0.0000007	0.0005675	0.00285	0.00001	0.11655
11	0.01097	0.00003	0.27898	0.0000204	0.0000005	0.0004683	0.00220	0.00000	0.10924
12	0.00930	0.00002	0.27290	0.0000163	0.0000004	0.0003921	0.00173	0.00000	0.10290
13	0.00797	0.00001	0.26742	0.0000133	0.0000003	0.0003324	0.00138	0.00000	0.09735
14	0.00689	0.00001	0.26245	0.000011	0.0000002	0.0002847	0.00111	0.00000	0.09243
15	0.00600	0.00001	0.25790	0.0000091	0.0000002	0.0002462	0.00091	0.00000	0.08804
16	0.00526	0.00000	0.25372	0.0000077	0.0000001	0.0002146	0.00075	0.00000	0.08409
17	0.00464	0.00000	0.24984	0.0000066	0.0000001	0.0001884	0.00062	0.00000	0.08052
18	0.00412	0.00000	0.24624	0.0000056	0.0000001	0.0001665	0.00052	0.00000	0.07727
19	0.00368	0.00000	0.24288	0.0000049	0.0000001	0.000148	0.00044	0.00000	0.07429
20	0.00329	0.00000	0.23973	0.0000042	0.0000001	0.0001322	0.00038	0.00000	0.07156
21	0.00296	0.00000	0.23676	0.0000037	0.0000001	0.0001187	0.00032	0.00000	0.06904
22	0.00268	0.00000	0.23397	0.0000033	0.0000001	0.000107	0.00028	0.00000	0.06670
23	0.00243	0.00000	0.23132	0.0000029	0.0000000	0.0000969	0.00024	0.00000	0.06453
24	0.00221	0.00000	0.22882	0.0000026	0.0000000	0.0000881	0.00021	0.00000	0.06251
25	0.00202	0.00000	0.22643	0.0000023	0.0000000	0.0000803	0.00018	0.00000	0.06062
26	0.00184	0.00000	0.22417	0.000002	0.0000000	0.0000734	0.00016	0.00000	0.05885
27	0.00169	0.00000	0.22200	0.0000018	0.0000000	0.0000674	0.00014	0.00000	0.05719
28	0.00156	0.00000	0.21993	0.0000017	0.0000000	0.000062	0.00012	0.00000	0.05563
29	0.00143	0.00000	0.21795	0.0000015	0.0000000	0.0000572	0.00011	0.00000	0.05416
30	0.00133	0.00000	0.21606	0.0000014	0.0000000	0.0000528	0.00010	0.00000	0.05276
31	0.00123	0.00000	0.21423	0.0000012	0.0000000	0.000049	0.00009	0.00000	0.05145
32	0.00114	0.00000	0.21248	0.0000011	0.0000000	0.0000455	0.00008	0.00000	0.05020
33	0.00106	0.00000	0.21079	0.000001	0.0000000	0.0000423	0.00007	0.00000	0.04901
34	0.00099	0.00000	0.20917	0.0000009	0.0000000	0.0000394	0.00006	0.00000	0.04788
35	0.00092	0.00000	0.20760	0.0000009	0.0000000	0.0000368	0.00006	0.00000	0.04681

Appendix 5. Probability of uranium exceeding a given concentration, by bedrock unit.—Continued

		Bedrock unit abbreviation									
		DSw			Ops*			0Zf			
Uranium, in micro- grams per liter	Probability of concentration being greater than concentration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound		
36	0.00086	0.00000	0.20608	0.0000008	0.0000001	0.0000344	0.00005	0.00000	0.04578		
37	0.00080	0.00000	0.20462	0.0000007	0.0000001	0.0000323	0.00005	0.00000	0.04480		
38	0.00075	0.00000	0.20320	0.0000007	0.0000000	0.0000303	0.00004	0.00000	0.04387		
39	0.00071	0.00000	0.20183	0.0000006	0.0000000	0.0000285	0.00004	0.00000	0.04297		
40	0.00066	0.00000	0.20050	0.0000006	0.0000000	0.0000268	0.00004	0.00000	0.04211		
41	0.00062	0.00000	0.19921	0.0000005	0.0000000	0.0000252	0.00003	0.00000	0.04129		
42	0.00059	0.00000	0.19796	0.0000005	0.0000000	0.0000238	0.00003	0.00000	0.04050		
43	0.00055	0.00000	0.19674	0.0000005	0.0000000	0.0000225	0.00003	0.00000	0.03974		
44	0.00052	0.00000	0.19555	0.0000004	0.0000000	0.0000213	0.00003	0.00000	0.03901		
45	0.00049	0.00000	0.19440	0.0000004	0.0000000	0.0000201	0.00002	0.00000	0.03831		
46	0.00047	0.00000	0.19328	0.0000004	0.0000001	0.0000191	0.00002	0.00000	0.03764		
47	0.00044	0.00000	0.19219	0.0000004	0.0000001	0.0000181	0.00002	0.00000	0.03699		
48	0.00042	0.00000	0.19113	0.0000003	0.0000000	0.0000172	0.00002	0.00000	0.03636		
49	0.00040	0.00000	0.19009	0.0000003	0.0000000	0.0000163	0.00002	0.00000	0.03575		
50	0.00038	0.00000	0.18908	0.0000003	0.0000000	0.0000155	0.00002	0.00000	0.03516		
55	0.00029	0.00000	0.18436	0.0000002	0.0000000	0.0000123	0.00001	0.00000	0.03251		
60	0.00023	0.00000	0.18014	0.0000002	0.0000000	0.0000099	0.00001	0.00000	0.03024		
65	0.00019	0.00000	0.17633	0.0000001	0.0000000	0.000008	0.00001	0.00000	0.02827		
70	0.00015	0.00000	0.17286	0.0000001	0.0000000	0.0000067	0.00000	0.00000	0.02654		
75	0.00013	0.00000	0.16967	0.0000001	0.0000000	0.0000056	0.00000	0.00000	0.02502		
80	0.00011	0.00000	0.16673	0.0000001	0.0000001	0.0000047	0.00000	0.00000	0.02367		
85	0.00009	0.00000	0.16401	0.0000001	0.0000001	0.000004	0.00000	0.00000	0.02245		
90	0.00008	0.00000	0.16148	0.0000000	0.0000000	0.0000035	0.00000	0.00000	0.02136		
95	0.00007	0.00000	0.15911	0.0000000	0.0000000	0.000003	0.00000	0.00000	0.02036		
100	0.00006	0.00000	0.15689	0.0000000	0.0000000	0.0000026	0.00000	0.00000	0.01946		
110	0.00004	0.00000	0.15282	0.0000000	0.0000000	0.000002	0.00000	0.00000	0.01787		
120	0.00003	0.00000	0.14918	0.0000000		0.0000016	0.00000	0.00000	0.01652		
130	0.00003	0.00000	0.14590	0.0000000	0.0000000	0.0000013	0.00000	0.00000	0.01536		
140	0.00002	0.00000	0.14290	0.0000000	0.0000000		0.00000	0.00000	0.01434		
150	0.00002	0.00000	0.14016	0.0000000		0.0000009	0.00000	0.00000	0.01346		
160	0.00001	0.00000	0.13763	0.0000001		0.0000007	0.00000	0.00000	0.01267		
170	0.00001	0.00000	0.13529	0.0000001		0.0000006	0.00000	0.00000	0.01197		
180	0.00001	0.00000	0.13311	0.0000000		0.0000005	0.00000	0.00000	0.01133		
190	0.00001	0.00000	0.13107	0.0000000		0.0000004	0.00000	0.00000	0.01077		
200	0.00001	0.00000	0.12916	0.0000000		0.0000004	0.00000	0.00000	0.01077		

Appendix 5. Probability of uranium exceeding a given concentration, by bedrock unit.—Continued

				Bedrock	unit abbrevia	tion			
		DSw			Ops*			0Zf	
Uranium, in micro- grams per liter	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound
210	0.00001	0.00000	0.12737	0.0000000	0.0000000	0.0000003	0.00000	0.00000	0.00978
220	0.00001	0.00000	0.12567	0.0000000	0.0000000	0.0000003	0.00000	0.00000	0.00935
230	0.00000	0.00000	0.12407	0.0000000	0.0000000	0.0000003	0.00000	0.00000	0.00895
240	0.00000	0.00000	0.12255	0.0000000	0.0000000	0.0000002	0.00000	0.00000	0.00859
250	0.00000	0.00000	0.12111	0.0000000	0.0000000	0.0000002	0.00000	0.00000	0.00825
260	0.00000	0.00000	0.11973	0.0000001	0.0000001	0.0000002	0.00000	0.00000	0.00794
270	0.00000	0.00000	0.11842	0.0000001	0.0000001	0.0000002	0.00000	0.00000	0.00764
280	0.00000	0.00000	0.11717	0.0000000	0.0000000	0.0000001	0.00000	0.00000	0.00737
290	0.00000	0.00000	0.11597	0.0000000	0.0000000	0.0000001	0.00000	0.00000	0.00712
300	0.00000	0.00000	0.11482	0.0000000	0.0000000	0.0000001	0.00000	0.00000	0.00688

Appendix 5. Probability of uranium exceeding a given concentration, by bedrock unit.—Continued

	Bedrock unit abbreviation										
		0Zm			0Zn			0Znb			
Uranium, in micro- grams per liter	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound		
1	0.39299	0.18635	0.63622	0.50445	0.36570	0.64266	0.20132	0.09010	0.36931		
2	0.28816	0.11589	0.53119	0.31779	0.20138	0.45578	0.12168	0.04290	0.26921		
3	0.23368	0.08203	0.47528	0.22434	0.12633	0.35520	0.08700	0.02593	0.21925		
4	0.19878	0.06210	0.43859	0.16880	0.08553	0.29148	0.06729	0.01758	0.18780		
5	0.17401	0.04905	0.41184	0.13241	0.06099	0.24710	0.05453	0.01276	0.16567		
6	0.15529	0.03993	0.39107	0.10700	0.04518	0.21425	0.04559	0.00970	0.14902		
7	0.14054	0.03324	0.37425	0.08842	0.03446	0.18887	0.03899	0.00763	0.13592		
8	0.12856	0.02816	0.36021	0.07437	0.02691	0.16864	0.03392	0.00616	0.12529		
9	0.11860	0.02420	0.34821	0.06346	0.02142	0.15212	0.02991	0.00507	0.11643		
10	0.11016	0.02104	0.33778	0.05479	0.01732	0.13836	0.02667	0.00424	0.10892		
11	0.10291	0.01847	0.32859	0.04778	0.01420	0.12673	0.02399	0.00360	0.10245		
12	0.09659	0.01635	0.32039	0.04202	0.01179	0.11676	0.02175	0.00309	0.09681		
13	0.09104	0.01458	0.31301	0.03724	0.00988	0.10813	0.01984	0.00268	0.09183		
14	0.08611	0.01308	0.30630	0.03321	0.00836	0.10058	0.01821	0.00235	0.08740		
15	0.08171	0.01180	0.30018	0.02979	0.00713	0.09392	0.01679	0.00207	0.08343		
16	0.07774	0.01070	0.29454	0.02687	0.00613	0.08800	0.01555	0.00183	0.07985		
17	0.07415	0.00975	0.28933	0.02434	0.00530	0.08272	0.01446	0.00164	0.07660		
18	0.07088	0.00892	0.28449	0.02214	0.00461	0.07797	0.01349	0.00147	0.07362		
19	0.06790	0.00819	0.27998	0.02022	0.00403	0.07367	0.01263	0.00132	0.07090		
20	0.06515	0.00754	0.27575	0.01853	0.00354	0.06978	0.01185	0.00120	0.06839		
21	0.06262	0.00697	0.27178	0.01703	0.00313	0.06622	0.01115	0.00109	0.06607		
22	0.06028	0.00646	0.26805	0.01571	0.00277	0.06297	0.01052	0.00100	0.06392		
23	0.05811	0.00600	0.26451	0.01452	0.00247	0.05999	0.00995	0.00091	0.06191		
24	0.05609	0.00559	0.26117	0.01346	0.00221	0.05724	0.00942	0.00084	0.06004		
25	0.05421	0.00522	0.25800	0.01250	0.00198	0.05470	0.00894	0.00077	0.05829		
26	0.05244	0.00488	0.25498	0.01164	0.00178	0.05234	0.00850	0.00071	0.05665		
27	0.05079	0.00457	0.25210	0.01086	0.00160	0.05016	0.00809	0.00066	0.05510		
28	0.04923	0.00429	0.24935	0.01015	0.00145	0.04812	0.00772	0.00061	0.05364		
29	0.04777	0.00404	0.24673	0.00951	0.00132	0.04623	0.00737	0.00057	0.05227		
30	0.04639	0.00380	0.24421	0.00892	0.00120	0.04445	0.00705	0.00053	0.05097		
31	0.04508	0.00359	0.24180	0.00838	0.00109	0.04279	0.00675	0.00050	0.04973		
32	0.04385	0.00339	0.23948	0.00789	0.00100	0.04123	0.00647	0.00046	0.04856		
33	0.04268	0.00321	0.23726	0.00743	0.00091	0.03976	0.00621	0.00043	0.04745		
34	0.04157	0.00304	0.23511	0.00702	0.00084	0.03838	0.00596	0.00041	0.04639		
35	0.04051	0.00288	0.23304	0.00663	0.00077	0.03708	0.00573	0.00038	0.04538		

Appendix 5. Probability of uranium exceeding a given concentration, by bedrock unit.—Continued

				Bedrock	unit abbrevia	ation			
		0Zm			0Zn			OZnb	
Uranium, in micro- grams per liter	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound
36	0.03950	0.00274	0.23105	0.00627	0.00071	0.03584	0.00552	0.00036	0.04442
37	0.03855	0.00260	0.22912	0.00594	0.00065	0.03468	0.00532	0.00034	0.04350
38	0.03763	0.00248	0.22726	0.00563	0.00060	0.03358	0.00513	0.00032	0.04262
39	0.03676	0.00236	0.22546	0.00535	0.00056	0.03253	0.00495	0.00030	0.04177
40	0.03592	0.00225	0.22372	0.00508	0.00052	0.03154	0.00478	0.00029	0.04096
41	0.03512	0.00215	0.22202	0.00483	0.00048	0.03060	0.00462	0.00027	0.04019
42	0.03435	0.00205	0.22038	0.00460	0.00045	0.02970	0.00446	0.00026	0.03944
43	0.03362	0.00196	0.21879	0.00439	0.00041	0.02885	0.00432	0.00024	0.03872
44	0.03291	0.00188	0.21725	0.00418	0.00039	0.02803	0.00418	0.00023	0.03803
45	0.03223	0.00180	0.21574	0.00399	0.00036	0.02725	0.00405	0.00022	0.03737
46	0.03158	0.00173	0.21428	0.00382	0.00034	0.02651	0.00393	0.00021	0.03673
47	0.03095	0.00166	0.21286	0.00365	0.00031	0.02580	0.00381	0.00020	0.03611
48	0.03035	0.00159	0.21148	0.00349	0.00029	0.02512	0.00370	0.00019	0.03551
49	0.02977	0.00153	0.21013	0.00334	0.00028	0.02447	0.00359	0.00018	0.03494
50	0.02921	0.00147	0.20881	0.00320	0.00026	0.02385	0.00349	0.00017	0.03438
55	0.02667	0.00121	0.20270	0.00261	0.00019	0.02109	0.00304	0.00014	0.03185
60	0.02453	0.00102	0.19725	0.00216	0.00014	0.01881	0.00268	0.00012	0.02968
65	0.02268	0.00086	0.19234	0.00181	0.00011	0.01691	0.00238	0.00010	0.02780
70	0.02108	0.00074	0.18788	0.00153	0.00009	0.01530	0.00213	0.00008	0.02615
75	0.01967	0.00064	0.18381	0.00131	0.00007	0.01392	0.00192	0.00007	0.02469
80	0.01843	0.00056	0.18006	0.00112	0.00005	0.01273	0.00174	0.00006	0.02338
85	0.01732	0.00049	0.17660	0.00098	0.00004	0.01169	0.00159	0.00005	0.02221
90	0.01633	0.00043	0.17338	0.00085	0.00004	0.01078	0.00145	0.00004	0.02115
95	0.01544	0.00038	0.17039	0.00075	0.00003	0.00998	0.00134	0.00004	0.02019
100	0.01464	0.00034	0.16758	0.00066	0.00002	0.00927	0.00123	0.00003	0.01932
110	0.01323	0.00028	0.16247	0.00052	0.00002	0.00807	0.00106	0.00003	0.01778
120	0.01206	0.00023	0.15791	0.00042	0.00001	0.00709	0.00092	0.00002	0.01647
130	0.01105	0.00019	0.15381	0.00034	0.00001	0.00629	0.00081	0.00002	0.01533
140	0.01019	0.00016	0.15009	0.00028	0.00001	0.00562	0.00072	0.00001	0.01435
150	0.00944	0.00013	0.14669	0.00024	0.00001	0.00505	0.00064	0.00001	0.01348
160	0.00878	0.00011	0.14357	0.00020	0.00000	0.00457	0.00058	0.00001	0.01271
170	0.00820	0.00010	0.14068	0.00017	0.00000	0.00415	0.00052	0.00001	0.01202
180	0.00769	0.00009	0.13800	0.00015	0.00000	0.00380	0.00047	0.00001	0.01140
190	0.00723	0.00008	0.13551	0.00013	0.00000	0.00348	0.00043	0.00001	0.01084
200	0.00681	0.00007	0.13318	0.00011	0.00000	0.00320	0.00039	0.00001	0.01033

Appendix 5. Probability of uranium exceeding a given concentration, by bedrock unit.—Continued

				ation					
		0Zm			0Zn			OZnb	
Uranium, in micro- grams per liter	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound
210	0.00644	0.00006	0.13099	0.00010	0.00000	0.00296	0.00036	0.00000	0.00987
220	0.00610	0.00005	0.12893	0.00008	0.00000	0.00274	0.00033	0.00000	0.00944
230	0.00579	0.00005	0.12698	0.00007	0.00000	0.00255	0.00031	0.00000	0.00905
240	0.00550	0.00004	0.12514	0.00007	0.00000	0.00238	0.00029	0.00000	0.00869
250	0.00524	0.00004	0.12340	0.00006	0.00000	0.00222	0.00027	0.00000	0.00836
260	0.00500	0.00003	0.12174	0.00005	0.00000	0.00208	0.00025	0.00000	0.00805
270	0.00478	0.00003	0.12016	0.00005	0.00000	0.00195	0.00023	0.00000	0.00776
280	0.00457	0.00003	0.11866	0.00004	0.00000	0.00183	0.00022	0.00000	0.00749
290	0.00438	0.00003	0.11722	0.00004	0.00000	0.00173	0.00021	0.00000	0.00724
300	0.00421	0.00002	0.11585	0.00003	0.00000	0.00163	0.00019	0.00000	0.00700

Appendix 5. Probability of uranium exceeding a given concentration, by bedrock unit.—Continued

				Bedrock	unit abbrevia	ation			
		Ph			Sacgr			Sagr	
Uranium, in micro- grams per liter	Probability of concentration being greater than concentration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound
1	0.47220	0.23247	0.72282	0.69951	0.59142	0.79240	0.57749	0.33202	0.79539
2	0.38398	0.16877	0.64392	0.55401	0.44593	0.65820	0.46876	0.24920	0.69856
3	0.33475	0.13536	0.59782	0.46387	0.35942	0.57089	0.40572	0.20238	0.63909
4	0.30141	0.11388	0.56571	0.40076	0.30036	0.50822	0.36234	0.17092	0.59719
5	0.27663	0.09862	0.54129	0.35345	0.25703	0.46036	0.32983	0.14795	0.56534
6	0.25715	0.08711	0.52173	0.31637	0.22376	0.42223	0.30418	0.13029	0.53991
7	0.24126	0.07806	0.50549	0.28639	0.19737	0.39093	0.28322	0.11624	0.51890
8	0.22794	0.07073	0.49165	0.26155	0.17592	0.36463	0.26564	0.10476	0.50111
9	0.21654	0.06466	0.47963	0.24061	0.15816	0.34213	0.25060	0.09519	0.48574
10	0.20662	0.05954	0.46903	0.22267	0.14321	0.32261	0.23755	0.08710	0.47226
11	0.19789	0.05515	0.45957	0.20712	0.13048	0.30546	0.22606	0.08015	0.46030
12	0.19012	0.05135	0.45104	0.19351	0.11951	0.29025	0.21586	0.07413	0.44956
13	0.18314	0.04803	0.44328	0.18147	0.10997	0.27664	0.20672	0.06885	0.43985
14	0.17682	0.04509	0.43618	0.17076	0.10162	0.26438	0.19846	0.06420	0.43099
15	0.17106	0.04248	0.42963	0.16116	0.09424	0.25325	0.19095	0.06006	0.42286
16	0.16578	0.04013	0.42357	0.15251	0.08768	0.24311	0.18409	0.05637	0.41537
17	0.16092	0.03802	0.41792	0.14466	0.08183	0.23382	0.17778	0.05304	0.40841
18	0.15643	0.03611	0.41265	0.13752	0.07657	0.22526	0.17196	0.05003	0.40194
19	0.15225	0.03437	0.40770	0.13099	0.07183	0.21735	0.16657	0.04730	0.39589
20	0.14836	0.03277	0.40305	0.12499	0.06754	0.21001	0.16156	0.04481	0.39021
21	0.14472	0.03131	0.39866	0.11947	0.06363	0.20319	0.15689	0.04254	0.38487
22	0.14130	0.02996	0.39450	0.11437	0.06007	0.19682	0.15251	0.04045	0.37983
23	0.13809	0.02872	0.39055	0.10964	0.05681	0.19085	0.14841	0.03852	0.37507
24	0.13507	0.02757	0.38680	0.10524	0.05381	0.18526	0.14455	0.03675	0.37054
25	0.13221	0.02649	0.38323	0.10115	0.05106	0.18000	0.14092	0.03510	0.36625
26	0.12950	0.02549	0.37981	0.09733	0.04851	0.17504	0.13748	0.03357	0.36215
27	0.12693	0.02456	0.37655	0.09375	0.04616	0.17036	0.13423	0.03215	0.35825
28	0.12448	0.02369	0.37343	0.09039	0.04397	0.16593	0.13115	0.03082	0.35452
29	0.12216	0.02287	0.37043	0.08724	0.04195	0.16174	0.12822	0.02958	0.35095
30	0.11994	0.02210	0.36755	0.08428	0.04006	0.15776	0.12543	0.02842	0.34752
31	0.11782	0.02137	0.36477	0.08148	0.03829	0.15397	0.12278	0.02734	0.34423
32	0.11580	0.02069	0.36211	0.07884	0.03665	0.15036	0.12025	0.02631	0.34107
33	0.11386	0.02004	0.35953	0.07634	0.03511	0.14693	0.11783	0.02535	0.33803
34	0.11200	0.01943	0.35705	0.07398	0.03366	0.14365	0.11552	0.02445	0.33510
35	0.11021	0.01886	0.35465	0.07174	0.03230	0.14052	0.11330	0.02359	0.33228

Appendix 5. Probability of uranium exceeding a given concentration, by bedrock unit.—Continued

			Bedrock unit abbreviation							
		Ph			Sacgr		Sagr			
Uranium, in micro- grams per liter	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	
36	0.10850	0.01831	0.35233	0.06961	0.03103	0.13752	0.11118	0.02278	0.32955	
37	0.10685	0.01779	0.35008	0.06758	0.02983	0.13465	0.10914	0.02202	0.32691	
38	0.10526	0.01729	0.34790	0.06566	0.02869	0.13189	0.10719	0.02129	0.32436	
39	0.10373	0.01682	0.34579	0.06383	0.02762	0.12925	0.10530	0.02061	0.32189	
40	0.10226	0.01637	0.34374	0.06208	0.02661	0.12672	0.10349	0.01995	0.31950	
41	0.10083	0.01594	0.34175	0.06041	0.02566	0.12428	0.10175	0.01933	0.31718	
42	0.09946	0.01553	0.33981	0.05881	0.02475	0.12193	0.10007	0.01874	0.31493	
43	0.09813	0.01514	0.33793	0.05729	0.02389	0.11967	0.09844	0.01818	0.31274	
44	0.09684	0.01476	0.33610	0.05583	0.02308	0.11749	0.09688	0.01765	0.31061	
45	0.09559	0.01440	0.33432	0.05443	0.02230	0.11539	0.09536	0.01713	0.30855	
46	0.09438	0.01406	0.33258	0.05309	0.02156	0.11337	0.09390	0.01665	0.30654	
47	0.09321	0.01373	0.33089	0.05180	0.02086	0.11141	0.09248	0.01618	0.30458	
48	0.09208	0.01341	0.32924	0.05056	0.02020	0.10952	0.09111	0.01573	0.30267	
49	0.09098	0.01311	0.32762	0.04938	0.01956	0.10769	0.08979	0.01531	0.30081	
50	0.08991	0.01281	0.32605	0.04823	0.01895	0.10592	0.08850	0.01490	0.29900	
55	0.08498	0.01150	0.31870	0.04313	0.01630	0.09786	0.08261	0.01309	0.29056	
60	0.08067	0.01041	0.31210	0.03886	0.01415	0.09092	0.07750	0.01160	0.28303	
65	0.07685	0.00948	0.30611	0.03524	0.01240	0.08488	0.07301	0.01035	0.27623	
70	0.07343	0.00868	0.30064	0.03215	0.01094	0.07957	0.06904	0.00930	0.27004	
75	0.07036	0.00799	0.29562	0.02947	0.00972	0.07486	0.06549	0.00841	0.26438	
80	0.06757	0.00739	0.29097	0.02713	0.00869	0.07066	0.06230	0.00764	0.25918	
85	0.06504	0.00686	0.28666	0.02508	0.00781	0.06688	0.05942	0.00698	0.25435	
90	0.06271	0.00639	0.28263	0.02327	0.00705	0.06347	0.05679	0.00639	0.24987	
95	0.06058	0.00597	0.27887	0.02165	0.00639	0.06037	0.05440	0.00588	0.24569	
100	0.05860	0.00560	0.27532	0.02021	0.00582	0.05754	0.05220	0.00543	0.24177	
110	0.05506	0.00496	0.26883	0.01775	0.00487	0.05257	0.04830	0.00467	0.23462	
120	0.05199	0.00443	0.26301	0.01573	0.00413	0.04834	0.04495	0.00406	0.22824	
130	0.04928	0.00398	0.25773	0.01405	0.00354	0.04471	0.04203	0.00356	0.22249	
140	0.04687	0.00361	0.25292	0.01263	0.00306	0.04154	0.03947	0.00315	0.21726	
150	0.04471	0.00329	0.24850	0.01143	0.00266	0.03876	0.03721	0.00280	0.21248	
160	0.04277	0.00301	0.24441	0.01039	0.00234	0.03630	0.03518	0.00251	0.20809	
170	0.04101	0.00277	0.24062	0.00949	0.00207	0.03411	0.03336	0.00226	0.20402	
180	0.03940	0.00256	0.23709	0.00871	0.00183	0.03215	0.03172	0.00204	0.20025	
190	0.03793	0.00237	0.23378	0.00802	0.00164	0.03038	0.03023	0.00186	0.19672	

Appendix 5. Probability of uranium exceeding a given concentration, by bedrock unit.—Continued

				Bedrock	unit abbrevi	ation				
		Ph			Sacgr			Sagr		
Uranium, in micro- grams per liter	Probability of concentration being greater than concentration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	
210	0.03532	0.00206	0.22775	0.00687	0.00132	0.02732	0.02762	0.00155	0.19033	
220	0.03416	0.00192	0.22499	0.00639	0.00120	0.02599	0.02647	0.00143	0.18741	
230	0.03308	0.00180	0.22237	0.00596	0.00109	0.02477	0.02541	0.00131	0.18466	
240	0.03207	0.00170	0.21989	0.00557	0.00099	0.02365	0.02443	0.00122	0.18205	
250	0.03113	0.00160	0.21753	0.00522	0.00090	0.02262	0.02352	0.00113	0.17958	
260	0.03024	0.00151	0.21527	0.00490	0.00083	0.02166	0.02268	0.00105	0.17723	
270	0.02941	0.00143	0.21312	0.00460	0.00076	0.02077	0.02188	0.00097	0.17499	
280	0.02863	0.00135	0.21107	0.00434	0.00070	0.01994	0.02114	0.00091	0.17285	
290	0.02789	0.00128	0.20910	0.00410	0.00065	0.01917	0.02045	0.00085	0.17080	
300	0.02719	0.00122	0.20721	0.00387	0.00060	0.01845	0.01980	0.00080	0.16885	

Appendix 5. Probability of uranium exceeding a given concentration, by bedrock unit.—Continued

		Bedrock unit abbreviation							
		Sb			Sbs			Se	
Uranium, in micro- grams per liter	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound
1	0.44502	0.26442	0.63806	0.28874	0.12867	0.50739	0.35132	0.14117	0.62230
2	0.27017	0.13088	0.45922	0.09640	0.02179	0.27875	0.09921	0.01598	0.33459
3	0.18684	0.07521	0.36649	0.04108	0.00484	0.18692	0.03476	0.00195	0.22850
4	0.13866	0.04725	0.30833	0.02030	0.00133	0.13758	0.01425	0.00029	0.17273
5	0.10768	0.03156	0.26777	0.01108	0.00043	0.10695	0.00654	0.00005	0.13793
6	0.08634	0.02205	0.23754	0.00651	0.00016	0.08622	0.00327	0.00001	0.11407
7	0.07090	0.01596	0.21397	0.00403	0.00006	0.07136	0.00175	0.00000	0.09668
8	0.05933	0.01188	0.19497	0.00261	0.00003	0.06025	0.00099	0.00000	0.08345
9	0.05040	0.00904	0.17928	0.00175	0.00001	0.05168	0.00058	0.00000	0.07308
10	0.04335	0.00702	0.16607	0.00121	0.00001	0.04490	0.00036	0.00000	0.06473
11	0.03768	0.00554	0.15476	0.00086	0.00000	0.03943	0.00022	0.00000	0.05789
12	0.03305	0.00443	0.14495	0.00062	0.00000	0.03494	0.00015	0.00000	0.05218
13	0.02921	0.00359	0.13636	0.00046	0.00000	0.03120	0.00010	0.00000	0.04735
14	0.02600	0.00294	0.12876	0.00034	0.00000	0.02804	0.00007	0.00000	0.04323
15	0.02328	0.00243	0.12199	0.00026	0.00000	0.02536	0.00005	0.00000	0.03967
16	0.02095	0.00203	0.11590	0.00020	0.00000	0.02305	0.00003	0.00000	0.03656
17	0.01895	0.00171	0.11041	0.00016	0.00000	0.02105	0.00002	0.00000	0.03384
18	0.01721	0.00145	0.10542	0.00012	0.00000	0.01930	0.00002	0.00000	0.03144
19	0.01570	0.00123	0.10086	0.00010	0.00000	0.01777	0.00001	0.00000	0.02930
20	0.01437	0.00106	0.09668	0.00008	0.00000	0.01641	0.00001	0.00000	0.02738
21	0.01319	0.00091	0.09284	0.00006	0.00000	0.01520	0.00001	0.00000	0.02566
22	0.01215	0.00079	0.08929	0.00005	0.00000	0.01413	0.00001	0.00000	0.02411
23	0.01122	0.00069	0.08600	0.00004	0.00000	0.01316	0.00000	0.00000	0.02271
24	0.01039	0.00060	0.08294	0.00004	0.00000	0.01229	0.00000	0.00000	0.02143
25	0.00965	0.00053	0.08009	0.00003	0.00000	0.01150	0.00000	0.00000	0.02026
26	0.00898	0.00047	0.07742	0.00003	0.00000	0.01079	0.00000	0.00000	0.01919
27	0.00837	0.00041	0.07493	0.00002	0.00000	0.01014	0.00000	0.00000	0.01821
28	0.00782	0.00037	0.07258	0.00002	0.00000	0.00955	0.00000	0.00000	0.01730
29	0.00732	0.00033	0.07038	0.00002	0.00000	0.00901	0.00000	0.00000	0.01647
30	0.00686	0.00029	0.06830	0.00001	0.00000	0.00851	0.00000	0.00000	0.01570
31	0.00644	0.00026	0.06634	0.00001	0.00000	0.00805	0.00000	0.00000	0.01498
32	0.00606	0.00023	0.06448	0.00001	0.00000	0.00763	0.00000	0.00000	0.01431
33	0.00571	0.00021	0.06273	0.00001	0.00000	0.00724	0.00000	0.00000	0.01369
34	0.00539	0.00019	0.06106	0.00001	0.00000	0.00687	0.00000	0.00000	0.01311
35	0.00509	0.00017	0.05947	0.00001	0.00000	0.00654	0.00000	0.00000	0.01257

Appendix 5. Probability of uranium exceeding a given concentration, by bedrock unit.—Continued

				Bedrock	Bedrock unit abbreviation					
		Sb			Sbs			Se		
Uranium, in micro- grams per liter	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	
36	0.00481	0.00016	0.05797	0.00001	0.00000	0.00623	0.00000	0.00000	0.01206	
37	0.00456	0.00014	0.05653	0.00001	0.00000	0.00594	0.00000	0.00000	0.01158	
38	0.00432	0.00013	0.05516	0.00000	0.00000	0.00566	0.00000	0.00000	0.01113	
39	0.00410	0.00012	0.05386	0.00000	0.00000	0.00541	0.00000	0.00000	0.01071	
40	0.00389	0.00011	0.05261	0.00000	0.00000	0.00517	0.00000	0.00000	0.01032	
41	0.00370	0.00010	0.05141	0.00000	0.00000	0.00495	0.00000	0.00000	0.00994	
42	0.00352	0.00009	0.05027	0.00000	0.00000	0.00474	0.00000	0.00000	0.00959	
43	0.00336	0.00008	0.04917	0.00000	0.00000	0.00455	0.00000	0.00000	0.00925	
44	0.00320	0.00008	0.04812	0.00000	0.00000	0.00436	0.00000	0.00000	0.00893	
45	0.00306	0.00007	0.04711	0.00000	0.00000	0.00419	0.00000	0.00000	0.00863	
46	0.00292	0.00006	0.04614	0.00000	0.00000	0.00403	0.00000	0.00000	0.00835	
47	0.00279	0.00006	0.04520	0.00000	0.00000	0.00387	0.00000	0.00000	0.00808	
48	0.00267	0.00006	0.04430	0.00000	0.00000	0.00372	0.00000	0.00000	0.00782	
49	0.00256	0.00005	0.04344	0.00000	0.00000	0.00359	0.00000	0.00000	0.00758	
50	0.00245	0.00005	0.04260	0.00000	0.00000	0.00346	0.00000	0.00000	0.00734	
55	0.00200	0.00003	0.03884	0.00000	0.00000	0.00289	0.00000	0.00000	0.00632	
60	0.00165	0.00002	0.03566	0.00000	0.00000	0.00246	0.00000	0.00000	0.00551	
65	0.00138	0.00002	0.03292	0.00000	0.00000	0.00211	0.00000	0.00000	0.00484	
70	0.00117	0.00001	0.03056	0.00000	0.00000	0.00182	0.00000	0.00000	0.00429	
75	0.00100	0.00001	0.02848	0.00000	0.00000	0.00159	0.00000	0.00000	0.00383	
80	0.00086	0.00001	0.02665	0.00000	0.00000	0.00140	0.00000	0.00000	0.00344	
85	0.00075	0.00001	0.02503	0.00000	0.00000	0.00124	0.00000	0.00000	0.00310	
90	0.00065	0.00000	0.02357	0.00000	0.00000	0.00110	0.00000	0.00000	0.00282	
95	0.00057	0.00000	0.02226	0.00000	0.00000	0.00099	0.00000	0.00000	0.00257	
100	0.00051	0.00000	0.02108	0.00000	0.00000	0.00089	0.00000	0.00000	0.00235	
110	0.00040	0.00000	0.01902	0.00000	0.00000	0.00073	0.00000	0.00000	0.00199	
120	0.00032	0.00000	0.01730	0.00000	0.00000	0.00061	0.00000	0.00000	0.00171	
130	0.00026	0.00000	0.01584	0.00000	0.00000	0.00051	0.00000	0.00000	0.00148	
140	0.00022	0.00000	0.01458	0.00000	0.00000	0.00044	0.00000	0.00000	0.00129	
150	0.00018	0.00000	0.01349	0.00000	0.00000	0.00037	0.00000	0.00000	0.00114	
160	0.00015	0.00000	0.01254	0.00000	0.00000	0.00032	0.00000	0.00000	0.00101	
170	0.00013	0.00000	0.01169	0.00000	0.00000	0.00028	0.00000	0.00000	0.00090	
180	0.00011	0.00000	0.01095	0.00000	0.00000	0.00025	0.00000	0.00000	0.00081	
190	0.00010	0.00000	0.01028	0.00000	0.00000	0.00022	0.00000	0.00000	0.00073	
200	0.00008	0.00000	0.00968	0.00000	0.00000	0.00020	0.00000	0.00000	0.00066	

Appendix 5. Probability of uranium exceeding a given concentration, by bedrock unit.—Continued

				Bedrock	unit abbrevia	ation				
		Sb			Sbs		Se			
Uranium, in micro- grams per liter	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	
210	0.00007	0.00000	0.00913	0.00000	0.00000	0.00018	0.00000	0.00000	0.00060	
220	0.00007	0.00000	0.00864	0.00000	0.00000	0.00016	0.00000	0.00000	0.00055	
230	0.00006	0.00000	0.00819	0.00000	0.00000	0.00014	0.00000	0.00000	0.00051	
240	0.00005	0.00000	0.00778	0.00000	0.00000	0.00013	0.00000	0.00000	0.00046	
250	0.00005	0.00000	0.00741	0.00000	0.00000	0.00012	0.00000	0.00000	0.00043	
260	0.00004	0.00000	0.00706	0.00000	0.00000	0.00011	0.00000	0.00000	0.00040	
270	0.00004	0.00000	0.00675	0.00000	0.00000	0.00010	0.00000	0.00000	0.00037	
280	0.00003	0.00000	0.00645	0.00000	0.00000	0.00009	0.00000	0.00000	0.00034	
290	0.00003	0.00000	0.00618	0.00000	0.00000	0.00008	0.00000	0.00000	0.00032	
300	0.00003	0.00000	0.00592	0.00000	0.00000	0.00008	0.00000	0.00000	0.00030	

Appendix 5. Probability of uranium exceeding a given concentration, by bedrock unit.—Continued

				Bedrock	unit abbrevia	ation			
		Sgr			So			S0agr	
Uranium, in micro- grams per liter	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound
1	0.31386	0.10546	0.61071	0.32432	0.15913	0.53458	0.27049	0.11302	0.49520
2	0.18569	0.03382	0.51582	0.21113	0.08202	0.41552	0.20019	0.06910	0.42098
3	0.12859	0.01344	0.47890	0.15735	0.05103	0.35351	0.16471	0.04947	0.38190
4	0.09632	0.00620	0.45806	0.12521	0.03497	0.31333	0.14218	0.03819	0.35605
5	0.07572	0.00318	0.44411	0.10365	0.02546	0.28437	0.12621	0.03085	0.33704
6	0.06153	0.00176	0.43385	0.08815	0.01934	0.26212	0.11412	0.02570	0.32214
7	0.05124	0.00104	0.42584	0.07645	0.01515	0.24429	0.10457	0.02190	0.30999
8	0.04347	0.00064	0.41932	0.06730	0.01216	0.22956	0.09677	0.01898	0.29977
9	0.03744	0.00041	0.41385	0.05996	0.00995	0.21711	0.09025	0.01667	0.29099
10	0.03264	0.00027	0.40917	0.05393	0.00827	0.20639	0.08470	0.01481	0.28333
11	0.02874	0.00019	0.40509	0.04891	0.00697	0.19703	0.07991	0.01327	0.27653
12	0.02553	0.00013	0.40147	0.04465	0.00594	0.18876	0.07571	0.01199	0.27045
13	0.02285	0.00009	0.39824	0.04100	0.00511	0.18139	0.07200	0.01090	0.26496
14	0.02058	0.00007	0.39532	0.03785	0.00444	0.17475	0.06870	0.00997	0.25995
15	0.01864	0.00005	0.39266	0.03509	0.00388	0.16874	0.06572	0.00916	0.25536
16	0.01698	0.00004	0.39022	0.03266	0.00342	0.16326	0.06303	0.00846	0.25112
17	0.01553	0.00003	0.38797	0.03051	0.00303	0.15823	0.06058	0.00784	0.24720
18	0.01426	0.00002	0.38588	0.02859	0.00269	0.15360	0.05834	0.00729	0.24354
19	0.01314	0.00002	0.38394	0.02686	0.00241	0.14931	0.05629	0.00680	0.24013
20	0.01215	0.00001	0.38212	0.02531	0.00217	0.14533	0.05439	0.00637	0.23692
21	0.01127	0.00001	0.38041	0.02390	0.00196	0.14162	0.05263	0.00597	0.23391
22	0.01048	0.00001	0.37880	0.02262	0.00177	0.13815	0.05099	0.00562	0.23106
23	0.00978	0.00001	0.37728	0.02145	0.00161	0.13489	0.04947	0.00530	0.22837
24	0.00914	0.00001	0.37584	0.02038	0.00147	0.13183	0.04804	0.00500	0.22581
25	0.00856	0.00000	0.37447	0.01940	0.00134	0.12894	0.04671	0.00474	0.22338
26	0.00804	0.00000	0.37317	0.01849	0.00123	0.12622	0.04545	0.00449	0.22107
27	0.00756	0.00000	0.37193	0.01765	0.00113	0.12363	0.04427	0.00427	0.21886
28	0.00713	0.00000	0.37074	0.01687	0.00105	0.12119	0.04316	0.00406	0.21675
29	0.00673	0.00000	0.36960	0.01615	0.00097	0.11886	0.04210	0.00387	0.21473
30	0.00636	0.00000	0.36851	0.01548	0.00089	0.11664	0.04110	0.00369	0.21279
31	0.00602	0.00000	0.36747	0.01485	0.00083	0.11453	0.04015	0.00352	0.21093
32	0.00571	0.00000	0.36646	0.01427	0.00077	0.11252	0.03925	0.00337	0.20914
33	0.00542	0.00000	0.36549	0.01372	0.00072	0.11059	0.03840	0.00323	0.20742
34	0.00515	0.00000	0.36456	0.01320	0.00067	0.10874	0.03758	0.00309	0.20576
35	0.00491	0.00000	0.36366	0.01272	0.00063	0.10698	0.03680	0.00297	0.20415

Appendix 5. Probability of uranium exceeding a given concentration, by bedrock unit.—Continued

	Bedrock unit abbreviation									
		Sgr			So			S0agr		
Uranium, in micro- grams per liter	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	
36	0.00467	0.00000	0.36278	0.01226	0.00059	0.10528	0.03605	0.00285	0.20261	
37	0.00446	0.00000	0.36194	0.01183	0.00055	0.10365	0.03534	0.00274	0.20111	
38	0.00426	0.00000	0.36113	0.01143	0.00052	0.10208	0.03466	0.00264	0.19966	
39	0.00407	0.00000	0.36034	0.01104	0.00048	0.10057	0.03400	0.00254	0.19826	
40	0.00389	0.00000	0.35957	0.01068	0.00046	0.09912	0.03338	0.00245	0.19690	
41	0.00373	0.00000	0.35882	0.01034	0.00043	0.09772	0.03277	0.00236	0.19559	
42	0.00357	0.00000	0.35810	0.01001	0.00041	0.09637	0.03219	0.00228	0.19431	
43	0.00343	0.00000	0.35740	0.00970	0.00038	0.09506	0.03163	0.00220	0.19306	
44	0.00329	0.00000	0.35672	0.00941	0.00036	0.09380	0.03110	0.00213	0.19186	
45	0.00316	0.00000	0.35605	0.00913	0.00034	0.09257	0.03058	0.00206	0.19068	
46	0.00304	0.00000	0.35540	0.00886	0.00032	0.09139	0.03008	0.00199	0.18954	
47	0.00292	0.00000	0.35477	0.00860	0.00031	0.09025	0.02960	0.00193	0.18842	
48	0.00281	0.00000	0.35415	0.00836	0.00029	0.08914	0.02913	0.00187	0.18734	
49	0.00271	0.00000	0.35355	0.00813	0.00028	0.08806	0.02868	0.00181	0.18628	
50	0.00261	0.00000	0.35296	0.00791	0.00026	0.08702	0.02824	0.00176	0.18525	
55	0.00219	0.00000	0.35022	0.00693	0.00021	0.08222	0.02626	0.00152	0.18044	
60	0.00186	0.00000	0.34776	0.00613	0.00017	0.07803	0.02455	0.00133	0.17614	
65	0.00160	0.00000	0.34552	0.00547	0.00013	0.07433	0.02307	0.00117	0.17226	
70	0.00139	0.00000	0.34347	0.00492	0.00011	0.07102	0.02176	0.00104	0.16872	
75	0.00121	0.00000	0.34159	0.00445	0.00009	0.06806	0.02060	0.00093	0.16549	
80	0.00107	0.00000	0.33984	0.00404	0.00008	0.06538	0.01956	0.00084	0.16250	
85	0.00095	0.00000	0.33822	0.00370	0.00007	0.06294	0.01862	0.00076	0.15974	
90	0.00085	0.00000	0.33670	0.00339	0.00006	0.06071	0.01778	0.00069	0.15717	
95	0.00076	0.00000	0.33527	0.00313	0.00005	0.05866	0.01701	0.00063	0.15477	
100	0.00068	0.00000	0.33393	0.00289	0.00004	0.05676	0.01630	0.00058	0.15252	
110	0.00056	0.00000	0.33146	0.00249	0.00003	0.05338	0.01506	0.00050	0.14840	
120	0.00047	0.00000	0.32923	0.00218	0.00002	0.05044	0.01400	0.00043	0.14472	
130	0.00040	0.00000	0.32720	0.00192	0.00002	0.04785	0.01308	0.00037	0.14141	
140	0.00034	0.00000	0.32534	0.00170	0.00002	0.04556	0.01228	0.00033	0.13839	
150	0.00029	0.00000	0.32362	0.00152	0.00001	0.04350	0.01157	0.00029	0.13562	
160	0.00025	0.00000	0.32202	0.00137	0.00001	0.04165	0.01094	0.00026	0.13308	
170	0.00022	0.00000	0.32054	0.00124	0.00001	0.03997	0.01037	0.00023	0.13072	
180	0.00019	0.00000	0.31914	0.00113	0.00001	0.03844	0.00986	0.00021	0.12853	
190	0.00017	0.00000	0.31784	0.00103	0.00001	0.03704	0.00940	0.00019	0.12649	
200	0.00015	0.00000	0.31660	0.00095	0.00001	0.03575	0.00898	0.00017	0.12457	

Appendix 5. Probability of uranium exceeding a given concentration, by bedrock unit.—Continued

				Bedrock	unit abbrevia	ation				
		Sgr			So			S0agr		
Uranium, in micro- grams per liter	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	
210	0.00014	0.00000	0.31543	0.00087	0.00000	0.03456	0.00859	0.00016	0.12277	
220	0.00012	0.00000	0.31433	0.00080	0.00000	0.03346	0.00824	0.00014	0.12107	
230	0.00011	0.00000	0.31327	0.00074	0.00000	0.03243	0.00792	0.00013	0.11947	
240	0.00010	0.00000	0.31227	0.00069	0.00000	0.03147	0.00761	0.00012	0.11795	
250	0.00009	0.00000	0.31131	0.00064	0.00000	0.03057	0.00734	0.00011	0.11651	
260	0.00008	0.00000	0.31039	0.00060	0.00000	0.02973	0.00708	0.00011	0.11513	
270	0.00008	0.00000	0.30951	0.00056	0.00000	0.02894	0.00683	0.00010	0.11382	
280	0.00007	0.00000	0.30867	0.00053	0.00000	0.02820	0.00661	0.00009	0.11257	
290	0.00006	0.00000	0.30786	0.00050	0.00000	0.02749	0.00639	0.00009	0.11138	
300	0.00006	0.00000	0.30707	0.00047	0.00000	0.02683	0.00620	0.00008	0.11023	

Appendix 5. Probability of uranium exceeding a given concentration, by bedrock unit.—Continued

grams be per liter that	an concention listed in rst column 0.48976 0.39909 0.34817 0.31358 0.28781 0.26754 0.25097 0.23707 0.22517	\$0bo Lower 95-percent confidence bound 0.21348 0.15728 0.12548 0.10434 0.08910 0.07753 0.06843 0.06108	Upper 95-percent confidence bound 0.77127 0.68945 0.64337 0.61246 0.58970 0.57195 0.55754	Probability of concentration being greater than concentration listed in first column 0.29427 0.21950 0.18137 0.15701 0.13966 0.12650	\$p Lower 95-percent confidence bound 0.16239 0.10626 0.07987 0.06409 0.05349	Upper 95-percent confidence bound 0.46127 0.38165 0.33930 0.31122 0.29057	Probability of concentration being greater than concentration listed in first column 0.0595698 0.0294494 0.0186571 0.0132263	Spsq* Lower 95-percent confidence bound 0.011175 0.0043667 0.0023951 0.0015282	Upper 95-percent confidence bound 0.202584 0.123926 0.089506 0.069838
in micrograms per liter th. train fill 2 3 4 5	ncentration eing greater an concention listed in rst column 0.48976 0.39909 0.34817 0.31358 0.28781 0.26754 0.25097 0.23707 0.22517	95-percent confidence bound 0.21348 0.15728 0.12548 0.10434 0.08910 0.07753 0.06843	95-percent confidence bound 0.77127 0.68945 0.64337 0.61246 0.58970 0.57195	concentration being greater than concen- tration listed in first column 0.29427 0.21950 0.18137 0.15701 0.13966	95-percent confidence bound 0.16239 0.10626 0.07987 0.06409 0.05349	95-percent confidence bound 0.46127 0.38165 0.33930 0.31122	concentration being greater than concen- tration listed in first column 0.0595698 0.0294494 0.0186571 0.0132263	95-percent confidence bound 0.011175 0.0043667 0.0023951 0.0015282	95-percent confidence bound 0.202584 0.123926 0.089506
2 3 4 5	0.39909 0.34817 0.31358 0.28781 0.26754 0.25097 0.23707 0.22517	0.15728 0.12548 0.10434 0.08910 0.07753 0.06843	0.68945 0.64337 0.61246 0.58970 0.57195	0.21950 0.18137 0.15701 0.13966	0.10626 0.07987 0.06409 0.05349	0.38165 0.33930 0.31122	0.0294494 0.0186571 0.0132263	0.0043667 0.0023951 0.0015282	0.123926 0.089506
3 4 5	0.34817 0.31358 0.28781 0.26754 0.25097 0.23707 0.22517	0.12548 0.10434 0.08910 0.07753 0.06843	0.64337 0.61246 0.58970 0.57195	0.18137 0.15701 0.13966	0.07987 0.06409 0.05349	0.33930 0.31122	0.0186571 0.0132263	0.0023951 0.0015282	0.089506
4 5	0.31358 0.28781 0.26754 0.25097 0.23707 0.22517	0.10434 0.08910 0.07753 0.06843	0.61246 0.58970 0.57195	0.15701 0.13966	0.06409 0.05349	0.31122	0.0132263	0.0015282	
5	0.28781 0.26754 0.25097 0.23707 0.22517	0.08910 0.07753 0.06843	0.58970 0.57195	0.13966	0.05349				0.069838
	0.26754 0.25097 0.23707 0.22517	0.07753 0.06843	0.57195			0.29057			
6	0.25097 0.23707 0.22517	0.06843		0.12650			0.0100116	0.0010642	0.05704
	0.23707 0.22517		0.55754		0.04583	0.27442	0.0079139	0.0007848	0.048033
7	0.22517	0.06108		0.11606	0.04003	0.26127	0.0064526	0.000603	0.041346
8			0.54550	0.10753	0.03547	0.25024	0.0053853	0.0004777	0.036188
9		0.05502	0.53521	0.10038	0.03180	0.24080	0.0045774	0.0003876	0.032091
10	0.21482	0.04994	0.52626	0.09429	0.02877	0.23257	0.0039482	0.0003206	0.02876
11	0.20570	0.04562	0.51838	0.08902	0.02624	0.22530	0.003447	0.0002694	0.026002
12	0.19758	0.04190	0.51134	0.08440	0.02408	0.21881	0.0030402	0.0002293	0.023682
13	0.19028	0.03867	0.50501	0.08032	0.02223	0.21296	0.0027047	0.0001975	0.021705
14	0.18367	0.03584	0.49927	0.07667	0.02062	0.20765	0.0024243	0.0001717	0.020001
15	0.17765	0.03335	0.49401	0.07338	0.01921	0.20279	0.0021871	0.0001506	0.01852
16	0.17213	0.03113	0.48918	0.07041	0.01796	0.19832	0.0019846	0.000133	0.01722
17	0.16705	0.02915	0.48472	0.06771	0.01685	0.19419	0.0018099	0.0001183	0.016071
18	0.16235	0.02737	0.48057	0.06523	0.01586	0.19036	0.0016582	0.0001058	0.015049
19	0.15798	0.02576	0.47670	0.06295	0.01496	0.18678	0.0015255	0.0000951	0.014135
20	0.15391	0.02430	0.47307	0.06085	0.01415	0.18343	0.0014086	0.000086	0.013312
21	0.15010	0.02297	0.46967	0.05890	0.01342	0.18029	0.001305	0.000078	0.012569
22	0.14653	0.02176	0.46646	0.05708	0.01274	0.17733	0.0012128	0.0000711	0.011894
23	0.14317	0.02065	0.46342	0.05539	0.01213	0.17454	0.0011303	0.000065	0.011279
24	0.14000	0.01962	0.46055	0.05381	0.01157	0.17190	0.0010562	0.0000596	0.010716
25	0.13700	0.01868	0.45782	0.05233	0.01104	0.16939	0.0009893	0.0000549	0.0102
26	0.13417	0.01781	0.45523	0.05093	0.01056	0.16701	0.0009287	0.0000506	0.009725
27	0.13148	0.01700	0.45275	0.04962	0.01012	0.16474	0.0008736	0.0000469	0.009286
28	0.12893	0.01625	0.45039	0.04838	0.00970	0.16258	0.0008234	0.0000435	0.008879
29	0.12649	0.01555	0.44812	0.04720	0.00932	0.16051	0.0007775	0.0000404	0.008502
30	0.12417	0.01490	0.44596	0.04609	0.00896	0.15853	0.0007354	0.0000377	0.008151
31	0.12196	0.01429	0.44388	0.04504	0.00862	0.15663	0.0006967	0.0000352	0.007824
32	0.11984	0.01371	0.44188	0.04403	0.00830	0.15481	0.000661	0.0000329	0.007518
33	0.11781	0.01318	0.43995	0.04308	0.00801	0.15307	0.000628	0.0000309	0.007232
34	0.11586	0.01268	0.43810	0.04217	0.00773	0.15138	0.0005975	0.000029	0.006964
35	0.11400	0.01220	0.43631	0.04130	0.00746	0.14976	0.0005692	0.0000272	0.006712

Appendix 5. Probability of uranium exceeding a given concentration, by bedrock unit.—Continued

	Bedrock unit abbreviation									
		SObo			Sp			Spsq*		
Uranium, in micro- grams per liter	Probability of concentration being greater than concentration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	
36	0.11221	0.01176	0.43458	0.04047	0.00722	0.14820	0.0005428	0.0000257	0.006475	
37	0.11048	0.01133	0.43291	0.03968	0.00698	0.14670	0.0005183	0.0000242	0.006251	
38	0.10882	0.01094	0.43130	0.03891	0.00676	0.14524	0.0004954	0.0000229	0.00604	
39	0.10722	0.01056	0.42973	0.03818	0.00655	0.14383	0.000474	0.0000216	0.005841	
40	0.10568	0.01020	0.42822	0.03748	0.00635	0.14247	0.000454	0.0000205	0.005653	
41	0.10419	0.00987	0.42675	0.03681	0.00616	0.14116	0.0004352	0.0000194	0.005474	
42	0.10275	0.00955	0.42532	0.03616	0.00598	0.13988	0.0004176	0.0000184	0.005305	
43	0.10136	0.00924	0.42393	0.03554	0.00581	0.13864	0.0004011	0.0000175	0.005144	
44	0.10001	0.00895	0.42259	0.03494	0.00565	0.13744	0.0003855	0.0000167	0.004991	
45	0.09871	0.00867	0.42128	0.03436	0.00549	0.13627	0.0003708	0.0000159	0.004845	
46	0.09745	0.00841	0.42000	0.03380	0.00534	0.13514	0.0003569	0.0000151	0.004706	
47	0.09623	0.00816	0.41876	0.03326	0.00520	0.13403	0.0003438	0.0000144	0.004574	
48	0.09504	0.00792	0.41755	0.03274	0.00507	0.13296	0.0003314	0.0000138	0.004448	
49	0.09389	0.00769	0.41637	0.03224	0.00494	0.13192	0.0003197	0.0000132	0.004327	
50	0.09277	0.00747	0.41521	0.03175	0.00481	0.13090	0.0003085	0.0000126	0.004212	
55	0.08762	0.00651	0.40984	0.02953	0.00426	0.12618	0.0002608	0.0000102	0.003704	
60	0.08312	0.00573	0.40503	0.02762	0.00381	0.12199	0.0002233	0.0000084	0.00329	
65	0.07913	0.00508	0.40068	0.02596	0.00343	0.11823	0.0001933	0.000007	0.002946	
70	0.07556	0.00454	0.39672	0.02449	0.00311	0.11483	0.0001689	0.0000059	0.002657	
75	0.07236	0.00408	0.39308	0.02319	0.00283	0.11173	0.0001488	0.000005	0.002412	
80	0.06945	0.00369	0.38972	0.02203	0.00260	0.10890	0.0001321	0.0000043	0.002201	
85	0.06681	0.00335	0.38660	0.02098	0.00239	0.10628	0.000118	0.0000038	0.002018	
90	0.06439	0.00305	0.38369	0.02003	0.00221	0.10386	0.000106	0.0000033	0.001859	
95	0.06216	0.00280	0.38096	0.01916	0.00205	0.10161	0.0000957	0.0000029	0.001719	
100	0.06010	0.00257	0.37840	0.01837	0.00191	0.09952	0.0000868	0.0000026	0.001595	
110	0.05642	0.00219	0.37371	0.01698	0.00167	0.09571	0.0000724	0.000002	0.001386	
120	0.05322	0.00189	0.36950	0.01578	0.00147	0.09234	0.0000611	0.0000016	0.001217	
130	0.05040	0.00165	0.36568	0.01475	0.00131	0.08932	0.0000523	0.0000014	0.001079	
140	0.04790	0.00145	0.36219	0.01384	0.00118	0.08659	0.0000452	0.0000011	0.000965	
150	0.04566	0.00128	0.35898	0.01305	0.00106	0.08411	0.0000394	0.000001	0.000868	
160	0.04364	0.00114	0.35601	0.01233	0.00097	0.08185	0.0000346	0.0000008	0.000786	
170	0.04181	0.00102	0.35325	0.01170	0.00088	0.07976	0.0000307	0.0000007	0.000715	
180	0.04015	0.00092	0.35068	0.01112	0.00081	0.07784	0.0000273	0.0000006	0.000654	
190	0.03862	0.00083	0.34826	0.01060	0.00075	0.07605	0.0000245	0.0000005	0.0006	
	0.03722	0.00076	0.34599	0.01013	0.00069	0.07439	0.000022	0.0000005	0.000553	

Appendix 5. Probability of uranium exceeding a given concentration, by bedrock unit.—Continued

				Bedrock	ation				
		SObo			Sp			Spsq*	
Uranium, in micro- grams per liter	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound
210	0.03592	0.00069	0.34384	0.00970	0.00064	0.07283	0.0000199	0.0000004	0.000512
220	0.03472	0.00063	0.34181	0.00930	0.00060	0.07137	0.0000181	0.0000004	0.000475
230	0.03360	0.00058	0.33989	0.00893	0.00056	0.07000	0.0000165	0.0000003	0.000442
240	0.03256	0.00054	0.33806	0.00859	0.00052	0.06871	0.0000151	0.0000003	0.000413
250	0.03159	0.00050	0.33631	0.00828	0.00049	0.06749	0.0000139	0.0000003	0.000386
260	0.03067	0.00046	0.33465	0.00798	0.00046	0.06633	0.0000128	0.0000002	0.000362
270	0.02981	0.00043	0.33305	0.00771	0.00043	0.06523	0.0000118	0.0000002	0.000341
280	0.02901	0.00040	0.33153	0.00745	0.00041	0.06418	0.0000109	0.0000002	0.000321
290	0.02824	0.00037	0.33006	0.00721	0.00038	0.06319	0.0000101	0.0000002	0.000303
300	0.02752	0.00035	0.32865	0.00699	0.00036	0.06224	0.0000094	0.0000002	0.000286

Appendix 5. Probability of uranium exceeding a given concentration, by bedrock unit.—Continued

				Bedrock	unit abbrevia	ation			
		Spss			Ssqd			St	
Uranium, in micro- grams per liter	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound
1	0.10803	0.01801	0.35292	0.33125	0.15099	0.56326	0.26746	0.12567	0.46258
2	0.05713	0.00474	0.28624	0.22783	0.08919	0.44186	0.16133	0.05813	0.34187
3	0.03757	0.00185	0.25586	0.17694	0.06207	0.37577	0.11419	0.03347	0.28195
4	0.02733	0.00088	0.23708	0.14558	0.04675	0.33218	0.08731	0.02158	0.24424
5	0.02109	0.00048	0.22379	0.12400	0.03693	0.30050	0.06996	0.01493	0.21764
6	0.01693	0.00028	0.21367	0.10811	0.03014	0.27607	0.05786	0.01085	0.19756
7	0.01398	0.00018	0.20555	0.09586	0.02519	0.25646	0.04896	0.00817	0.18170
8	0.01179	0.00012	0.19883	0.08611	0.02145	0.24025	0.04218	0.00634	0.16875
9	0.01012	0.00008	0.19313	0.07814	0.01852	0.22656	0.03684	0.00502	0.15793
10	0.00880	0.00006	0.18819	0.07149	0.01619	0.21479	0.03255	0.00406	0.14871
11	0.00774	0.00004	0.18384	0.06586	0.01429	0.20452	0.02903	0.00333	0.14073
12	0.00687	0.00003	0.17998	0.06103	0.01273	0.19547	0.02610	0.00277	0.13374
13	0.00615	0.00002	0.17650	0.05683	0.01141	0.18740	0.02362	0.00233	0.12756
14	0.00554	0.00002	0.17335	0.05315	0.01030	0.18016	0.02151	0.00198	0.12203
15	0.00502	0.00001	0.17047	0.04990	0.00934	0.17360	0.01969	0.00169	0.11705
16	0.00458	0.00001	0.16783	0.04700	0.00852	0.16763	0.01811	0.00146	0.11255
17	0.00419	0.00001	0.16538	0.04440	0.00781	0.16217	0.01672	0.00127	0.10844
18	0.00386	0.00001	0.16311	0.04206	0.00718	0.15714	0.01550	0.00111	0.10468
19	0.00356	0.00001	0.16100	0.03994	0.00662	0.15250	0.01442	0.00098	0.10121
20	0.00330	0.00000	0.15902	0.03800	0.00613	0.14819	0.01345	0.00087	0.09801
21	0.00307	0.00000	0.15716	0.03624	0.00570	0.14418	0.01258	0.00077	0.09504
22	0.00286	0.00000	0.15540	0.03462	0.00530	0.14044	0.01180	0.00069	0.09228
23	0.00267	0.00000	0.15375	0.03312	0.00495	0.13693	0.01109	0.00061	0.08970
24	0.00251	0.00000	0.15218	0.03174	0.00463	0.13364	0.01044	0.00055	0.08728
25	0.00235	0.00000	0.15069	0.03047	0.00434	0.13054	0.00986	0.00050	0.08502
26	0.00221	0.00000	0.14927	0.02928	0.00408	0.12761	0.00932	0.00045	0.08288
27	0.00209	0.00000	0.14792	0.02817	0.00384	0.12485	0.00883	0.00041	0.08087
28	0.00197	0.00000	0.14663	0.02714	0.00362	0.12223	0.00838	0.00037	0.07897
29	0.00187	0.00000	0.14540	0.02617	0.00342	0.11974	0.00796	0.00034	0.07717
30	0.00177	0.00000	0.14422	0.02527	0.00324	0.11738	0.00758	0.00031	0.07546
31	0.00168	0.00000	0.14308	0.02442	0.00307	0.11513	0.00722	0.00029	0.07384
32	0.00160	0.00000	0.14199	0.02362	0.00291	0.11298	0.00689	0.00026	0.07230
33	0.00152	0.00000	0.14094	0.02286	0.00277	0.11093	0.00658	0.00024	0.07083
34	0.00145	0.00000	0.13993	0.02215	0.00263	0.10897	0.00630	0.00022	0.06942
35	0.00138	0.00000	0.13896	0.02147	0.00251	0.10709	0.00603	0.00021	0.06808

Appendix 5. Probability of uranium exceeding a given concentration, by bedrock unit.—Continued

				Bedrock	unit abbrevia	ation			
		Spss			Ssqd			St	
Uranium, in micro- grams per liter	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound
36	0.00132	0.00000	0.13802	0.02083	0.00239	0.10529	0.00578	0.00019	0.06680
37	0.00126	0.00000	0.13711	0.02023	0.00228	0.10357	0.00554	0.00018	0.06557
38	0.00121	0.00000	0.13623	0.01965	0.00218	0.10191	0.00532	0.00017	0.06439
39	0.00116	0.00000	0.13538	0.01911	0.00208	0.10031	0.00511	0.00015	0.06326
40	0.00111	0.00000	0.13456	0.01859	0.00199	0.09878	0.00492	0.00014	0.06218
41	0.00107	0.00000	0.13376	0.01809	0.00191	0.09730	0.00473	0.00013	0.06113
42	0.00103	0.00000	0.13299	0.01762	0.00183	0.09587	0.00456	0.00013	0.06013
43	0.00099	0.00000	0.13223	0.01717	0.00176	0.09450	0.00440	0.00012	0.05916
44	0.00095	0.00000	0.13150	0.01673	0.00169	0.09317	0.00424	0.00011	0.05822
45	0.00091	0.00000	0.13079	0.01632	0.00162	0.09189	0.00409	0.00010	0.05732
46	0.00088	0.00000	0.13010	0.01592	0.00156	0.09064	0.00396	0.00010	0.05645
47	0.00085	0.00000	0.12943	0.01555	0.00150	0.08944	0.00382	0.00009	0.05561
48	0.00082	0.00000	0.12877	0.01518	0.00145	0.08828	0.00370	0.00009	0.05480
49	0.00079	0.00000	0.12813	0.01483	0.00139	0.08715	0.00358	0.00008	0.05401
50	0.00077	0.00000	0.12751	0.01450	0.00134	0.08606	0.00347	0.00008	0.05325
55	0.00065	0.00000	0.12460	0.01300	0.00113	0.08105	0.00297	0.00006	0.04978
60	0.00056	0.00000	0.12200	0.01176	0.00096	0.07668	0.00258	0.00005	0.04677
65	0.00049	0.00000	0.11966	0.01070	0.00083	0.07284	0.00226	0.00004	0.04414
70	0.00043	0.00000	0.11753	0.00980	0.00072	0.06943	0.00199	0.00003	0.04182
75	0.00038	0.00000	0.11557	0.00902	0.00063	0.06637	0.00177	0.00002	0.03975
80	0.00034	0.00000	0.11377	0.00835	0.00055	0.06362	0.00159	0.00002	0.03789
85	0.00030	0.00000	0.11210	0.00775	0.00049	0.06111	0.00143	0.00002	0.03622
90	0.00027	0.00000	0.11055	0.00722	0.00044	0.05883	0.00130	0.00001	0.03469
95	0.00025	0.00000	0.10910	0.00675	0.00039	0.05674	0.00118	0.00001	0.03330
100	0.00022	0.00000	0.10774	0.00633	0.00035	0.05481	0.00108	0.00001	0.03203
110	0.00019	0.00000	0.10525	0.00561	0.00029	0.05137	0.00091	0.00001	0.02977
120	0.00016	0.00000	0.10303	0.00502	0.00024	0.04839	0.00077	0.00001	0.02783
130	0.00014	0.00000	0.10102	0.00452	0.00021	0.04578	0.00067	0.00000	0.02614
140	0.00012	0.00000	0.09919	0.00410	0.00018	0.04348	0.00058	0.00000	0.02465
150	0.00010	0.00000	0.09752	0.00375	0.00015	0.04142	0.00051	0.00000	0.02333
160	0.00009	0.00000	0.09597	0.00344	0.00013	0.03957	0.00045	0.00000	0.02216
170	0.00008	0.00000	0.09454	0.00317	0.00012	0.03789	0.00040	0.00000	0.02110
180	0.00007	0.00000	0.09321	0.00293	0.00010	0.03637	0.00036	0.00000	0.02014
190	0.00007	0.00000	0.09196	0.00272	0.00009	0.03498	0.00033	0.00000	0.01927
200	0.00006	0.00000	0.09080	0.00253	0.00008	0.03370	0.00029	0.00000	0.01847

Appendix 5. Probability of uranium exceeding a given concentration, by bedrock unit.—Continued

				Bedrock	unit abbrevia	·			
		Spss			Ssqd			St	
Uranium, in micro- grams per liter	Probability of concentration being greater than concentration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound
210	0.00005	0.00000	0.08970	0.00237	0.00007	0.03253	0.00027	0.00000	0.01774
220	0.00005	0.00000	0.08866	0.00222	0.00006	0.03144	0.00024	0.00000	0.01707
230	0.00004	0.00000	0.08768	0.00209	0.00006	0.03043	0.00022	0.00000	0.01645
240	0.00004	0.00000	0.08675	0.00196	0.00005	0.02948	0.00021	0.00000	0.01587
250	0.00004	0.00000	0.08587	0.00185	0.00005	0.02860	0.00019	0.00000	0.01533
260	0.00003	0.00000	0.08503	0.00175	0.00004	0.02778	0.00017	0.00000	0.01483
270	0.00003	0.00000	0.08422	0.00166	0.00004	0.02701	0.00016	0.00000	0.01436
280	0.00003	0.00000	0.08346	0.00157	0.00004	0.02628	0.00015	0.00000	0.01393
290	0.00003	0.00000	0.08272	0.00150	0.00003	0.02559	0.00014	0.00000	0.01351
300	0.00003	0.00000	0.08202	0.00142	0.00003	0.02495	0.00013	0.00000	0.01313

Appendix 5. Probability of uranium exceeding a given concentration, by bedrock unit.—Continued

	Bedrock unit abbreviation									
		SZtb			Zpg			Zsg		
Uranium, in micro- grams per liter	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	
1	0.0700933	0.0257274	0.158045	0.49898	0.26915	0.72915	0.92117	0.78082	0.97987	
2	0.0383324	0.0105027	0.108813	0.38066	0.18437	0.61461	0.80805	0.63687	0.91795	
3	0.026002	0.0058299	0.086296	0.31565	0.14087	0.54642	0.71006	0.53474	0.84611	
4	0.0194307	0.0037291	0.072746	0.27262	0.11357	0.49918	0.62873	0.45674	0.77806	
5	0.0153589	0.002593	0.063483	0.24138	0.09466	0.46369	0.56117	0.39469	0.71735	
6	0.0125982	0.001906	0.05666	0.21738	0.08075	0.43561	0.50451	0.34407	0.66421	
7	0.01061	0.0014581	0.051377	0.19820	0.07007	0.41260	0.45649	0.30207	0.61787	
8	0.0091146	0.0011495	0.047139	0.18245	0.06163	0.39324	0.41537	0.26677	0.57735	
9	0.0079521	0.0009279	0.043648	0.16922	0.05478	0.37663	0.37985	0.23682	0.54174	
10	0.0070249	0.0007635	0.040712	0.15792	0.04913	0.36215	0.34890	0.21119	0.51024	
11	0.0062697	0.0006382	0.038202	0.14814	0.04439	0.34936	0.32173	0.18912	0.48222	
12	0.005644	0.0005406	0.036025	0.13957	0.04037	0.33795	0.29773	0.17000	0.45712	
13	0.005118	0.0004631	0.034117	0.13199	0.03691	0.32767	0.27641	0.15334	0.43452	
14	0.0046704	0.0004006	0.032428	0.12523	0.03391	0.31835	0.25735	0.13875	0.41406	
15	0.0042854	0.0003495	0.030919	0.11916	0.03129	0.30984	0.24025	0.12593	0.39545	
16	0.0039512	0.0003072	0.029563	0.11367	0.02899	0.30202	0.22483	0.11461	0.37843	
17	0.0036588	0.0002719	0.028336	0.10868	0.02694	0.29480	0.21087	0.10458	0.36282	
18	0.003401	0.000242	0.027219	0.10412	0.02512	0.28811	0.19818	0.09566	0.34843	
19	0.0031723	0.0002166	0.026197	0.09994	0.02349	0.28188	0.18662	0.08770	0.33513	
20	0.0029683	0.0001948	0.025258	0.09608	0.02201	0.27606	0.17604	0.08058	0.32280	
21	0.0027852	0.000176	0.024392	0.09252	0.02068	0.27060	0.16634	0.07418	0.31132	
22	0.0026202	0.0001597	0.023591	0.08921	0.01948	0.26548	0.15742	0.06843	0.30062	
23	0.0024709	0.0001454	0.022846	0.08614	0.01838	0.26064	0.14920	0.06324	0.29061	
24	0.0023352	0.0001328	0.022152	0.08327	0.01737	0.25607	0.14160	0.05854	0.28123	
25	0.0022114	0.0001217	0.021504	0.08058	0.01645	0.25175	0.13456	0.05428	0.27241	
26	0.002098	0.0001119	0.020897	0.07807	0.01560	0.24764	0.12802	0.05041	0.26411	
27	0.001994	0.0001032	0.020326	0.07570	0.01482	0.24374	0.12195	0.04689	0.25629	
28	0.0018982	0.0000953	0.019789	0.07347	0.01410	0.24002	0.11629	0.04367	0.24890	
29	0.0018097	0.0000883	0.019283	0.07137	0.01343	0.23647	0.11100	0.04073	0.24190	
30	0.0017279	0.000082	0.018805	0.06939	0.01281	0.23308	0.10606	0.03804	0.23527	
31	0.0016519	0.0000763	0.018352	0.06751	0.01223	0.22984	0.10144	0.03557	0.22897	
32	0.0015812	0.0000711	0.017922	0.06572	0.01169	0.22673	0.09711	0.03331	0.22299	
33	0.0015154	0.0000664	0.017515	0.06403	0.01119	0.22375	0.09304	0.03122	0.21729	
34	0.0014539	0.0000621	0.017127	0.06242	0.01072	0.22088	0.08921	0.02929	0.21186	
35	0.0013964	0.0000582	0.016757	0.06089	0.01027	0.21813	0.08561	0.02751	0.20668	

Appendix 5. Probability of uranium exceeding a given concentration, by bedrock unit.—Continued

	Bedrock unit abbreviation									
		SZtb			Zpg			Zsg		
Uranium, in micro- grams per liter	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	
36	0.0013426	0.0000547	0.016405	0.05943	0.00986	0.21547	0.08221	0.02587	0.20173	
37	0.001292	0.0000514	0.016068	0.05803	0.00947	0.21292	0.07900	0.02435	0.19700	
38	0.0012444	0.0000484	0.015746	0.05670	0.00911	0.21045	0.07598	0.02294	0.19247	
39	0.0011997	0.0000456	0.015438	0.05543	0.00876	0.20807	0.07311	0.02163	0.18813	
40	0.0011574	0.000043	0.015143	0.05421	0.00843	0.20577	0.07040	0.02042	0.18396	
41	0.0011176	0.0000407	0.01486	0.05304	0.00813	0.20354	0.06784	0.01929	0.17997	
42	0.0010799	0.0000385	0.014589	0.05191	0.00784	0.20139	0.06540	0.01823	0.17613	
43	0.0010442	0.0000365	0.014327	0.05084	0.00756	0.19930	0.06309	0.01725	0.17244	
44	0.0010104	0.0000346	0.014076	0.04980	0.00730	0.19728	0.06089	0.01634	0.16889	
45	0.0009784	0.0000328	0.013834	0.04881	0.00705	0.19531	0.05880	0.01548	0.16547	
46	0.0009479	0.0000312	0.013601	0.04785	0.00682	0.19341	0.05681	0.01468	0.16217	
47	0.000919	0.0000297	0.013377	0.04692	0.00659	0.19156	0.05492	0.01393	0.15899	
48	0.0008914	0.0000283	0.01316	0.04603	0.00638	0.18976	0.05311	0.01323	0.15593	
49	0.0008652	0.0000269	0.012951	0.04518	0.00618	0.18801	0.05139	0.01257	0.15296	
50	0.0008401	0.0000257	0.012749	0.04435	0.00598	0.18631	0.04974	0.01195	0.15010	
55	0.0007308	0.0000205	0.011832	0.04060	0.00514	0.17845	0.04254	0.00937	0.13714	
60	0.0006426	0.0000166	0.011046	0.03741	0.00446	0.17149	0.03673	0.00745	0.12606	
65	0.0005702	0.0000137	0.010364	0.03466	0.00391	0.16528	0.03197	0.00600	0.11648	
70	0.00051	0.0000114	0.009766	0.03226	0.00345	0.15969	0.02803	0.00488	0.10812	
75	0.0004593	0.0000097	0.009237	0.03016	0.00307	0.15462	0.02473	0.00400	0.10076	
80	0.0004162	0.0000082	0.008766	0.02829	0.00275	0.14999	0.02195	0.00332	0.09423	
85	0.0003791	0.0000071	0.008342	0.02663	0.00247	0.14575	0.01958	0.00277	0.08841	
90	0.0003469	0.0000061	0.00796	0.02513	0.00223	0.14183	0.01755	0.00233	0.08318	
95	0.0003189	0.0000053	0.007613	0.02378	0.00203	0.13820	0.01580	0.00197	0.07846	
100	0.0002942	0.0000047	0.007296	0.02256	0.00185	0.13483	0.01428	0.00167	0.07419	
110	0.0002531	0.0000037	0.006738	0.02043	0.00155	0.12873	0.01178	0.00123	0.06674	
120	0.0002203	0.0000029	0.006262	0.01864	0.00132	0.12336	0.00985	0.00092	0.06048	
130	0.0001936	0.0000024	0.005851	0.01711	0.00113	0.11857	0.00831	0.00070	0.05515	
140	0.0001717	0.0000019	0.005492	0.01579	0.00098	0.11428	0.00709	0.00055	0.05057	
150	0.0001533	0.0000016	0.005176	0.01464	0.00086	0.11040	0.00609	0.00043	0.04659	
160	0.0001379	0.0000014	0.004896	0.01363	0.00076	0.10686	0.00528	0.00034	0.04310	
170	0.0001247	0.0000012	0.004644	0.01274	0.00067	0.10362	0.00460	0.00027	0.04002	
180	0.0001133	0.000001	0.004418	0.01195	0.00060	0.10064	0.00403	0.00022	0.03730	
190	0.0001035	0.0000009	0.004214	0.01123	0.00054	0.09788	0.00355	0.00018	0.03486	
200	0.0000949	0.0000007	0.004027	0.01059	0.00048	0.09533	0.00315	0.00015	0.03267	

Appendix 5. Probability of uranium exceeding a given concentration, by bedrock unit.—Continued

				Bedrock					
		SZtb			Zpg			Zsg	
Uranium, in micro- grams per liter	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound	Probability of concentration being greater than concen- tration listed in first column	Lower 95-percent confidence bound	Upper 95-percent confidence bound
210	0.0000874	0.0000006	0.003857	0.01001	0.00044	0.09295	0.00280	0.00012	0.03070
220	0.0000807	0.0000006	0.003701	0.00949	0.00040	0.09072	0.00251	0.00010	0.02892
230	0.0000748	0.0000005	0.003557	0.00901	0.00036	0.08863	0.00225	0.00009	0.02730
240	0.0000695	0.0000004	0.003424	0.00857	0.00033	0.08667	0.00202	0.00007	0.02582
250	0.0000648	0.0000004	0.0033	0.00816	0.00030	0.08483	0.00183	0.00006	0.02446
260	0.0000605	0.0000004	0.003186	0.00779	0.00028	0.08308	0.00166	0.00005	0.02322
270	0.0000567	0.0000003	0.003079	0.00745	0.00026	0.08143	0.00151	0.00004	0.02207
280	0.0000532	0.0000003	0.002979	0.00713	0.00024	0.07987	0.00137	0.00004	0.02102
290	0.00005	0.0000003	0.002885	0.00683	0.00022	0.07838	0.00125	0.00003	0.02004
300	0.0000471	0.0000002	0.002797	0.00655	0.00020	0.07697	0.00115	0.00003	0.01913

Appendix 6. Uranium Log-Normal Fit Statistics by Bedrock Unit

Appendix 6. Uranium log-normal fit statistics by bedrock unit.

				Bedrock ur	nit abbreviation				
		Dcgr					Dfgr		
Censoring inf	ormation	Count			Censoring in	formation	Count		
Uncensored valu	ie	7			Uncensored valu	ie	8		
Left censored va	lue	0			Left censored va	lue	0		
Distribution		Log normal			Distribution		Log normal		
	Param	eter estimate	s			Paran	neter estimate	s	
D	Fatherste	Standard	95% no	rmal CI	D	F-414-	Standard	95% no	rmal Cl
Parameter	Estimate	error	Lower	Upper	Parameter	Estimate	error	Lower	Upper
Location	2.31035	0.548184	1.23593	3.38477	Location	0.872357	0.890096	-0.872199	2.61691
Scale	1.35299	0.49093	0.664417	2.75519	Scale	2.33772	0.529608	1.49953	3.64445
Log-likelihood		-29.247			Log-likelihood		-32.057		
	Goo	dness-of-fit				God	odness-of-fit		
Anderson-Darlin	g (adjusted)	3.306			Anderson-Darlin	g (adjusted)	2.951		
Correlation coef	ficient	0.957			Correlation coef	ficient	0.973		
	Characteris	stics of distrib	oution			Characteri	stics of distrib	oution	
Descriptor	Estimate	Standard	95% no	rmal CI	Descriptor	Estimate	Standard	95% no	rmal CI
Descriptor	Latiniate	error	Lower	Upper	Descriptor	Latinate	error	Lower	Upper
Mean	25.1698	17.4269	6.47937	97.7751	Mean	36.7756	45.1462	3.31599	407.855
Standard deviation	57.6032	78.2128	4.02436	824.511	Standard deviation	564.077	1.30×10^3	6.16399	5.16 × 10 ⁴
Median	10.0779	5.52457	3.44157	29.5112	Median	2.39254	2.12959	0.418031	13.6934
First quartile (Q1)	4.04616	2.97585	0.957207	17.1033	First quartile (Q1)	0.494398	0.531543	0.0601067	4.06659
Third quartile (Q3)	25.1016	13.2678	8.90814	70.7318	Third quartile (Q3)	11.5782	9.57458	2.28952	58.5518
Interquartile range (IQR)	21.0554	12.088	6.83416	64.8697	Interquartile range (IQR)	11.0838	9.18399	2.1847	56.2328

Appendix 6. Uranium log-normal fit statistics by bedrock unit.—Continued

				Bedrock un	it abbreviation				
		DI					DSw		
Censoring in	formation	Count			Censoring in	formation	Count		
Uncensored value	ie	9			Uncensored valu	ie	8		
Left censored va	alue	0			Left censored va	lue	0		
Distribution		Log normal			Distribution		Log normal		
	Param	eter estimate	s			Parai	neter estimate	es	
D	Fatherite	Standard	95% nor	mal Cl	D	Fathmata	Standard	95% no	rmal CI
Parameter	Estimate	error	Lower	Upper	Parameter	Estimate	error	Lower	Upper
Location	-1.42001	0.492276	-2.38486	-0.455172	Location	-0.82093	0.518637	-1.83744	0.19558
Scale	1.4107	0.415304	0.792216	2.51203	Scale	1.40474	0.552648	0.64971	3.0372
Log-likelihood		-4.421			Log-likelihood		-32.057		
	Goo	dness-of-fit				Go	odness-of-fit		
Anderson-Darlin	g (adjusted)	2.64			Anderson-Darling	g (adjusted)	2.878		
Correlation coef	ficient	0.982			Correlation coeff	ficient	0.989		
	Characteris	stics of distrib	oution			Character	istics of distri	bution	
Danasistas	Estimate	Standard	95% nor	mal Cl	Danamintan	Estimate	Standard	95% no	rmal CI
Descriptor	Estimate	error	Lower	Upper	Descriptor	Estimate	error	Lower	Upper
Mean	0.653782	0.421119	0.184991	2.31055	Mean	1.18024	0.943965	0.246135	5.65936
Standard deviation	1.64306	1.99408	0.152267	17.7297	Standard deviation	2.93744	4.72115	0.12586	68.5566
Median	0.24171	0.118988	0.0921021	0.634339	Median	0.440022	0.228212	0.159225	1.21602
First quartile (Q1)	0.0933392	0.0592101	0.0269216	0.323614	First quartile (Q1)	0.170604	0.122943	0.0415511	0.700477
Third quartile (Q3)	0.625932	0.306129	0.240006	1.63242	Third quartile (Q3)	1.13491	0.618028	0.390328	3.29984
Interquartile range (IQR)	0.532592	0.279416	0.19047	1.48924	Interquartile range (IQR)	0.964306	0.588827	0.291375	3.19138

Appendix 6. Uranium log-normal fit statistics by bedrock unit.—Continued

				Bedrock un	it abbreviation				
		Ops*					0Zf		
Censoring inf	formation	Count			Censoring inf	formation	Count		
Uncensored valu	ie	3			Uncensored valu	ie	8		
Left censored va	nlue	7			Left censored val	lue	0		
Distribution		Log normal			Distribution		Log normal		
	Param	eter estimate	s			Paran	neter estimate	:S	
Dawamatan	Fatimata	Standard	95% no	rmal CI	Devenuetes	F-4:4-	Standard	95% no	rmal Cl
Parameter	Estimate	error	Lower	Upper	Parameter	Estimate	error	Lower	Upper
Location	-4.59511	0.651571	-5.87217	-3.31806	Location	-0.861046	0.430412	-1.70464	-0.0174541
Scale	1.70447	0.0790912	1.55629	1.86675	Scale	1.14421	0.3512	0.626965	2.0882
Log-likelihood	-	-7.89			Log-likelihood		-6.792		
	Goo	dness-of-fit				God	odness-of-fit		
Anderson-Darlin	g (adjusted)	1.393			Anderson-Darling	g (adjusted)	2.89		
Correlation coef	ficient	0.86			Correlation coeff	ficient	0.986		
	Characteris	stics of distrib	oution			Characteri	stics of distri	bution	
Descriptor	Estimate	Standard	95% no	rmal CI	Descriptor	Estimate	Standard	95% no	rmal CI
Descriptor	Latinate	error	Lower	Upper	Descriptor	Latimate	error	Lower	Upper
Mean	0.0431743	0.0280004	0.0121111	0.15391	Mean	0.813481	0.388955	0.318682	2.07653
Standard deviation	0.179415	0.121157	0.0477589	0.674006	Standard deviation	1.3375	1.20545	0.228632	7.82445
Median	0.0101011	0.0065816	0.0028168	0.0362231	Median	0.42272	0.181944	0.181838	0.982697
First quartile (Q1)	0.0031995	0.002113	0.0008769	0.0116741	First quartile (Q1)	0.195381	0.108958	0.0654924	0.58287
Third quartile (Q3)	0.0318898	0.0206335	0.0089723	0.113345	Third quartile (Q3)	0.914585	0.379014	0.405954	2.0605
Interquartile range (IQR)	0.0286903	0.0185514	0.0080787	0.101889	Interquartile range (IQR)	0.719205	0.330712	0.292041	1.77117

Appendix 6. Uranium log-normal fit statistics by bedrock unit.—Continued

				Bedrock un	it abbreviation				
		0Zm					0Zn		
Censoring in	formation	Count			Censoring inf	formation	Count		
Uncensored val	ue	10			Uncensored valu	ie	30		
Left censored va	alue	0			Left censored va	lue	1		
Distribution		Log normal			Distribution	ibution Log normal			
	Paran	neter estimate	es			Paran	neter estimate	s	
ъ.	F 41 4	Standard	95% no	rmal CI	D .	F 41 4	Standard	95% no	rmal Cl
Parameter	Estimate	error	Lower	Upper	Parameter	Estimate	error	Lower	Upper
Location	-0.655272	0.788995	-2.20167	0.89113	Location	0.0159391	0.258203	-0.490129	0.522007
Scale	2.41324	0.682883	1.3859	4.20212	Scale	1.42905	0.185068	1.1087	1.84197
Log-likelihood		-18.878			Log-likelihood		-62.614		
	Go	odness-of-fit				God	odness-of-fit		
Anderson-Darlin	ng (adjusted)	2.451			Anderson-Darling	g (adjusted)	1.108		
Correlation coef	fficient	0.977			Correlation coeff	ficient	0.973		
	Characteri	stics of distri	bution			Characteri	stics of distrib	oution	
Descriptor	Estimate	Standard	95% no	rmal CI	Descriptor	Estimate	Standard	95% no	rmal CI
Descriptor	Latinate	error	Lower	Upper	Descriptor	Latimate	error	Lower	Upper
Mean	9.55049	15.6289	0.386439	236.032	Mean	2.82083	0.990952	1.41694	5.61568
Standard deviation	175.384	559.999	0.33582	9.16×10^{4}	Standard deviation	7.30561	4.39151	2.24898	23.7315
Median	0.519301	0.409726	0.110618	2.43788	Median	1.01607	0.262351	0.612547	1.68541
First quartile (Q1)	0.10198	0.102956	0.0140984	0.737666	First quartile (Q1)	0.387538	0.115277	0.21633	0.694244
Third quartile (Q3)	2.64437	2.13213	0.544513	12.8421	Third quartile (Q3)	2.66398	0.734496	1.55182	4.57318
Interquartile range (IQR)	2.54239	2.08213	0.51067	12.6574	Interquartile range (IQR)	2.27644	0.668797	1.27991	4.04884

Appendix 6. Uranium log-normal fit statistics by bedrock unit.—Continued

				Bedrock un	it abbreviation					
		0Znb			Ph					
Censoring inf	ormation	Count			Censoring in	formation	Count			
Uncensored valu	ie	14			Uncensored valu	ıe	8			
Left censored va	lue	6			Left censored va	alue	1			
Distribution		Log normal			Distribution		Log normal			
	Param	eter estimates	stimates Parameter estimates							
Parameter	Estimate	Standard	95% no	rmal CI	Parameter	Estimate	Standard	95% no	ormal CI	
Parameter	Estimate	error	Lower	Upper	Parameter	Estimate	error	Lower	Upper	
Location	-1.75943	0.483527	-2.70713	-0.811735	Location	-1.75943	0.483527	-2.70713	-0.811735	
Scale	2.1023	0.305023	1.58196	2.7938	Scale	2.1023	0.305023	1.58196	2.7938	
Log-likelihood		-34.212			Log-likelihood		-25.95			
	Goo	dness-of-fit				Go	odness-of-fit			
Anderson-Darlin	g (adjusted)	1.676			Anderson-Darlin	g (adjusted)	2.642			
Correlation coef	ficient	0.857			Correlation coef	ficient	0.896			
	Characteris	stics of distrib	ution			Character	istics of distril	oution		
Descriptor	Estimate	Standard	95% no	rmal CI	Descriptor	Estimate	Standard	95% no	ormal CI	
Descriptor	Estillate	error	Lower	Upper	Descriptor	Estillate	error	Lower	Upper	
Mean	1.56895	1.24124	0.332813	7.39637	Mean	91.6336	231.335	0.650347	1.29×10^{4}	
Standard deviation	14.2135	19.3858	0.981158	205.902	Standard deviation	1.04×10^{4}	5.03×10^4	0.801103	1.35×10^{8}	
Median	0.172143	0.0832357	0.0667283	0.444087	Median	0.806891	0.840909	0.104647	6.2216	
First quartile (Q1)	0.0416934	0.0221509	0.0147177	0.118112	First quartile (Q1)	0.101305	0.123643	0.0092627	1.10796	
Third quartile (Q3)	0.71074	0.369306	0.256697	1.96789	Third quartile (Q3)	6.42687	7.16985	0.721764	57.2274	
Interquartile range (IQR)	0.669046	0.354301	0.236969	1.88895	Interquartile range (IQR)	6.32557	7.09744	0.701505	57.0385	

Appendix 6. Uranium log-normal fit statistics by bedrock unit.—Continued

				Bedrock un	it abbreviation					
		Sacgr					Sagr			
Censoring inf	ormation	Count			Censoring inf	formation	Count			
Uncensored valu	ie	53			Uncensored valu	ie	10			
Left censored va	llue	0			Left censored va	lue	1			
Distribution		Log normal			Distribution		Log normal			
	Param	eter estimates	5		Parameter estimates					
D	Fathmata	Standard	95% no	rmal CI	D	Fatherste	Standard	95% no	rmal CI	
Parameter	Estimate	error	Lower	Upper	Parameter	Estimate	error	Lower	Upper	
Location	0.936261	0.246092	0.45393	1.41859	Location	0.494757	0.780732	-1.03545	2.02496	
Scale	1.79023	0.178323	1.47273	2.17619	Scale	2.5312	0.64904	1.53131	4.18396	
Log-likelihood		-157.38			Log-likelihood		-36.858			
	Goo	dness-of-fit				God	odness-of-fit			
Anderson-Darlin	g (adjusted)	1.382			Anderson-Darling	g (adjusted)	2.278			
Correlation coef	ficient	0.959			Correlation coeff	ficient	0.969			
	Characteris	stics of distrib	ution			Characteri	stics of distril	bution		
Descriptor	Estimate	Standard	95% no	rmal CI	Descriptor	Estimate	Standard	95% no	rmal Cl	
Descriptor	Estilliate	error	Lower	Upper	Descriptor	Estimate	error	Lower	Upper	
Mean	12.6636	5.00803	5.83356	27.4903	Mean	40.3759	68.0789	1.48213	1.10×10^{3}	
Standard deviation	61.5898	42.368	15.9942	237.167	Standard deviation	993.15	3.22×10^{3}	1.7375	5.68×10^4	
Median	2.55043	0.62764	1.57449	4.1313	Median	1.6401	1.28048	0.355067	7.57584	
First quartile (Q1)	0.762438	0.212005	0.442097	1.3149	First quartile (Q1)	0.29745	0.286112	0.0451501	1.95961	
Third quartile (Q3)	8.53142	2.3009	5.02868	14.474	Third quartile (Q3)	9.04329	7.44166	1.80251	45.3706	
Interquartile range (IQR)	7.76898	2.17703	4.4858	13.4551	Interquartile range (IQR)	8.74584	7.29465	1.70545	44.8501	

Appendix 6. Uranium log-normal fit statistics by bedrock unit.—Continued

				Bedrock un	it abbreviation				
		Sb					Sbs		
Censoring info	ormation	Count			Censoring inf	ormation	Count		
Uncensored valu	e	16			Uncensored value	e	12		
Left censored va	lue	0			Left censored val	lue	0		
Distribution		Log normal			Distribution		Log normal		
	Param	eter estimate	S			Paran	neter estimate:	S	
Demonstra	Fatimata	Standard	95% no	rmal CI	D	Fatherste	Standard	95% no	rmal CI
Parameter	Estimate	error	Lower	Upper	Parameter	Estimate	error	Lower	Upper
Location	-0.202141	0.371811	-0.930878	0.526595	Location	-0.518142	0.27691	-1.06087	0.0245912
Scale	1.46215	0.283057	1.00048	2.13686	Scale	0.930099	0.211768	0.595285	1.45323
Log-likelihood		-27.626			Log-likelihood	 -	-11.145	 -	
	Goo	dness-of-fit				God	odness-of-fit		
Anderson-Darling	g (adjusted)	1.715			Anderson-Darling	g (adjusted)	2.019		
Correlation coeff	ficient	0.97			Correlation coeff	icient	0.994		
	Characteris	stics of distrib	ution			Characteri	stics of distrib	ution	
Descriptor	Estimate	Standard	95% no	rmal CI	Descriptor	Estimate	Standard	95% no	rmal CI
Descriptor	Estilliate	error	Lower	Upper	Descriptor	Estillate	error	Lower	Upper
Mean	2.37929	1.19732	0.88736	6.3796	Mean	0.917962	0.27353	0.511902	1.64612
Standard deviation	6.50789	5.81329	1.13003	37.4792	Standard deviation	1.07649	0.582141	0.372989	3.10685
Median	0.816979	0.303762	0.394208	1.69316	Median	0.595626	0.164935	0.346153	1.0249
First quartile (Q1)	0.304725	0.136503	0.126651	0.733174	First quartile (Q1)	0.31807	0.108532	0.162958	0.620827
Third quartile (Q3)	2.19036	0.844705	1.02861	4.66421	Third quartile (Q3)	1.11539	0.31097	0.645817	1.92637
Interquartile range (IQR)	1.88563	0.772188	0.845045	4.20759	Interquartile range (IQR)	0.797316	0.261822	0.418903	1.51757

Appendix 6. Uranium log-normal fit statistics by bedrock unit.—Continued

				Bedrock un	it abbreviation				
		Se					Sgr		
Censoring info	ormation	Count			Censoring inf	ormation	Count		
Uncensored valu	e	8			Uncensored value	e	7		
Left censored va	lue	0			Left censored val	lue	0		
Distribution		Log normal			Distribution		Log normal		
	Param	eter estimate	nates Parameter estimates						
D	Fatimata	Standard	95% noi	rmal CI	Parameter Estimate Standard 95% normal Cl				rmal CI
Parameter	Estimate	error	Lower	Upper	Parameter	Estimate	error	Lower	Upper
Location	-0.292614	0.287496	-0.856096	0.270868	Location	-0.822002	0.675265	-2.1455	0.501493
Scale	0.766477	0.228921	0.426849	1.37633	Scale	1.69502	0.788348	0.681216	4.21761
Log-likelihood		-7.605			Log-likelihood		-8.001		
	Goo	dness-of-fit				Go	odness-of-fit		
Anderson-Darling	g (adjusted)	2.986			Anderson-Darling	g (adjusted)	3.238		
Correlation coeff	ficient	0.963			Correlation coeff	ficient	0.974		
	Characteris	stics of distrib	ution			Characteri	stics of distri	bution	
Descriptor	Estimate	Standard	95% noi	rmal CI	Descriptor	Estimate	Standard	95% no	rmal CI
Descriptor	Latimate	error	Lower	Upper	Descriptor	Latimate	error	Lower	Upper
Mean	1.00113	0.282716	0.57559	1.74128	Mean	1.84882	2.39012	0.146717	23.2976
Standard deviation	0.895135	0.489043	0.306795	2.61174	Standard deviation	7.55348	19.7808	0.0445706	1.28×10^{3}
Median	0.74631	0.214561	0.424817	1.3111	Median	0.439551	0.296813	0.11701	1.65118
First quartile (Q1)	0.445038	0.164209	0.215935	0.917215	First quartile (Q1)	0.140117	0.137691	0.0204188	0.961507
Third quartile (Q3)	1.25153	0.346937	0.726907	2.15478	Third quartile (Q3)	1.37888	0.986436	0.339304	5.60359
Interquartile range (IQR)	0.806491	0.286032	0.402448	1.61618	Interquartile range (IQR)	1.23877	0.961806	0.270456	5.6739

Appendix 6. Uranium log-normal fit statistics by bedrock unit.—Continued

				Bedrock ui	nit abbreviation				
		So					S0agr		
Censoring info	ormation	Count			Censoring inf	formation	Count		
Uncensored valu	ie	12			Uncensored valu	ie	10		
Left censored va	lue	2			Left censored va	lue	2		
Distribution		Log normal			Distribution		Log normal		
	Param	eter estimates	}			Paran	neter estimate:	S	
D	Fathurst	Standard	95% noi	rmal CI	D	Fathursts	Standard	95% no	rmal Cl
Parameter	Estimate	error	Lower	Upper	Parameter	Estimate	error	Lower	Upper
Location	-0.910549	0.544193	-1.97715	0.156049	Location	-1.84542	0.919828	-3.64825	-0.0425933
Scale	1.99838	0.413305	1.3324	2.99726	Scale	3.01868	0.795339	1.80115	5.05924
Log-likelihood		-25.899			Log-likelihood		-19.087		
	Goo	dness-of-fit				Go	odness-of-fit		
Anderson-Darlin	g (adjusted)	1.719			Anderson-Darling	g (adjusted)	2.108		
Correlation coef	ficient	0.968			Correlation coeff	ficient	0.969		
	Characteris	stics of distrib	ution			Character	istics of distrib	ution	
Descriptor	Estimate	Standard	95% noi	rmal CI	Descriptor	Estimate	Standard	95% no	rmal CI
Descriptor	Estillate	error	Lower	Upper	Descriptor	Latinate	error	Lower	Upper
Mean	2.96306	2.75646	0.478508	18.3481	Mean	15.0412	35.1856	0.153493	1.47×10^{3}
Standard deviation	21.6215	36.4911	0.791215	590.851	Standard deviation	1.43×10^{3}	6.66×10^{3}	0.157509	1.30×10^{7}
Median	0.402303	0.218931	0.138464	1.16888	Median	0.157959	0.145295	0.0260366	0.958301
First quartile (Q1)	0.104513	0.0670819	0.029705	0.367718	First quartile (Q1)	0.02062	0.0242945	0.0020484	0.207574
Third quartile (Q3)	1.54858	0.897307	0.497413	4.82117	Third quartile (Q3)	1.21003	1.13483	0.192528	7.60502
Interquartile range (IQR)	1.44407	0.859624	0.449662	4.63757	Interquartile range (IQR)	1.18941	1.12275	0.186997	7.56538

Appendix 6. Uranium log-normal fit statistics by bedrock unit.—Continued

				Bedrock uni	it abbreviation				
		SObo					Sp		
Censoring in	nformation	Count			Censoring in	formation	Count		
Uncensored va	lue	6			Uncensored valu	ie	17		
Left censored v	value	1			Left censored va	lue	5		
Distribution		Log normal			Distribution		Log normal		
	Parai	Parameter estimates Parameter estimates					;		
Parameter	Estimate	Standard	95% no	rmal CI	Parameter	Estimate	Standard	95% no	rmal Cl
Parameter	Estilliate	error	Lower	Upper	Parameter	Estimate	error	Lower	Upper
Location	-0.077395	1.18885	-2.40749	2.2527	Location	-1.60967	0.664053	-2.91119	-0.308154
Scale	3.01338	1.16867	1.40908	6.44427	Scale	2.9756	0.556342	2.06266	4.29262
Log-likelihood		-21.941			Log-likelihood		-41.869		
	Go	odness-of-fit				Go	odness-of-fit		
Anderson-Darli	ing (adjusted)	3.218			Anderson-Darlin	g (adjusted)	1.409		
Correlation coe	efficient	0.982			Correlation coeff	ficient	0.984		
	Character	istics of distri	bution			Characteri	stics of distrib	ution	
Descriptor	Estimate	Standard	95% no	rmal CI	Descriptor	Estimate	Standard	95% no	rmal CI
Descriptor	Estillate	error	Lower	Upper	Descriptor	Estillate	error	Lower	Upper
Mean	86.7332	297.632	0.104044	7.23×10^4	Mean	16.7339	27.7695	0.647216	432.658
Standard deviation	8.13×10^{3}	5.57×10^4	0.0119581	5.52 × 10 ⁹	Standard deviation	1.40×10^{3}	4.55×10^{3}	2.40745	8.14 × 10 ⁵
Median	0.925524	1.10031	0.0900407	9.51342	Median	0.199953	0.132779	0.0544107	0.734802
First quartile (Q1)	0.121251	0.191379	0.0054977	2.67421	First quartile (Q1)	0.0268715	0.0221378	0.0053461	0.135066
Third quartile (Q3)	7.06462	8.87495	0.602233	82.8731	Third quartile (Q3)	1.48786	1.03601	0.380072	5.82452
Interquartile range (IQR)	6.94337	8.80026	0.579067	83.2552	Interquartile range (IQR)	1.46099	1.0246	0.36957	5.77562

Appendix 6. Uranium log-normal fit statistics by bedrock unit.—Continued

				Bedrock uni	it abbreviation				
		Spsq*					Spss		
Censoring inf	ormation	Count			Censoring inf	ormation	Count		
Uncensored valu	ie	4			Uncensored valu	e	7		
Left censored va	llue	5			Left censored val	lue	0		
Distribution		Log normal			Distribution		Log normal		
	Param	eter estimate:	S			Param	eter estimate	s	
Dawawatan	F-4:4-	Standard	95% no	rmal CI	Devenuetes	Fatimata	Standard	95% no	rmal Cl
Parameter	Estimate	error	Lower	Upper	Parameter	Estimate	error	Lower	Upper
Location	-3.26786	0.765784	-4.76876	-1.76695	Location	-2.5205	0.796308	-4.08124	-0.959767
Scale	2.09694	0.118607	1.87689	2.34278	Scale	2.09694	0.118607	1.87689	2.34278
Log-likelihood		-11.6			Log-likelihood		-1.372		
	God	dness-of-fit				God	dness-of-fit		
Anderson-Darlin	g (adjusted)	1.645			Anderson-Darlin	g (adjusted)	2.819		
Correlation coef	ficient	0.948			Correlation coeff	icient	0.998		
	Characteri	stics of distrib	ution			Characteris	stics of distril	bution	
Descriptor	Estimate	Standard	95% no	rmal CI	Descriptor	Estimate	Standard	95% no	rmal CI
Descriptor	Latinate	error	Lower	Upper	Descriptor	Latinate	error	Lower	Upper
Mean	0.343254	0.271361	0.0728944	1.61635	Mean	0.724747	0.587722	0.147883	3.55185
Standard deviation	3.07434	2.73261	0.538474	17.5525	Standard deviation	6.49117	5.83285	1.11544	37.7744
Median	0.038088	0.0291672	0.0084909	0.170854	Median	0.0804192	0.0640385	0.0168866	0.382982
First quartile (Q1)	0.0092585	0.0071735	0.0020278	0.0422721	First quartile (Q1)	0.0195484	0.0157948	0.0040119	0.0952511
Third quartile (Q3)	0.156689	0.119878	0.0349793	0.701883	Third quartile (Q3)	0.330833	0.262209	0.0699794	1.56404
Interquartile range (IQR)	0.14743	0.112868	0.0328802	0.661059	Interquartile range (IQR)	0.311285	0.246747	0.0658315	1.47191

Appendix 6. Uranium log-normal fit statistics by bedrock unit.—Continued

				Bedrock uni	t abbreviation				
		Ssqd					St		
Censoring in	formation	Count			Censoring in	formation	Count		
Uncensored val	lue	10			Uncensored valu	ie	14		
Left censored v	ralue	1			Left censored va	alue	1		
Distribution		Log normal			Distribution		Log normal		
	Paran	neter estimate	s		Parameter estimates				
Dawamatan	F-4:4-	Standard	95% no	rmal Cl	Parameter Estimate Standard 95% normal CI				
Parameter	Estimate	error	Lower	Upper	Parameter	Estimate	error	Lower	Upper
Location	-0.977338	0.709125	-2.3672	0.412522	Location	-1.16725	0.499365	-2.14599	-0.188511
Scale	2.23919	0.386238	1.59686	3.13989	Scale	1.88108	0.379981	1.26609	2.7948
Log-likelihood		-26.615			Log-likelihood		-20.191		
	Go	odness-of-fit				God	odness-of-fit		
Anderson-Darli	ng (adjusted)	2.275			Anderson-Darlin	ng (adjusted)	1.712		
Correlation coe	efficient	0.975			Correlation coef	ficient	0.985		
	Character	istics of distril	bution			Characteri	stics of distrib	oution	
Descriptor	Estimate	Standard	95% no	rmal CI	Descriptor	Estimate	Standard	95% no	rmal CI
Describior	Estillate	error	Lower	Upper	Descriptor	Estillate	error	Lower	Upper
Mean	4.61653	4.38346	0.717942	29.6854	Mean	1.82574	1.42605	0.394987	8.43907
Standard deviation	56.4465	94.6883	2.10744	1.51×10^{3}	Standard deviation	10.5537	15.1096	0.637893	174.606
Median	0.376312	0.266852	0.093743	1.51062	Median	0.311222	0.155413	0.116953	0.828192
First quartile (Q1)	0.0831052	0.0683251	0.0165887	0.416337	First quartile (Q1)	0.0875086	0.0531504	0.0266105	0.287772
Third quartile (Q3)	1.70399	1.16261	0.447404	6.48982	Third quartile (Q3)	1.10685	0.565689	0.406499	3.01384
Interquartile range (IQR)	1.62088	1.11047	0.423246	6.20742	Interquartile range (IQR)	1.01935	0.535954	0.363726	2.85672

Appendix 6. Uranium log-normal fit statistics by bedrock unit.—Continued

				Bedrock unit	abbreviation				
		SZtb					Zpg		
Censoring inf	ormation	Count			Censoring inf	ormation	Count		
Uncensored valu	ie	21			Uncensored valu	ie	10		
Left censored va	alue	12			Left censored va	lue	1		
Distribution		Log normal			Distribution		Log normal		
	Parar	neter estimate	s			Param	eter estimate	s	
Parameter	Estimate	Standard	95% no	rmal Cl	Parameter	Catimata	Standard	95% no	rmal CI
Parameter	Estillate	error	Lower	Upper	Parameter	Estimate	error	Lower	Upper
Location	-3.4627	0.477822	-4.39922	-2.52619	Location	-0.005913	0.71992	-1.41693	1.4051
Scale	2.34744	0.380468	1.70857	3.22519	Scale	2.30151	0.483285	1.52501	3.47339
Log-likelihood		-18.676			Log-likelihood		-33.305		
	Go	odness-of-fit				God	dness-of-fit		
Anderson-Darlin	g (adjusted)	1.832			Anderson-Darlin	g (adjusted)	2.335		
Correlation coef	ficient	0.966			Correlation coeff	ficient	0.958		
	Character	istics of distril	bution			Characteri	stics of distrib	oution	
Descriptor	Estimate	Standard	95% no	rmal CI	Descriptor	Estimate	Standard	95% no	rmal CI
Descriptor	Estillate	error	Lower	Upper	Descriptor	Estillate	error	Lower	Upper
Mean	0.492893	0.403814	0.0989431	2.45539	Mean	14.0493	16.4147	1.42277	138.73
Standard deviation	7.73496	12.7591	0.305047	196.133	Standard deviation	198.055	429.793	2.81588	1.39×10^{4}
Median	0.0313449	0.0149773	0.012287	0.0799632	Median	0.994104	0.715676	0.242457	4.07595
First quartile (Q1)	0.0064348	0.0040499	0.0018742	0.0220932	First quartile (Q1)	0.210502	0.180952	0.0390432	1.13492
Third quartile (Q3)	0.152685	0.0669433	0.064654	0.360577	Third quartile (Q3)	4.6947	3.35313	1.15784	19.0357
Interquartile range (IQR)	0.14625	0.0646419	0.0614992	0.347795	Interquartile range (IQR)	4.4842	3.23448	1.09071	18.4358

Appendix 6. Uranium log-normal fit statistics by bedrock unit.—Continued

Bedrock unit abbreviation							
Zsq							
Censoring information		Count					
Uncensored value		23					
Left censored value		0					
Distribution		Log normal					
Parameter estimates							
Parameter	Estimate	Standard error	95% normal Cl				
			Lower	Upper			
Location	1.80621	0.268843	1.27929	2.33314			
Scale	1.2783	0.201315	0.938816	1.74055			
Log-likelihood		-81.557		-			
	G	oodness-of-fit					
Anderson-Darling (adjusted)		1.276					
Correlation coefficient		0.989					
Characteristics of distribution							
Descriptor	Estimate	Standard _ error	95% normal CI				
			Lower	Upper			
Mean	13.7803	4.78246	6.97989	27.2062			
Standard deviation	27.9866	16.9035	8.56714	91.4248			
Median	6.08735	1.63654	3.59408	10.3102			
First quartile (Q1)	2.57027	0.813775	1.38191	4.78056			
Third quartile (Q3)	14.4171	4.10789	8.24788	25.2007			
Interquartile range (IQR)	11.8468	3.68061	6.44387	21.7799			

Prepared by the Pembroke and the Ft. Lauderdale Publishing Service Centers

For more information concerning this report, contact:

Director
U.S. Geological Survey
Massachusetts-Rhode Island Water Science Center
10 Bearfoot Road
Northborough, MA 01532
dc_ma@usgs.gov

or visit our Web site at: http://ma.water.usgs.gov

